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Abstract
Rational  With no available response biomarkers, matching an appropriate antidepressant to an individual can be a lengthy 
process. Improving understanding of processes underlying treatment responsivity in depression is crucial for facilitating 
work on response biomarkers.
Objectives  To identify differences in patterns of pre-treatment resting-state functional connectivity (rsFC) that may underlie 
response to antidepressant treatment.
Methods  After a baseline MRI scan, thirty-four drug-free patients with depression were treated with an SSRI escitalopram 
10 mg daily for 6 weeks; response was defined as ≥ 50% decrease in Hamilton Depression Rating Scale (HAMD) score. 
Thirty-one healthy controls had a baseline clinical assessment and scan. Healthy participants did not receive treatment.
Results  Twenty-one (62%) of patients responded to escitalopram. Treatment responsivity was associated with enhanced 
rsFC of the right fronto-parietal network (FPN)—with the posterior DMN, somatomotor network (SMN) and somatosensory 
association cortex. The lack of treatment response was characterized by reduced rsFC: of the bilateral FPN with the con-
tralateral SMN, of the right FPN with the posterior DMN, and of the extended sensorimotor auditory area with the inferior 
parietal lobule (IPL) and posterior DMN. Reduced rsFC of the posterior DMN with IPL was seen in treatment responders, 
although only when compared with HC.
Conclusions  The study supports the role of resting-state networks in response to antidepressant treatment, and in particular 
the central role of the frontoparietal and default mode networks.

Keywords  Major depressive disorder · Treatment biomarkers · Treatment response · Escitalopram · Resting-state fMRI · 
Resting-state networks · Independent component analysis

Introduction

Identification of biomarkers allowing prediction of antide-
pressant response to individual drugs and allocation of the 
right treatment to a given patient is a key priority in psychi-
atric research. Currently, finding such treatment follows a 
‘trial and error’ process, based on guidelines derived from 
the knowledge of populational efficacy of drugs; this pro-
cess however does not necessarily work for a particular indi-
vidual (Cipriani et al. 2018; Shinohara et al. 2019). In fact, 
only one-third of depressed patients respond to their first 
treatment, and finding an effective one often takes months 
or longer (Warden et al. 2007; Rush et al. 2009). Despite 
significant research efforts, clinically applicable biomarkers 
have not yet been identified.
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Such research has been largely facilitated by the develop-
ment of non-invasive in vivo imaging techniques, which put 
forward some potential biomarkers, such as increased activ-
ity of the pgACC as a general predictor of good treatment 
response (Fu et al. 2013; Godlewska et al. 2018). However, 
after years of research, it has become increasingly unlikely 
that an aberrant function of one particular structure in the 
brain could reliably predict treatment response. This is in 
line with depression being conceptualized as a network dis-
order, with meaningful aberrations related to the networks 
of brain structures rather than individual regions (Li et al. 
2018).

Neuroimaging has been the key in the understanding of 
network activity. A commonly used method is an assessment 
of temporal correlation of the activity of brain regions—so-
called functional connectivity (FC)—with functional mag-
netic resonance (fMRI) technique, either during task per-
formance or when an individual is awake yet not engaged in 
any external tasks (so-called resting state). Assessment of 
resting-state functional connectivity (rsFC) has some impor-
tant benefits: it is task independent; hence, results are not 
dependent on the selection of an appropriate task, data col-
lection is relatively easy as it does not depend on the ability 
to perform a task, which may be impaired in depression, and 
it allows an assessment of networks predominantly activated 
during rest. Resting state analysis can be performed with dif-
ferent methods, all having one assumption in common: the 
definition of functional connectivity is based on a statistical 
dependency between time series, expressing co-activation 
of brain structures. Conventional methods of analyzing rest-
ing-state FC (rsFC) can roughly be divided into region-of-
interest (ROI)–based and data-driven methods (Yang et al., 
2020). While both approaches are beneficial, ROI-based 
methods require a pre-existing hypothesis as to the role of a 
region, and a choice of a ‘seed’ can be quite subjective with 
slightly different seeds giving different results. A seed-based 
analysis is furthermore restricted by having to predefine the 
region a priori which does not allow for explorative analy-
sis. An alternative is defining nodes based on the data in a 
data-driven parcellation by, for example, independent com-
ponent analysis (ICA) (Yang et al., 2020). A benefit of this 
method is that new regions can be discovered from which 
new hypotheses can be formulated.

Both types of analysis provided support for models 
of depression focused on dysfunctional communication 
between brain regions and helped to explore mechanisms of 
antidepressant action at the network level. Two prominent 
models focused on the role of inadequate cognitive control 
by the central executive network (CEN) over the affective 
and default mode networks (AN and DMN, respectively), 
resulting in inadequate top-down regulation of attention and 
emotion regulation in depressed patients regardless of their 

treatment status (Drevets 2001, Mayberg 2003, Wang et al. 
2012, Kaiser et al., 2015, Zhong et al. 2016).

In line with these models, antidepressants, including a 
number of serotonin reuptake inhibitor (SSRIs), serotonin-
norepinephrine reuptake inhibitor (SNRIs) and an norepi-
nephrine reuptake inhibitor (NRI) reboxetine were shown, 
through both data- and hypothesis-driven analyses, to modu-
late disrupted network connectivity in the fronto-limbic net-
works and between the frontal and DMN regions (McCabe 
et al. 2011; Dichter et al. 2015; Vai et al. 2016; Brakowski 
et al. 2017), with potentially key role of the posterior DMN 
(Li et al. 2013; Posner et al. 2013). Some findings are prom-
ising as potential biomarkers, such as, for example, low 
connectivity between the lateral PFC and sgACC being a 
predictor of good treatment response, which was shown for 
both typical antidepressant drugs, such as an SSRI sertraline 
(Chin Fatt et al. 2020) and a new glutamatergic treatment 
ketamine (Gartner et al. 2019). SgACC connectivity may 
also play a role in non-pharmacological methods, such as 
TMS (Philip et al. 2018). At this point, however, there are 
no clinically useful biomarkers of response, and although 
the work on the proposed markers needs to continue, it is 
similarly important to explore brain connectivity in a data-
driven manner, so that potentially relevant connections are 
not missed because of restriction related with an a priori 
selection of brain regions included in the analysis.

Therefore, this study employed a whole-brain data-driven 
independent component analysis, in order to explore differ-
ences in patterns of baseline (pre-treatment) resting-state 
functional connectivity (rsFC) in patients with major depres-
sive disorder (MDD) who responded to 6 weeks of treatment 
with an SSRI escitalopram, patients who did not respond to 
such treatment and healthy volunteers.

Methods

Participants and study design

Patients with MDD were recruited through referral from 
clinicians and advertising, healthy controls through adver-
tising. Thirty-nine patients with MDD and 32 healthy sub-
jects gave written informed consent to take part in the study. 
Thirty-four patients (19F:15 M) completed both baseline 
fMRI scan and 6-week period of escitalopram treatment; 
31 healthy subjects completed the scan (see Table 1 for 
demographic information). In the remaining 5 patients and 
1 healthy subject, relevant data were not available at the end 
of the treatment period (four patients dropped out before the 
6-week assessment, scanning data from one patient were 
unavailable due to excessive motion and one healthy vol-
unteer was not scanned due to safety concerns revealed at 
the scanning appointment). All participants were assessed 
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with the Structured Clinical Interview for DSM-IV (Spitzer 
et al 1995) for the presence of current and past psychiatric 
disorders. The depressed patients met DSM-IV criteria for 
a primary diagnosis of major depressive disorder; exclusion 
criteria for both groups were as follows: past/current DSM-
IV diagnosis of axis I disorder (other than MDD in patients), 
substance dependence as defined by DSM-IV, a clinically 
significant risk of suicidal behaviour, major somatic or 
neurological disorders, pregnancy or breast-feeding, any 
contra-indications to MR imaging, or concurrent medica-
tion that could alter emotional processing. Patients with con-
traindications to escitalopram treatment or treatment with 
psychotropic medication less than 3 weeks before the study 
(5 weeks for fluoxetine) were also excluded from the study. 
At baseline, 22 patients were drug-naïve and 12 patients 
were drug-free (for all patients: range 2–117 months, mean 
32.2 months, SD 38.4 months). Previous treatments included 
sertraline, fluoxetine, escitalopram, paroxetine, venlafaxine, 
mirtazapine, trazodone, imipramine and lofepramine. All 
participants were right-handed. The study was approved by 
the Oxford Research Ethics Committee and performed in 
accordance with Declaration of Helsinki.

After the baseline fMRI scan, patients received 10 mg 
escitalopram each morning for 6 weeks without dose adjust-
ment. Depressive severity and treatment response were 
measured using the 17-item Hamilton Depression Rating 
Scale (HAMD) (Hamilton 1960) and Beck Depression 
Inventory (BDI) (Beck et al. 1961), and anxiety levels were 
measured with Spielberger’s State-Trait Anxiety Inven-
tory–Trait (STAI-T) (Spielberger 1989) at baseline and after 
6 weeks of treatment. The current analysis focuses on how 

baseline differences in rsFC were able to predict clinical 
response at week 6 of treatment. After the study was com-
pleted, all patients were offered treatment openly with esci-
talopram following usual clinical practice. Clinical response 
to the SSRI was defined as a reduction in HAMD of 50% or 
more from baseline after 6 weeks of treatment (Angst et al. 
1993). Healthy control subjects followed the same protocol; 
however, they did not receive any medication. Resting state 
data acquisition was performed with participants having 
their eyes closed.

Data acquisition

fMRI data were acquired on a 3 T Siemens Magnetom 
TIM TRIO scanner (Siemens AG) at the University of 
Oxford Centre for Clinical Magnetic Resonance Research 
(OCMR). A total of 180 volumes of resting-state fMRI 
(rs-fMRI) were acquired with a voxel resolution of 
3 × 3 × 3.5 mm, repetition time (TR)/echo time (TE)/flip 
angle (FA) = 2000  ms/28  ms/89°, duration time: 6  min 
4 s. T1-weighted structural images were acquired using 
a magnetization prepared rapid acquisition by gradi-
ent echo sequence (MPRAGE) with a voxel resolution 
1.0 × 1.0 × 1.0 mm on a 208 × 256 × 200 grid, TR/TE/inver-
sion time (TI) = 2040 ms/4.68 ms/900 ms. Gradient echo 
phase and magnitude field maps to correct for distortion were 
also acquired with voxel resolution of 3.5 × 3.5 × 3.0 mm, 
TR/TE1/TE2/FA = 488 ms/5.19 ms/7.65 ms/60°.

Table 1   Demographics and clinical scores presented as a 
mean ± standard deviation (SD) (except for gender). R, responders; 
NR, non-responders; HC, healthy controls; HAMD, Hamilton Depres-

sion Rating Scale; BDI, Beck Depression Inventory (BDI) (Beck et al. 
1961); STAI-T, Spielberger’s State-Trait Anxiety Inventory–Trait

Responders (R)
N = 21

Non-responders (NR)
N = 13

Statistics for R 
vs NR
(independent 
samples t-test, 
exc. chi-square 
for gender*)

Healthy controls 
(HC)
N = 31

Statistics for R vs NR 
vs HC
(one-way ANOVA, 
exc. chi-square for 
gender*)

p t df p F df

Age (years) 30.4 ± 11.7 30.1 ± 10.1 0.939 -0.077 32 30.3 ± 10.0 0.997 0.003 64
Gender 11F and 10 M 8F and 5 M 0.601 0.273* 1 18F and 13 M 0.858 0.306* 2
Age at onset (years) 25.1 ± 8.3 25.2 ± 11.3 0.968 0.040 32 NA NA NA NA
Duration of current episode (months) 5.9 ± 6.1 8.8 ± 8.7 0.276 1.108 32 NA NA NA NA
HAMD baseline 23.3 ± 4.9 22.9 ± 4.0 0.823 -0.226 32 0.4 ± 0.8  < 0.0001 381.5 64
HAMD at 6 weeks 4.5 ± 3.8 17.4 ± 5.1  < 0.0001 8.442 32 NA NA NA NA
BDI baseline 31.6 ± 6.8 32.4 ± 5.5 0.735 0.341 32 0.8 ± 1.5  < 0.0001 358.0 64
BDI at 6 weeks 9.2 ± 7.3 24.2 ± 10.6  < 0.0001 4.899 32 NA NA NA NA
STAI-Trait anxiety at baseline 60.0 ± 8.4 63.3 ± 10.3 0.321 1.009 32 29.2 ± 7.7  < 0.0001 116.1 64
STAI-Trait anxiety at 6 weeks 46.1 ± 14.1 56.9 ± 11.3 0.026 2.335 32 NA NA NA NA
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Resting‑state fMRI preprocessing and statistical 
analysis

Rs-fMRI data was analyzed using FMRIB software library 
(FSL version 6.6.1, FMRIB Analysis group, Oxford Univer-
sity, UK) (Jenkinson et al., 2012). Questionnaire data was 
analyzed with Statistical Package for the Social Sciences 
(SPSS 25) (IBM Corporation, Armonk, NY USA).

Briefly, single-subject pre-processing consisted of motion 
correction, brain extraction of structural and functional data, 
unwarping of EPI data using the acquired field maps, co-
registration of EPI data to the structural scan using bound-
ary-based registration, and normalization into MNI stand-
ard space using both linear and nonlinear image registration 
tools. Temporal filtering with a high-pass filter cut-off of 
150 s (0.007 Hz) and spatial smoothing with a Gaussian 
kernel of full-width at half maximum of 6 mm were applied.

Individual subject independent component analysis 
(ICA) was carried out using Multivariate Exploratory Lin-
ear Optimized Decomposition into Independent Compo-
nents (MELODIC) (Beckmann et al. 2005). Single-session, 
independent components (ICs) were automatically classified 
into signal or noise using FMRIB’s ICA-based Xnoiseifier 
(FIX), with a standard training dataset (Griffanti et al. 2014; 
Salimi-Khorshidi et al. 2014). De-noised functional data 
were temporally concatenated across subjects and decom-
posed into ICs using MELODIC. Dimensionality estimation 
for group maps was set to 25 IC maps, which is an approxi-
mate average of the individual IC maps thresholds as deter-
mined by spatial mixture modelling. They were identified as 
either belonging to the most frequently reported major RSNs 
(Smith et al., 2009), or reflecting movement, physiological 
or scanner noise This was done by visual inspection, inde-
pendently by MM and BG, and subsequently consulted with 
NF, and additionally through a comparison to previously 
published maps (Smith et al., 2009) using Pearson spatial 
cross-correlation. Next, the set of spatial maps from the 
group-average analysis was used to generate subject-specific 
versions of the spatial maps, and associated timeseries, using 
dual regression (Beckmann et al. 2009; Filippini et al. 2009). 
First, for each subject, the group-average set of spatial maps 
was regressed (as spatial regressors in a multiple regres-
sion) into the subject’s 4D space–time dataset. This resulted 
in a set of subject-specific timeseries, one per group-level 
spatial map. Next, those timeseries were regressed (as tem-
poral regressors, again in a multiple regression) into the 
same 4D dataset, resulting in a set of subject-specific spa-
tial maps, one per group-level spatial map. We then tested 
for statistically significant differences between the groups 
using FSL’s randomize permutation-testing tool (5000 per-
mutations). Cluster-based thresholding was applied using 
Threshold-Free-Cluster-Enhancement (TFCE) approach and 
a family-wise-error corrected cluster significance threshold 

of p < 0.05 applied to the suprathreshold clusters (Nichols 
and Holmes 2002, Smith and Nichols, 2009).

Structural images were used as additional covariates on 
a voxel-by-voxel basis to interrogate rs-fMRI data. GM 
images of each subject were extracted using FMRIB’s Auto-
mated Segmentation Tool (http://​fsl.​fmrib.​ox.​ac.​uk/​fsl/​fslwi​
ki/​FAST/), registered to standard space, smoothed to match 
the intrinsic smoothness of the rs-fMRI data, voxel-wise 
demeaned across all subjects in both groups together and 
added as a confounding regressor (nuisance) to the GLM 
design matrix used to analyze rs-fMRI data. This was done 
using an FSL script ‘feat_GM_prepare’, which estimates the 
smoothness of the functional data from the melodic folder 
and matches the fMRI data. Adding GM maps reduces vari-
ance in the data due to potentially confounding anatomical 
differences between subjects (Oakes et al. 2007).

Additionally, using Pearson’s r correlation, we performed 
correlational analysis between identified functional connec-
tivity measures (parameter estimates) and clinical measures: 
BDI score at baseline and its percent change over the time of 
treatment (total score and score on BDI subscales: affective, 
cognitive and somatic) (Buckley et al. 2001), STAI-Trait 
total score and length of the current episode. Details of the 
items allocated to individual BDI subscales are presented in 
Supplementary Table 1.

Results

Clinical and demographic data

Twenty-one out of 34 (62%) patients responded to 6 weeks 
of treatment with escitalopram. Responders and non-
responders did not differ with respect to gender, age, base-
line depression severity, baseline trait anxiety, age at depres-
sion onset and duration of current episode (see Table 1 for 
details). Healthy controls, as expected, differed from patients 
in terms of depression and anxiety scores; there were no 
significant differences in terms of gender and age (Table 1).

Resting‑state fMRI imaging analysis

All individual datasets were quality checked. No participant 
exceeded the cut-off for excursion from the initial head posi-
tion, 1.5 mm. Out of 25 ICs extracted from the temporal 
concatenation, 16 components were identified as resting-
state networks (RSNs) of interest corresponding to previ-
ously identified canonical RNSs (Yeo et al. 2011). The other 
components represented noise, which was not excluded by 
the artefact rejection algorithm (FIX) and included artefacts 
resulting from physiological noise (arteries, veins and CSF), 
head motion and scanner artefacts. All RSNs of interest are 
displayed in Fig. 1.
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Fig. 1   Resting-state networks 
identified in the study. Axial, 
coronal and sagittal slices for 
the main resting-state networks 
detected, overlaid onto the 
standard MNI brain. All maps 
thresholded at Z = 3
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Independent component analysis

Nonparametric permutation analysis revealed signifi-
cant group differences in baseline functional connectivity 
between (1) treatment responders (R) and non-responders 
(NR), (2) NR and healthy controls (HC), and (3) R and HC. 
Differences in resting-state networks were also observed 
when comparing MDD patients as a single group, regard-
less of their response status (R or NR), and HC; however, 
these were driven by either R or NR and therefore we do not 
describe them in detail.

(1) Treatment R, as compared to NR, showed greater 
pre-treatment FC between the right fronto-parietal network 
(FPN) and bilateral precuneus, as well as between the right 
FPN and left precentral and postcentral gyri and soma-
tosensory association cortex (Fig. 2). (2) Treatment NR, as 
compared to HC, showed reduced baseline FC of the right 
and left FPN with contralateral precentral and postcentral 
gyri, and reduced baseline FC of a somatomotor-auditory 
component including the sensorimotor network (SMN) and 
other sensory and motor areas (auditory cortex, posterior 
insula, central and parietal operculum, midcingulate cor-
tex—MCC, and supplementary motor area—SMA) with 
right precuneus/posterior cingulate cortex (PCC), as well 
as between this sensorimotor-auditory component and right 
angular and supramarginal gyri (ANG and SMG, respec-
tively) (Fig. 3a-c). Statistically significant differences were 
observed between all patients with MDD and HC for all 
of the above connections except the right FPN. The results 
were driven by the NR group, and no statistically signifi-
cant differences were noted between R and HC, or R and 
NR. (3) Treatment R, as compared to HC, was character-
ized by reduced baseline FC between the default mode net-
work (DMN) and right ANG/SMG (Fig. 4). Statistically 

significant differences were observed between all patients 
with MDD and HC. The results were driven by the R group, 
with no statistically significant differences between NR and 
HC, or R and NR. Details of significant functional connec-
tions between resting-state networks and individual brain 
regions are presented in Table 2, while statistical parametric 
maps for the above contrasts, as well as parameter estimates 
extracted from the clusters of significant difference between 
the groups, are displayed in Figs. 2, 3 and 4.

Although the two groups, responders and non-responders, 
did not differ in terms of baseline HAMD score (Table 1), 
in order to account for the potential influence of baseline 
depression severity, we repeated the analysis with baseline 
HAMD score as a regressor and obtained equivalent results.

Correlational analysis between described above con-
nections (parameter estimates) and percent change in BDI 
score–total score and score on its subscales (affective, cogni-
tive and somatic), as well as STAI-Trait total score, showed 
significant correlations between both right and left FPN and 
percent change in BDI score–total and on subscales, as well 
as total STAI-Trait score. No significant correlations were 
observed for the Somatomotor-Auditory Network and DMN, 
except for the borderline correlation between a change in 
BDI affective subscale score and DMN connectivity. Details 
of the correlations are provided in Table 3. There were no 
significant correlations between baseline HAMD, BDI 
(total score and subscales) and STAI-Trait scores, as well 
the length of the episode (see Supplementary Table 2 for 
details).

Fig. 2   Greater pre-treatment functional connectivity in treatment 
responders compared with non-responders between the right fronto-
parietal network and bilateral precuneus, left precentral and post-
central gyri and somatosensory association cortex. Red-yellow: 
regions with correlated BOLD signal time-course; blue: regions with 
anti-correlated BOLD signal time-course; green: group differences 

between responders and non-responders. The graph shows parameter 
estimates (beta-values) extracted from the cluster of significant differ-
ence between the groups. R > NR, right frontoparietal network, mean 
left and right precuneus. MNI coordinates of cursor =  − 10, − 52, 50. 
Results are shown TFCE-corrected with a family-wise error cluster 
significance level of p < 0.05. Error bars denote standard deviation
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Discussion

The main aim of the study was to explore baseline (i.e. pre-
treatment) patterns of resting-state functional connectiv-
ity (rsFC) associated with response to SSRI treatment. To 
achieve this, we compared pre-treatment rsFC in depressed 
individuals who responded to 6 weeks of treatment with 
escitalopram, depressed individuals who did not respond to 
such treatment and rsFC in untreated healthy individuals 
without depression.

Using an unbiased ICA approach, we identified a num-
ber of patterns. Treatment responsivity was associated 
with enhanced rsFC of the right FPN—with the posterior 

DMN (bilateral precuneus), and with the SMN and soma-
tosensory association cortex. At the same time, treatment 
non-responders appeared to be characterized by reduced 
rsFC: of the bilateral FPN with the contralateral SMN, of 
the right FPN with the posterior DMN (bilateral precu-
neus), and of the wide sensorimotor-auditory area (includ-
ing the SMN, auditory cortex, posterior insula, central and 
parietal operculum, MCC, and SMA) with ANG/SMG 
and the posterior DMN (precuneous and PCC). We also 
observed reduced rsFC of the posterior DMN with ANG/
SMG in treatment responders, although only when com-
pared with HC.

Fig. 3   Increased pre-treatment functional connectivity between: (a) 
right fronto-parietal network and left postcentral/precentral gyrus; 
R > NR & HC > NR; MNI coordinates of cursor =  − 18, − 38, 54; (b) 
left fronto-parietal network and right postcentral/precentral gyrus; 
HC > NR; MNI coordinates of cursor = 40, − 28, 54; (c) sensorimotor-
auditory network and angular gyrus/supramarginal gyrus/precuneous 
cortex /PCC; HC > NR; MNI coordinates of cursor = 43, − 49, 24. 

Red-yellow: regions with correlated BOLD signal time-course; blue: 
regions with anti-correlated BOLD signal time-course; green: group 
differences. The graph shows parameter estimates extracted (beta-
values) from the cluster of significant difference between the groups. 
Results are shown TFCE-corrected with a family-wise error cluster 
significance level of p < 0.05. Error bars denote standard deviation
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This brief summary of results points at interactions 
between three networks—the DMN, the FPN, and primary 
sensory/motor regions—as being key to response to escit-
alopram in our study.

Our results suggest that the DMN, and in particular its 
posterior part, may be significant for treatment response, 
both when its connectivity as a network, and connectivity of 
its elements with other networks, is considered. Firstly, treat-
ment R, as compared to NR, showed greater rsFC between 
the right FPN and the posterior DMN hub, precuneus, while 
there was no difference between R and HC (Fig. 2). Sec-
ondly, significantly reduced rsFC of the posterior DMN with 

the right ANG/SMG was observed in R compared to HC 
(Fig. 4), and was generally reduced in patients compared to 
HC (results not presented). Thirdly, significantly reduced 
rsFC of the extended somatomotor-auditory area includ-
ing—mostly primary—sensory and motor regions, with 
the posterior DMN hub in the precuneus/PCC, and with the 
ANG/SMG, was seen in NR compared to HC (Fig. 3c), and 
generally in all patients versus HC (results not presented).

The DMN, in which abnormalities have been consist-
ently observed in depression, is a network involved in a 
wide array of inward-directed mental activities, including 
self-referential processing, imagery and memory (Buckner 

Fig. 4   Decreased pre-treatment functional connectivity in responders 
compared with healthy volunteers between the default mode network 
and right angular gyrus/supramarginal gyrus. Red-yellow: regions 
with correlated BOLD signal time-course; blue: regions with anti-
correlated BOLD signal time-course; green: group differences. The 

graph shows parameter estimates (beta-values) extracted from the 
cluster of significant difference between the groups. MNI coordinates 
of cursor = 44, − 46, 36. Results are shown TFCE-corrected with 
a family-wise error cluster significance level of p < 0.05. Error bars 
denote standard deviation

Table 2   Significant functional connections (temporal correlations) between resting-state networks and individual brain regions. Individual clus-
ters identified within each contrast shown. R, responders; NR, non-responders; HC, healthy controls

Contrast Network Cluster Cluster size 
(number of 
voxels)

Peak voxel Pmax value

R > NR Right fronto-parietal network (FPN) Left postcentral gyrus 259  − 18, − 38, 54 0.978
Left precentral gyrus (extending into 

left precuneus)
48  − 2, − 38, 54 0.965

Left precuneus 29  − 10, − 52, 50 0.961
Right precuneus 27 10, − 48, 50 0.957
Left somatosensory association 

cortex
28  − 20, − 74, 46 0.964

R > NR & HC > NR Right fronto-parietal network (FPN) Left postcentral gyrus 65  − 12, − 34, 58 0.973
Left precentral and postcentral gyri 44  − 30, − 26, 44 0.972

HC > NR Left fronto-parietal network (FPN) Right postcentral and precentral gyri 44 40, − 28, 54 0.985
HC > NR Sensorimotor-auditory network Right supramarginal and angular 

gyri
46 44, − 42, 34 0.970

Right angular gyrus 45 48, − 52, 46 0.969
Right precuneus and posterior cingu-

late cortex
33 12, − 46, 24 0.964

HC > R Default mode network (DMN) Right angular and supramargial gyri 309 44, − 46, 36 0.994
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et al. 2008). The involvement of the DMN is one of the most 
consistent findings regarding the physiopathology of depres-
sion (Dutta et al. 2014) and normalization of increased rsFC 
between key regions of the DMN may underlie antidepres-
sant treatment response (McCabe et al. 2011). The DMN is 
organized into subsystems, which converge on the mPFC 
(anterior DMN) and precuneus/PCC (posterior DMN) 
(Buckner et al. 2008). While both parts of the DMN are 
involved in self-related processing, the anterior DMN shows 
greater bias towards self-other relations, and the posterior 
DMN—towards self-centred processing; it also has a role in 
involuntary (bottom-up) attentional processing, in particu-
lar related to visual and sensorimotor stimuli. The posterior 
DMN might have a particular role in treatment response, as 
suggested by our study and research by other groups, which 
observed normalization of the posterior DMN connectivity 
after successful antidepressants treatment (Li et al., 2013; 
Posner et al., 2013; Wang et al. 2014; Shen et al. 2015), 
while that of the anterior DMN remained unaffected (Li 
et al. 2013).

The FPN, composed of lateral prefrontal and posterior 
parietal cortices, is highly integrated with multiple brain 
networks, which allows a flexible and coordinated higher 
order modulation of cognitive and emotional processes 
(Marek and Dosenbach 2018, 2019). Our results show that 
greater temporal coherence between the FPN and the pre-
cuneus, similar to healthy individuals, was associated with 

favourable treatment response, which suggests that sustained 
FC between these structures may be essential for antidepres-
sant response. This may be linked to control that the FPN 
exerts over the DMN (Cavanna and Trimble 2006; Chen 
et al. 2013; Marek and Dosenbach, 2019). FPN-DMN inter-
actions are facilitated by rich cortico-cortical connections 
between the frontal and parietal lobes and, specifically, pre-
cuneus (Cavanna and Trimble 2006). Our findings are in line 
with already published research (e.g. Posner et al. 2013).

Good response to treatment was also associated with 
reduced connectivity of the DMN with the right ANG/
SMG. The ANG/SMG are parts of the inferior parietal lob-
ule (IPL), a complex region involved in complex functions 
across cognitive and emotional domains and supporting 
inter-network interactions thanks to hosting the nodes of 
major brain networks (Seghier 2013, Ingelström and Grazi-
ano, 2017). The area identified in our study corresponds to 
the location of the DMN node. The ANG and DMN activi-
ties are often found to be correlated, and our findings sug-
gest that a decrease in this correlation may be meaningful 
for treatment response. The IPL shows strong lateralization 
of function, with the right IPL, identified in our study, par-
ticularly involved in attentional processing (Ingelström and 
Graziano, 2017). One hypothesis explaining better treatment 
response is that this reduced connectivity might facilitate 
directing attention away from the DMN and inward-directed 
processing, and towards other functions supported by the 

Table 3   Correlations between established functional connectivity 
measures (parameter estimates) and clinical scores (% change base-
line vs. post-treatment). HAMD, Hamilton Depression Rating Scale; 

BDI, Beck Depression Inventory (BDI) (Beck et  al. 1961); STAI-T, 
Spielberger’s State-Trait Anxiety Inventory–Trait

Functional connectivity between:
-right fronto-parietal network (FPN) and left postcentral gyrus, left precentral gyrus, bilateral precuneus and left somatosensory association cor-
tex
-left FPN and left postcentral/precentral gyri
-sensorimotor-auditory network and right supramarginal gyrus, right angular gyrus, right precuneus and posterior cingulate cortex
-posterior default mode network (DMN) and right angular and supramargial gyri

Correlations HAMD BDI Total BDI Affective BDI Somatic BDI Cognitive STAI-T

Pearson's r % Difference % Difference % Difference % Difference % Difference % Difference
Correlation Coefficient  − 0.601  − 0.614  − 0.564  − 0.578  − 0.556  − 0.464

Right FPN Sig. (2-tailed)  < 0.001  < 0.001 0.001  < 0.001 0.001 0.006
N 34 34 34 34 34 34
Correlation Coefficient  − 0.412  − 0.376  − 0.394  − 0.297  − 0.366  − 0.491

Left FPN Sig. (2-tailed) 0.015 0.029 0.021 0.088 0.033 0.003
N 34 34 34 34 34 34

Sensorimotor Correlation Coefficient  − 0.365  − 0.321  − 0.294  − 0.316  − 0.303  − 0.239
Auditory Sig. (2-tailed) 0.034 0.064 0.092 0.068 0.081 0.173
Network N 34 34 34 34 34 34

Correlation Coefficient 0.371 0.327 0.341 0.32 0.253 0.29
DMN Sig. (2-tailed) 0.031 0.059 0.048 0.065 0.149 0.096

N 34 34 34 34 34 34
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IPL. The role for the right ANG in treatment response has 
been reported in previous studies (Guo et al. 2013; Kor-
gaonkar et al. 2014), with one showing its best performance 
in classifying the early improvement status among other 
identified, DMN and frontal, regions.

The third finding involving DMN in our study was that 
treatment NR were characterized by significantly decreased 
FC of the sensorimotor-auditory component extending 
across the SMN, primary auditory cortex (Heschl’s gyrus 
and planum temporale), posterior insula, central and parietal 
operculum, MCC and SMA. Reduced temporal correlation 
was observed with the posterior DMN (the precuneus and 
PCC), and the right ANG/SMG in the cluster partly over-
lapping with the one described in the preceding paragraph. 
The component extends across canonical resting-state net-
works and it might be argued that it would further subdi-
vide if dimensionality was increased. However, the common 
functional denominator of the areas involved is their role in 
sensory and motor processing, which supports treating it as 
a functional entity. The areas constituting this component 
include, mostly primary, somatosensory and somatomotor 
areas, which, through perception and integration of the inter-
nal and external sensory data (related to touch, temperature, 
pain, proprioception, interoception, visceral sensations, as 
well as auditory, olfactory and gustatory stimuli) facilitate 
planning of complex and coordinated motor movements, 
their production, execution and control (Northoff 2016). 
These areas are also strongly involved in production of emo-
tional states (Kropf et al. 2019). It has been proposed that 
sensory information from both internal and external envi-
ronments is one of the key elements in emotion formation 
and that internal body sensations influence the subjective 
experience of emotion (Levenson 1999; Wiens 2005; Pace-
Schott et al. 2019). Our results suggest that a certain level of 
sustained connectivity of these sensory and motor regions, 
with the posterior DMN and the ANG/SMG cluster in the 
IPL, is important for treatment response. This may be related 
to the role of posterior DMN and the right IPL in involuntary 
attentional processing, crucial for appropriate processing of 
the sensorimotor stimuli (Seghier 2013). Additionally, this 
component was also identified in another recent study using 
a data driven-approach (Martens et al. 2021). Additionally, 
this component was also identified in another recent study 
using a data driven-approach (Martens et al. 2021).

Importance of the sensory and motor processing, as well 
as of the FPN, for treatment response was again supported 
by an association of the failure to respond to escitalopram 
with reduced rsFC of the bilateral FPN with contralateral 
precentral and postcentral gyri, as compared to both R and 
HC, and with somatosensory association cortex, as com-
pared to R. The FPN provides flexible modulation of the 
activity of other brain regions and its inadequate connectiv-
ity with primary and associative somatosensory and motor 

regions may affect how well this control will be exerted 
(Marek and Dosenbach, 2018, 2019). In depression, reduc-
tion in the SMN resting-state neuronal variability was linked 
to decreased modulation of spontaneous activity in the SMN 
by external stimuli (Martino et al., 2016; Conio et al. 2019). 
Apart from the importance of somatosensory processing for 
emotion formation (Kropf et al. 2019), at the behavioural 
level, this might translate into reduced responsiveness and 
psychomotor activation, common symptoms of depression 
(Martino et al. 2016). Aberrant FC of the CEN (correspond-
ing to the FPN) with the pre- and postcentral gyri in depres-
sion was observed using the ICA approach (Dichter et al. 
2015), and the role of FPN-SMN connectivity for treatment 
response was recently shown in a large multicentre study 
(EMBARC) (Chin-Fatt et al. 2020). Our study adds to the 
growing body of results suggesting a role for the somatosen-
sory and motor processing in antidepressant response.

Previous research on the role of resting-state connectiv-
ity for treatment response in depression yielded a range of 
results, and although they are largely heterogeneous, a few 
general themes were suggested (for detailed review of find-
ings see Dichter et al. 2015; Brakowski et al. 2017). The 
most consistent pattern was an association of treatment 
response with an increase in connectivity between frontal 
and limbic areas, in line with the importance of cognitive 
control over emotional circuits. We did not observe this in 
our study. Other themes included the role for visual recog-
nition circuits and subgenual cingulate cortex connectivity. 
The review also suggested that treatment-sensitive patients 
may have lower connectivity within the DMN (Guo et al., 
2012; Ma et al., 2012). More recent studies strongly pro-
vided further support for the role of the DMN and FPN in 
treatment response; interestingly, an involvement of the 
SMN and sensory regions has been a more common find-
ing, reported, for example, by the large multicentre studies 
iSPOT (Korgaonkar et al. 2019) and EMBARC (Chin-Fatt 
et al. 2020). ISPOT indeed identified functional connectiv-
ity between the DMN, the FPN and the SMN as particu-
larly important for treatment responsiveness, suggesting 
that elevated connectivity was generally associated with 
better treatment response, while hypoconnectivity at base-
line distinguished NR from HC. This was in line with our 
findings, as failure to respond was generally associated with 
reduced connectivity as compared to HC. Despite emerg-
ing themes, findings vary largely between the studies. This 
heterogeneity may be caused by group differences regard-
ing, for example, symptomatic pictures, chronicity, treatment 
status (e.g. drug-naive, drug-free, under treatment), or the 
length and type of treatment. Not less important are techni-
cal aspects, such as differences in data collection methods 
(e.g. the length of resting-state data acquisition, eyes-open 
vs. eyes-closed paradigms), and differences in data analysis 
approaches (e.g. ICA or seed-based, ReHo, graph theory). 
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The picture becomes even more complex when not only 
network involvement is considered, but also details of the 
affected connectivity, e.g. related to the structures, with 
which network connectivity are altered. To address these 
questions, a larger number of studies, providing all their 
findings, followed by meta-analyses, are needed.

In this study, we performed post hoc correlational analy-
sis to explore potential relationships between the extracted 
functional connectivity measures and subjective measures 
of mood and anxiety. The primary aim of both BDI and 
STAI is to measure the global construct of, respectively, 
depression and anxiety. Previous research however showed 
that BDI contains items that can be grouped as separate 
factors, which not only may be more sensitive to change 
(Beck et al., 1996) but, in line with dimensional approach, 
may also have different neural correlates, which may have 
bearing on treatment response (Nicholson and Sommer, 
2018). Given that HAMD score change was used to define 
response, and FC measures assessed already survived mul-
tiple comparisons at the whole-brain level, significant corre-
lations were expected for the change in HAMD score—and 
strongly correlated with it total BDI score. At the same 
time, correlations between change in scores in BDI sub-
scales (affective, cognitive and somatic), and STAI-Trait 
total score, have the potential to provide new information 
about the relationship between distinctive groups of symp-
toms, their improvement and particular connections. Our 
data points at the particular role of both the right and left 
FPN connectivity—likely reflecting better cognitive con-
trol—for response across BDI dimensions and STAI. Inter-
estingly, we were unable to show any relationship between 
the sensorimotor-auditory network and anxiety or somatic 
dimension of BDI. The results suggest that considering sep-
arate factors of multidimensional scales may have value for 
a better understanding of the role of particular connections 
in the context of specific symptomatic dimensions. It needs 
to be noted, however, that this is a post hoc exploratory 
analysis on a small group, and the subject would need to 
be explored in studies specifically designed to test it, using 
scales validate for testing some groups of symptoms, such 
as State-Trait Inventory for Cognitive and Somatic Anxiety 
(STICSA) (Grös et al. 2007).

Our study has both strengths and limitations. The main 
limitation is the small size of the group, which reduces 
the power and increases the likelihood of type 2 error. 
Also, prediction analysis, e.g. cross-validation, was not 
performed due to the limited sample size, which restricts 
the interpretation of the data. In the future, a replication 
of findings in a larger independent sample will be needed. 
An important strength was that the group consisted of 
carefully selected drug-free individuals with depression, 
who underwent an assessment by the same psychiatrist to 
increase homogeneity. Treatment was standardized, with 

the same medication and dose for all participants. This 
is a strength of the study, although it also means that 
conclusions can be drawn for escitalopram only. Another 
strength was related to analytical methods chosen. Our 
study is one of the few using ICA rather than seed-based 
approach. This allowed for an unbiased exploration of 
functional networks, not restricted by existing hypotheses. 
A limitation of such an approach is however the lack of 
exploration of rsFC of the structures, which role has been 
shown by other studies, yet which may not pass the sta-
tistical threshold, which is more stringent in whole-brain 
analysis than in a seed-based approach. The stringent sta-
tistical approach using nonparametric permutation testing 
and TFCE (Threshold-Free Cluster Enhancement) allows 
further confident interpretation of the results. However, 
it needs to be noted that due to the exploratory nature of 
this study, correction for multiple comparisons related 
to inclusion of multiple RSNs was not performed. One 
general limitation, shared by all functional connectivity 
studies, is related to the very nature of this approach, 
where the estimation of the functional connectivity is 
based on the temporal correlation of activities in vari-
ous brain regions and does not provide information about 
anatomical connections nor directionality of the effect or 
causality. Hypotheses regarding the meaning of findings 
may however be proposed based on known anatomy and 
function, as well as interactions of structures involved.

In summary, patterns of resting-state functional connec-
tivity related to escitalopram treatment response focused pri-
marily on three networks, the DMN, the FPN and the SMN. 
This adds to the body of results supporting importance of 
network connectivity for treatment response. Future studies 
are needed that will meta-analyze data from different stud-
ies, accounting for potential sources of heterogeneity of the 
results.
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