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Abstract

Background: Pulmonary fibrosis (PF) is a devastating disease characterized by remodeling of lung architecture and
abnormal deposition of fibroblasts in parenchymal tissue and ultimately results in respiratory failure and death.
Preclinical studies suggest that mesenchymal stem cell (MSC) administration may be a safe and promising option in
treating PF. The objective of our meta-analysis is to assess the efficacy of MSC therapy in preclinical models of PF.

Methods: We performed a comprehensive literature search in PubMed, EMBASE, Web of Science, and Cochrane
Library databases from inception to March 17, 2021. Studies that assessed the efficacy of MSC therapy to animals
with PF were included. The SYRCLE bias risk tool was employed to evaluate the bias of included studies. The
primary outcomes included survival rate and pulmonary fibrosis scores. Meta-analysis was conducted via Cochrane
Collaboration Review Manager (version 5.4) and Stata 14.0 statistical software.

Results: A total of 1120 articles were reviewed, of which 24 articles met inclusion criteria. Of these, 12 studies
evaluated the survival rate and 20 studies evaluated pulmonary fibrosis scores. Compared to the control group,
MSC therapy was associated with an improvement in survival rate (odds ratios (OR) 3.10, 95% confidence interval
(CI) 2.06 to 4.67, P < 0.001, I2 = 0%) and a significant reduction in pulmonary fibrosis scores (weighted mean
difference (WMD) 2.05, 95% CI −2.58 to −1.51, P < 0.001, I2 = 90%).

Conclusions: MSC therapy is a safe and effective method that can significantly improve the survival and pulmonary
fibrosis of PF animals. These results provide an important basis for future translational clinical studies.
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Background
Pulmonary fibrosis (PF) is a chronic, life-threatening dis-
ease with a gradual worsening of pulmonary function
and shortness of breath, and the median survival time of
patients with idiopathic pulmonary fibrosis (IPF) was es-
timated to be 2.5–3.5 years [1, 2]. PF is characterized by
alveolar epithelial cell injury, remodeling of lung

architecture, abnormal accumulation of extracellular
matrix, and fibroblasts in parenchymal tissue [3, 4],
which ultimately results in respiratory failure and death
[5]. The prognosis of IPF is poor, with a mortality rate
comparable to advanced tumors [6]. In recent years, the
treatments of medicine such as pirfenidone and ninteda-
nib have improved lung function for patients with IPF
[7], but neither one has a certain advantage on mortality
outcomes, often necessitating lung transplantation [8, 9].
Therefore, it is important to detect innovative options
and new therapeutic strategies for the management of
pulmonary fibrosis.
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In recent years, mesenchymal stem cells (MSCs) have
received increasing attention in the field of regenerative
applications, because of multi-lineage differentiation po-
tential, migratory ability, and self-renewal properties [10,
11]. MSCs are derived from a variety of organs and tis-
sues, such as the bone marrow and adipose tissues, and
can home to the sites of injury. The therapeutic values
of MSCs have been demonstrated in various diseases, in-
cluding ischemic heart failure, pulmonary arterial hyper-
tension, stroke, chronic kidney disease, and sepsis [12–
15]. Accumulating evidence suggests the role of MSC
administration in attenuating the disease by anti-
apoptotic, immunomodulation, and anti-inflammatory
effects [16–18]. However, the underlying molecular
mechanisms are much more complicated and have not
yet been fully recognized.
Several studies suggested that MSCs have the capacity

to suppress inflammation, reduce fibrosis, and prolong
the survival time for preclinical models of PF, which was
induced by bleomycin, silica, paraquat (PQ), and radi-
ation [10, 19–24]. However, the design projects, includ-
ing MSC dose, type, route, source, and time interval, in
each research are so different that the final therapeutic
effect is difficult to evaluate. As a result, the best way of
MSC therapy remains unclear. Therefore, we collected
data from all relevant studies and conducted a meta-
analysis to assess the efficacy of MSC treatment.

Methods
Data source and search strategies
This meta-analysis followed the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines (Additional file 1: Table S1) [25]. A
systematic literature search was performed using
PubMed, EMBASE, Web of Science, and Cochrane Li-
brary from inception to March 17, 2021. We also manu-
ally reviewed the reference cited with the articles. The
detailed search strategy is described in Additional file 2:
Table S2. The language was limited to English.

Eligible criteria
The following inclusion criteria were set: (1) the study
involved animal models of pulmonary fibrosis (all species
and sexes); (2) all pulmonary fibrosis animal models
were subjected to MSC treatment; (3) studies that in-
clude efficacy outcomes, such as survival rate and pul-
monary fibrosis scores; and (4) studies have a control
group.
Studies were excluded from the meta-analysis for the

following reasons: (1) all inclusion criteria were not ful-
filled; (2) the MSCs used in the study were differentiated,
or engineered to alter the expression of specific genes;
(3) meeting abstracts, case reports, and case series; (4)

review or meta-analysis; (5) the study was duplicated;
and (6) studies published in a non-English language.

Study selection and data extraction
Two investigators (Deng-Yuan Li and Ru-Fang Li) inde-
pendently screened the literature according to the search
strategy. Any disagreements were reviewed and resolved
by a third investigator (Dan-Dan Pu and Dan-Xiong
Sun). After identifying the articles that met the inclusion
criteria and exclusion criteria, we extracted the data
using a standardized collection form that included the
first author, year of publication, animal characteristics
(species, gender, and model), intervention details (origin,
dose, route, and timing of MSC transplantation), and
follow-up (observation time of outcomes after MSC
therapy) and then measured the correlation with our pri-
mary outcomes (survival rate and pulmonary fibrosis
scores). In the case of missing or unclear data for the
primary outcome measures, an attempt was made to
contact the author for clarification.

Assessment of risk of bias
Risk of bias was assessed according to the Systematic Re-
view Centre for Laboratory animal Experimentation
(SYRCLE) bias risk tool [26]. The components included
random sequence generation, performance bias, detec-
tion bias, attrition bias, reporting bias, and other sources
of bias. For each item, studies were categorized as high,
low, and unclear risk of bias.

Primary outcomes
The main study outcomes of this meta-analysis were
survival rate and pulmonary fibrosis scores [27].

Statistical analysis
Statistical analysis was performed via Stata 14.0 statis-
tical software and Cochrane Collaboration Review Man-
ager (version 5.4). Continuous and dichotomous
outcome variables were respectively described as
weighted mean difference (WMD) and odds ratios (ORs)
with 95% confidence intervals (CIs). The chi-squared
test and I2 parameter were used to measure heterogen-
eity [28]. The fixed effects model was used for meta-
analysis when P > 0.1 and I2 < 50%, and the random ef-
fects model was used when P < 0.1 and I2 > 50%. If het-
erogeneity was significant, subgroup analysis and meta-
regression were performed to further exploration. We
assessed the potential for publication bias using Funnel
plots and Egger’s regression test [29]. Differences for
which P < 0.05 (two-sided) were considered statistically
significant.
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Results
Study selection
According to the search strategy, we identified 1654
studies related to mesenchymal stem cell therapies for
pulmonary fibrosis, and 534 duplicate articles were re-
moved using Endnote X 9 software. By reading the titles
and abstracts, 122 articles were isolated for full-text re-
view. Finally, 24 articles involving 564 animals were in-
cluded in this meta-analysis after study selection (Fig. 1)
(If more than one intervention was provided in a single
study, each intervention was regarded as independent.).

Study characteristics
The basic characteristics of 24 articles are listed in Table
1. The articles were published between 2005 and 2020.
The majority of studies were conducted in rodents (rats
and mice). One study was carried out in tree shrews.
The pulmonary fibrosis animal model in most studies
was induced by bleomycin, radiation, or paraquat. Stem
cell types included bone marrow mesenchymal stem
cells (BMSC) (n = 15), adipose-derived mesenchymal
stem cells (ADMSC) (n = 6), umbilical cord mesenchy-
mal stem cells (UCMSC) (n = 3), amniotic membrane

mesenchymal stem cells (AMSC) (n = 2), human embry-
onic mesenchymal stem cells (EMSC) (n = 1), and hu-
man menstrual blood–derived mesenchymal stem cells
(MenSC) (n = 1). The doses of interventions ranged
from 103 to 107 MSCs, which were injected intraven-
ously in 25 animal studies, via intraperitoneal transplant-
ation in two studies, and intratracheal injection in one
study. Timing of cell administration ranged from 1 h to
60 days after induction of the PF model. However, the
majority of reports treated animals with stem cells prior
to injury or evidence of PF. The duration of follow-up
ranged from 1 to 60 days. Otherwise, three of the articles
included multiple studies. Therefore, the meta-analysis
included a total of 28 animal studies involving 564
animals.

Risk of bias (SYRCLE tool)
Each risk of bias item of all articles is shown in Fig. 2.
No study fulfilled all ten criteria for low risk of bias.
Most studies demonstrated similar baseline characteris-
tics about experimental and control groups. Among the
24 articles, none of the studies accurately described the
random sequence generation. Therefore, the risk of bias

Fig. 1 Flow diagram of the study selection
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Table 1 General characteristics of preclinical studies investigating the efficacy of MSC therapy in models of PF

Author (year) Country Species,
strain,
gender

No. of treated
animals

No. of
controls

PF
model

MSC
source

MSC
dose

MSC
route

Transplant
type

Time of MSC
therapy after
PF

Follow-
up
(days)

Li et al. (2017)
[43]

China Mouse
C57BL/6, M

5 5 Radiation BMSC 2.0 × 106 iv Allograft 2 h 42 d

Xia et al. A
(2015) [44]

China Mouse, NR,
NR

25 25 Radiation BMSC 1.0 × 103 iv Xenograft 1 d 28 d

Xia et al. B
(2015)

China Mouse, NR,
NR

25 25 Radiation BMSC 5.0 × 103 iv Xenograft 1 d 28 d

Xia et al. C
(2015)

China Mouse, NR,
NR

25 25 Radiation BMSC 1.0 × 104 iv Xenograft 1 d 28 d

Guo et al.
(2018) [23]

China Tree shrews,
NR, F

20 20 Radiation UCMSC 3.0 × 107 iv Allograft 1 h, 7 d, 14 d,
21 d

28 d

F. Cahill et al. A
(2016) [45]

Ireland Mouse
C57BL/6, F

5 5 BLM BMSC 5.0 × 104 iv Allograft 6–8 h 28 d

F. Cahill et al. B
(2016)

Ireland Mouse
C57BL/6, F

5 5 BLM BMSC 5.0 × 104 iv Allograft 9 d 28 d

Zhang et al.
(2018) [24]

China Rat, SD, M 6 6 Silica BMSC 2.0 × 106 iv Allograft 28 d 28 d

He et al.
(2020) [19]

China Rat, SD, M/F 22 20 PQ AMSC 2.0 × 106 iv Xenograft 6 h 21 d

Moroncini et al.
(2018) [46]

Italy Mouse
C57BL/6, F

8 8 BLM UCMSC 2.5 × 105 iv Xenograft 1 d, 7 d 21 d

Chen et al.
(2019) [10]

China Mouse
C57BL/6, M

10 10 PQ BMSC 2.0 × 106 iv Allograft 7 d 14 d

Tashiro et al.
(2015) [47]

USA Mouse
C57BL/6, M

5 12 BLM ADMSC 5.0 × 105 iv Allograft 1 d 21 d

Ai et al.
(2019) [48]

China Mouse
C57BL/6, M

10 10 BLM ADMSC 5.0 × 106 iv Allograft 1 d 14 d

Zhang et al.
(2019) [20]

China Rat, SD, M 10 10 PQ BMSC 3.0 × 106 ip Allograft 1 h 1 d

M. Kumamoto
et al. (2009) [49]

Japan Mouse
C57BL/6, F

20 25 BLM BMSC 5.0 × 106 iv Allograft 3 d 10 d

Reddy et al.
(2016) [50]

India Mouse
Swiss-albino,
M

10 10 BLM ADMSC 4.0 × 107 iv Xenograft 3 d, 6 d, 9 d 21 d

Rojas et al.
(2005) [51]

USA Mouse
C57BL/6, NR

5 6 BLM BMSC 5.0 × 106 iv Allograft 6 h 14 d

Wang et al.
(2012) [40]

China Mouse
BALB/c, M

6 6 BLM EMSC 2.0 × 105 iv Xenograft 1 d 14 d

Lee et al.
(2014) [31]

Korea Mouse
C57BL/6, M

10 20 BLM ADMSC 3.0 × 105 ip Xenograft 60 d 60 d

Chen et al.
(2018) [52]

China Rat, SD, M 5 5 Silica ADMSC 5.0 × 105 iv Allograft 1 d 28 d

Lee et al.
(2010) [53]

Korea Rat, SD, F 10 10 BLM BMSC 1.0 × 107 iv Allograft 4 d 28 d

Periera-simon
et al. (2020) [21]

USA Mouse
C57BL/6, NR

15 15 BLM ADMSC 5.0 × 105 iv Xenograft 1 d 21 d

Aguilar et al.
(2009) [22]

UK Mouse
C57BL/6, M

6 6 BLM BMSC 5.0 × 106

(1 d, 3 d)
iv Allograft 8 h 14 d

Chen et al.
(2020) [54]

China Mouse
C57BL/6, M

5 5 BLM MenSC 5.0 × 105 iv Xenograft 2 d, 7 d 21 d

Lan et al.
(2015) [38]

China Mouse
C57BL/6, F

6 6 BLM BMSC 5.0 × 105 it Allograft 3 d 21 d

Yuben et al. Australia Mouse, 8 8 BLM UCMSC 1.0 × 106 iv Xenograft 1 d 28 d
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in the randomization sequence was judged to be “un-
clear.” In addition, because of the special properties of
mesenchymal stem cell administration, it is difficult for
researchers to achieve a blinding procedure when ac-
quiring stem cells, although this does not influence the
experimental results. The majority of studies were
scored as having a low risk of reporting and attrition
bias. The risk of bias was unclear for all articles across
the domains of allocation concealment, random animal
housing, and random outcome assessment. Moreover,
no additional sources of bias were identified.

Efficacy of MSC therapy on PF
Survival rate
In this meta-analysis, a total of 12 animal studies
reported survival rate. A fixed effects model was used to
assess this research, as the heterogeneity was low (I2 =
0% and P = 0.84). Animals treated with MSCs had a sig-
nificantly increasing survival rate compared to control
(OR 3.10, 95% CI 2.06 to 4.67, P < 0.001) (Fig. 3).

Pulmonary fibrosis scores
The results of pulmonary fibrosis scores in this meta-
analysis are shown in Fig. 4. The pooled weighted mean
difference (WMD) for pulmonary fibrosis scores was
−2.05 (95% CI −2.58 to −1.51), and the P values were less
than 0.001, which demonstrated that MSC therapy was as-
sociated with an obvious reduction in pulmonary fibrosis
scores compared with that in the control group. The sig-
nificant heterogeneity was detected in this study (I2 = 90%
and P < 0.01); thus, a random effects model was used.

Subgroup analysis and meta-regression analysis
We analyzed the source of heterogeneity by evaluating
pulmonary fibrosis scores in a subgroup analysis (Table
2, Additional file 3: Fig. S1-S7). We focused on MSC
type, dose, time, injection route, type of graft, PF model,
and geographic location, which were reported in tables,
respectively. The composite WMDs (95% CI) for the PF
model (silica-induced) and MSC type (BMSC) were

−1.55 (−2.52 to −0.57), I2 = 0%, and −1.22 (−1.68 to
−0.76), I2 = 60% (P < 0.01), respectively. With regard to
MSC dose, the composite WMDs (95% CI) for high-
dose BMSC and high-dose ADMSC were −1.00 (−1.42
to −0.58), I2 = 14%, and −2.46 (−3.28 to −2.00), I2 = 0%,
respectively (P < 0.01) (Additional file 3: Fig. S8-S9).
To further identify the potential heterogeneity across

studies, we estimated the effect of all variables on the
study results by using meta-regression. For pulmonary
fibrosis scores, MSC type remained the only significant
factor (P = 0.008), indicating that MSC type may be the
source of heterogeneity in this meta-analysis (Additional
file 4: Table S3).

Sensitivity analyses
Sensitivity analyses were performed using “one-study-re-
moved” analyses. We used sensitivity analyses to evalu-
ate whether the pooled effect size still fell within the
total pooled effect size of the 95% CI, indicating that the
outcomes of the meta-analysis were stable (Additional
file 5: Fig. S10).

Publication bias
Funnel plots and Egger’s regression tests were used to
assess publication bias in survival rate and pulmonary fi-
brosis scores individually (Additional file 6: Fig. S11).
The Funnel plots and Egger’s regression tests (P = 0.015)
showed publication bias in survival rate and no signifi-
cant publication bias in pulmonary fibrosis scores (P =
0.702).

Discussion
This meta-analysis evaluated the efficacy of MSC ther-
apy in preclinical models of pulmonary fibrosis. In gen-
eral, the results of our meta-analysis indicate an
improvement in lung damage with MSC treatment,
which is consistent with the previous meta-analysis [30].
While this previous meta-analysis only included the ani-
mal model of PF induced by bleomycin, we updated an-
other three PF models, including silica, paraquat, and
radiation, and analyzed another important parameter

Table 1 General characteristics of preclinical studies investigating the efficacy of MSC therapy in models of PF (Continued)

Author (year) Country Species,
strain,
gender

No. of treated
animals

No. of
controls

PF
model

MSC
source

MSC
dose

MSC
route

Transplant
type

Time of MSC
therapy after
PF

Follow-
up
(days)

(2009) [55] SCID, NR

Moodley et al. A
(2013) [17]

Australia Mouse
C57BL/6, F

8 8 BLM BMSC 1.0 × 106 iv Xenograft 3 d 21 d

Moodley et al. B
(2013)

Australia Mouse
C57BL/6, F

8 8 BLM AMSC 1.0 × 106 iv Xenograft 3 d 21 d

PF pulmonary fibrosis, SD Sprague Dawley, M male, F female, NR not reported, MSC mesenchymal stem cell, BLM bleomycin, PQ paraquat, BMSC bone marrow
mesenchymal stem cells, UCMSC umbilical cord mesenchymal stem cells, ADMSC adipose-derived mesenchymal stem cells, EMSC human embryonic mesenchymal
stem cells, AMSC amniotic mesenchymal stem cells, MenSC human menstrual blood–derived mesenchymal stem cells, iv intravenous, ip intraperitoneally, it
intratracheally. Follow-up (days) suggests the observation time of outcomes after mesenchymal stem cell administration
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Fig. 2 Risk of bias assessment using the SYRCLE tool
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(survival rate), for providing more possibilities for MSC
therapy in preclinical studies of PF.
In our research, the majority of MSCs were derived

from fresh tissue of healthy rodents or humans. The cul-
ture medium was changed every 2–3 days until cell con-
fluency reached > 80%. Generations 2–5 of the MSCs
were harvested for the identification and cell administra-
tion studies [10, 23, 31]. In the field of regenerative
medicine, animal studies are relevant to clinical applica-
tion and used to evaluate the safety and efficacy of MSC
therapy. As far as we know, several clinical trials have

been conducted to explore the potential benefits of MSC
transplantation for patients with IPF [32–36]. A phase
1b clinical trial reported that the intravenous route of up
to 2 × 106 placental MSCs per kilogram is safe in pa-
tients with moderately severe IPF. They found that this
intervention was not associated with significant adverse
reactions and that lung function, 6-min walk distance
(6MWD), and computed tomography (CT) fibrosis score
were unchanged over 6 months compared with baseline
[35]. Another clinical trial indicated a total dose of 1.6 ×
109 MSCs is well tolerated by IPF patients with a rapid

Fig. 3 Forest plot showing the effect of MSC therapy on survival rate

Fig. 4 Forest plot showing the effect of MSC therapy on pulmonary fibrosis scores
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lung function decline, which can improve 6MWD in 13
weeks and lung function in 39 weeks [36]. Even though
MSC therapy is a generally safe and promising candidate
to slow the disease progression in these clinical trials,
the best way of MSC therapy remains unclear.
In our meta-analysis, MSC treatment obviously im-

proved the survival rate and fibrosis scores of PF animal
models, indicating the potentials of MSC transplantation
in preclinical studies of PF. We investigated the efficacy
of different MSC sources and found that the most com-
mon type of employed stem cells was BMSC or ADMSC
(54/21%). However, our study reported that other types
of MSC (AMSC, UCMSC, EMSC, and MenSC) showed
better treatment results in regard to pulmonary fibrosis
scores. Due to the lack of related reports, more rigorous
studies treated with MSCs are required to verify these
findings. In addition, recent studies involving overex-
pressing specific genes [37] in engrafted stem cells or
preconditioned MSCs have shown improvement on sur-
vival rate and lung fibrosis following MSC

administration [38–40]. In fact, confirmatory studies of
two models could improve the validity; however, we did
not collect and identify any studies regarding stem cell
therapy in gene modification.
We attempt to explore the heterogeneity from different

design projects, including different stem cell types, injec-
tion routes, time intervals, and dosages of MSCs. Accord-
ing to subgroup analysis and meta-regression, we found
that the possible contributor of heterogeneity is the PF
model, MSC type, and MSC dose. There are many inter-
ventions that can induce pulmonary fibrosis, including
bleomycin, silica, paraquat, radiation, and so on, which
have their advantages and disadvantages. The pathological
features of the PF model diverge in many aspects may be
the reason for the different therapeutic effects. Migrated
MSCs play an important function in injury repair by dif-
ferentiating into different tissue, anti-apoptotic, immuno-
modulation, and anti-inflammatory effects [18]. At the
same time, the adverse environment around the damaged
lung may also affect the efficacy of implanted MSCs [41].

Table 2 The study of correlation grouping and heterogeneity between pulmonary fibrosis scores and variables

Subgroup Weighted mean (95% CI) I2 P

PF model

Bleomycin-induced PF model −2.03 (−2.51, −1.56) 82% < 0.01

Silica-induced PF model −1.55 (−2.52, −0.57) 0% < 0.01

Paraquat-induced PF model −2.69 (−6.76, 1.37) 99% < 0.01

Radiation-induced PF model −1.00 (−1.83, −0.17) NA 0.02

MSC route

Intravenous injection −2.77 (−2.83, −1.71) 88% < 0.01

Non-intravenous injection −0.83 (−1.23, −0.42) 0% 0.6

MSC type

BMSC −1.22 (−1.68, −0.76) 60% < 0.01

ADMSC −1.98 (−2.79, −1.17) 84% < 0.01

Others −3.41 (−4.61, −2.22) 91% < 0.01

MSC dose

< 1.0 × 106 MSCs −1.79 (−2.33, −1.25) 83% < 0.01

≥ 1.0 × 106 MSCs −2.34 (−3.45, −1.23) 93% < 0.01

Time of MSC therapy

≤ 1 d −2.21 (−2.96, −1.47) 92% < 0.01

>1 d −1.83 (−2.59, −1.07) 84% < 0.01

Type of graft

Allograft −1.58 (−2.25, −0.91) 86% < 0.01

Xenograft −2.55 (−3.40, −1.70) 91% < 0.01

Geographic location

Asia −2.03 (−2.84, −1.23) 92% < 0.01

Europe −1.79 (−2.95, −0.64) 81% < 0.01

America −1.79 (−3.65, −0.07) 94% < 0.01

Oceania −2.68 (−4.38, −0.98) 85% < 0.01
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The success of MSC therapy is partly reliant on a suffi-
cient number of cells reaching the target organ and ap-
propriate timing of stem cell injection. In murine
studies, the effective dose for stem cell treatment is nor-
mally 1.0 × 106 per 30 g mouse. And the early trans-
plantation of MSCs within 1 day after lung damage is
the most valuable method for repairing fibrotic sites
[42]. Subgroup analyses were performed according to
the dosage of MSCs (< 1.0 × 106 MSCs or ≥ 1.0 × 106

MSCs) and time of MSC therapy (≤ 1 day or >1 day)
and indicated that early stem cell therapy and high dose
of MSCs in the experimental group appear to be more
effective than in the control group. However, the major-
ity of reports treated animals with stem cells prior to in-
jury or evidence of PF, suggesting that MSC therapy
does not show a significant effect on the subsequent col-
lagen deposition and fibrosis prevention when adminis-
trating few days after the lung damage. The intravenous
injection had a greater effect size than other routes,
demonstrating that this method had better therapeutic
value, although the effect sizes remained large for other
routes also. Furthermore, xenograft therapy in PF ani-
mals was more effective than allograft therapy, implying
that graft type is a crucial factor in clinical application
for PF therapy. However, the sample size of this sub-
group analysis was small, and there may be false-positive
or false-negative conclusions.
The SYRCLE Risk of Bias tool was used to assess the

translational potentials of MSC therapy [26]. In this
meta-analysis, none of 24 articles was identified as hav-
ing a low risk of bias according to the reporting contents
in this tool. Even though most of the studies tried to
avoid all kinds of bias, few researchers attempt to show
their protocols. Consequently, we could not estimate the
effect size for follow-up studies based on this tool. The
low quality of methodology was mainly caused by in-
appropriate sequence generation, lack of double-blinding
and allocation concealment, selective reporting, and in-
complete outcome data. This meta-analysis highlights
the common problems and recommends an urgent need
for higher methodological quality when publishing. To
reduce the risk of bias and take the poor reporting of
outcome measures into consideration, we suggest that
future translational studies related to MSC-based PF
treatment should follow the SYRCLE Risk of Bias tool
and report both detailed methodology and measures’
performance.
There are several strengths in our meta-analysis.

Firstly, this study for the first time evaluated the survival
rate on the PF model in preclinical research. Even
though a previous meta-analysis evaluated the benefits
of MSCs in a BLM-induced animal model, the meta-
analysis reported here incudes different PF models and
recently published high-quality studies. Secondly, we

performed a systematic literature search, comprehensive
data collection, and subgroup analysis by MSC type, in-
jection route, and timing, which can improve the accur-
acy of our findings. Thirdly, the main results about
survival rate and pulmonary fibrosis scores could pro-
vide vital insight into the future study.
However, our study also has some limitations. Firstly,

the funnel plots and Egger’s regression tests detected
that publication bias exists in this meta-analysis. As ex-
pected, studies reporting positive results are easier to
publish, especially in animal studies. Secondly, the in-
cluded studies were limited to those that had been pub-
lished. The outcomes will be altered when
undocumented data are published. Thirdly, current data
mostly focus on the effect of MSC administration prior
to injury or evidence of PF, while results of late adminis-
tration are limited. Whether MSC therapy can signifi-
cantly alleviate pulmonary fibrosis and produce long-
term therapeutic effects on regeneration is worth further
exploration. Fourthly, the diagnostic approach to PF is
reliant on high-resolution chest computed tomography
(HRCT), pulmonary function tests, and histologic find-
ings [1]. Among them, HRCT and pulmonary function
tests are more conductive to clinical application. How-
ever, most of the studies in our meta-analysis did not
use HRCT and lung function for diagnosis. Therefore, it
is suggested that future preclinical studies should con-
centrate on MSC transplantation at a more advanced
stage and non-invasive diagnosis.

Conclusion
In conclusion, this meta-analysis evaluated the efficacy
of mesenchymal stem cell therapy on survival rate and
pulmonary fibrosis scores in animal models, which pro-
vides an important basis for future translational clinical
studies. Due to the low methodological quality, large
sample, prospective, double-blind, randomized con-
trolled trials are required to prove the safety and efficacy
of MSC therapy for IPF.
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