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Abstract

Translation initiation in prokaryotes is affected by the mRNA folding and interaction of the

ribosome binding site with the ribosomal RNA. The elongation rate is affected, among other

factors, by the local biophysical properties of the coding regions, the decoding rates of different

codons, and the interactions among ribosomes. Currently, there is no comprehensive biophysi-

cal model of translation that enables the prediction of mRNA translation dynamics based only

on the transcript sequence and while considering all of these fundamental aspects of transla-

tion. In this study, we provide, for the first time, a computational simulative biophysical model

of both translation initiation and elongation with all aspects mentioned above. We demonstrate

our model performance and advantages focusing on Escherichia coli genes. We further show

that the model enables prediction of translation rate, protein levels, and ribosome densities. In

addition, our model enables quantifying the effect of silent mutations on translation rate in dif-

ferent parts of the transcript, the relative effect of mutations on translation initiation and elon-

gation, and the effect of mutations on ribosome traffic jams. Thus, unlike previous models, the

proposed one provides comprehensive information, facilitating future research in disciplines

such as molecular evolution, synthetic biology, and functional genomics. A toolkit to estimate

translation dynamics of transcripts is available at: https://www.cs.tau.ac.il/�tamirtul/transim
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1. Introduction

All living cells share the ability to translate mRNA transcripts into pro-
teins. The codes related to this process partially appear in different re-
gions of the transcript including the UTRs and the coding region. For
example, it was shown that the mRNA folding at the 50UTR and the
50end of the coding region regulates translation initiation efficiency.1,2

In prokaryotes, translation efficiency is related to the hybridization of

the ribosomal RNA and the ribosome biding sites upstream of the start
codon.3 It was also shown that different codons have different decod-
ing rate; thus, codon usage biase regulate translation elongation.4–6 In
addition, it was shown that there is high concentration of functional si-
lent codes related to various gene expression steps at the 50end of the
coding regions.7
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Thus, having the ability to harness the nucleotide composition of
the transcript to the biophysical dynamics of mRNA translation
should have fundamental contribution to disciplines such as molecu-
lar evolution, functional genomics, synthetic biology, biotechnology,
and human health.8–13

Yet, similar to other cellular processes, despite decades of study and
various technological advancements, it is still very challenging to predict
the dynamics of mRNA translation based only on the transcript nucleo-
tide composition. Specifically, today there are biophysical predictive
models that consider mostly translation elongation14–18 or translation
initiation.19–22 In addition, there are machine learning based models
that statistically integrate various features of the 50UTR and the coding
region to predict gene expression measurements such as protein lev-
els.23–25 However, there is no complete user-friendly model/toolkit,
which incorporates both translation initiation and elongation dynamics,
based only on the transcript nucleotide composition.

In this study, we make an additional step towards developing a
computational biophysical model that predicts the dynamics of
translation based solely on the transcript nucleotide composition. As
we show, the model is specifically important as it enables, for the first
time, to study the relation between transcript mutations and the bio-
physics/dynamics of translation. Translation is a fundamental intra-
cellular process directly related to organismal fitness; thus, we
provide an approach that should promote improved and novel un-
derstanding of transcript evolution at a nucleotide resolution. We
specifically demonstrate how our new model can provide important,
and previously unpredicted, information.

2. Materials and methods

The research scheme is shown in Fig. 1: Using the mRNA sequence, the
mRNA folding and mRNA-rRNA interactions are calculated, resulting
in the relevant Gibbs free energy predicted values (A). These free energy
terms are described in the translation initiation efficiency calculator sub-
section and are then used to predict the initiation rates (B); which is the
rate by which ribosomes approach the start codon. The codon transla-
tion elongation rates (C) are calculated using ribosome profiling data;
each codon has its own elongation rate and when we later refer to the
elongation rate of a gene, we consider the elongation rates of all its
codons and the dynamic of the translation process (see Section 5).
Rather than using a mean field approximation of the model totally
asymmetric exclusion process (TASEP)16 such as the ribosome flow
model,14 we decided to directly use the stochastic ‘high resolution’
TASEP model to simulate translation using the estimated initiation rates
and elongation rates (D). TASEP provides the predictions of translation
rate (which is the overall translation rate when considering both the ini-
tiation and the elongation steps), ribosomal density, termination counts
and occurrences of ribosome jamming (E). Finally, we study various
novel questions related to the relations between nucleotide composition
of the transcript and translation aspects (F).

3. Translation initiation efficiency calculator

The translation initiation calculator is based on the ribosome binding
site (RBS) mRNA folding calculator.19,21 In general, to compute the
nominal initiation rate, we implemented a thermodynamic model of
bacterial initiation, which predicts the Gibbs free energy of ribosome
binding. The input to the initiation rate calculator is the mRNA se-
quence and its output is the initiation rate, predicted on a proportional
scale span over 8 orders of magnitude (0.001 to 100, 000þ au).

The thermodynamic model calculates the difference in Gibbs free energy
before and after the 30 S complex assembles onto an mRNA transcript.
Five free energy terms are calculated and summed together:

DGtot ¼ DGmRNA:rRNA þ DGstart þ DGspacing

� DGstandby � DGmRNA;

where

� DGmRNA—The folding energy of the mRNA subsequence prior to
binding with the 30S complex.

� DGmRNA:rRNA— The energy released when the last nine nucleo-
tides of the 16S rRNA cofolds and hybridizes with the mRNA
sub-sequence at the 16S rRNA-binding site.

� DGstart—The energy released when the tRNAfMet’s anticodon
hybridizes to the start codon.

� DGstandby— The energy released when the standby site is folded.
� DGspacing—An energetic penalty for a non-optimal distance

between the 16S rRNA-binding site and the start codon.

These free energy terms are illustrated in Fig. 1. See the
Supplementary Text for more details regarding these energy terms.
We used the Vienna RNA package26 version 2.2.7 to perform the
necessary folding and resultant free energy calculations.

4. Normalizing initiation rate

The initiation rate of each transcript is calculated using the following
exponential formula:

Kexp �bDGtotð Þ;
where b ¼ 0:45 mol=kcal and K ¼ 2500. This initiation rate is pre-
dicted on a proportional scale from 0.001 to 100, 000þ au; we then
normalize it to initiation time measured in seconds. We took the list of
302 essential genes from the Escherichia coli chromosome (PEC) data-
base27,28 and we calculated the average initiation rate of 709.773
([au] units which are proportional to rate) for 138 genes in our list that
are classified as essential genes. We then took the mean initiation time
of 178 out of the 302 essential genes available at the Transimulation
Protein Biosynthesis Server,29,30 with an average 12.179 s. Hence, we
multiply the two values to obtain a factor of approximately
8; 644 ½au � s� and divide each individual transcript initiation rate by
this factor in order to obtain the initiation rate in s�1

� �
units.

5. Modelling translation elongation

The elongation modeling was based on a TASEP.14,16 The TASEP is
a stochastic flow model of translation elongation, whose output is
the predicted translation rate, the ribosomal density and the number
of termination events. An mRNA transcript with N codons is mod-
eled as a chain of sites, each of which is labeled by the index i, where
i ¼ 1 . . . N. The first and last codons i ¼ 1 and i ¼ N, are associated
with the start and stop codons, respectively. At any time t, MðtÞ ribo-
somes are bound to the mRNA.

The initiation time as well as the time a ribosome spends translat-
ing each codon are exponentially distributed with a codon dependent
rate. In addition, ribosomes span over l codons and if two ribosomes
are adjacent, the trailing one is delayed until the ribosome in front of
it has proceeded onwards. Unless otherwise specified, all the reported
results in this paper use l ¼ 11. A free ribosome will attach to codon
i ¼ 1 with mean rate k, if the first ðl þ 1Þ=2 codons on the mRNA
are empty. An attached ribosome located at codon i will move to the
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next codon iþ 1 with mean rate ki, provided codon iþ ðl þ 1Þ=2
is not covered by another ribosome. In case iþ ðl þ 1Þ=2 > N
(ribosome is bulging out of the mRNA strand) an attached ribosome
will move to the next codon with mean rate ki. In the case of i ¼ N
the jump attempt is in fact a termination step.

6. TASEP elongation rate

We obtained the per-codon E. coli typical decoding time (TDR).31

We calculated the mean TDR of the codons by multiplying each co-
don TDR by the empirical probability of the codon to appear in the
entire sequence data (sequence data source is described in E. coli
Sequence Data subsection below). We then normalized the mean
TDR to be 8 codons per second.32

We estimate the elongation rate for each transcript by calculating
TASEP with a constant initiation rate. We chose the mean normal-
ized initiation rate (0.2884) to be this constant.

7. TASEP traffic jams

A ribosome can only move if the ribosome ahead of it does not cover
the next codon. During the simulation, we choose to either attempt ini-
tiation or, based on the existing ribosomes, perform translation and
move a ribosome to the next position. In cases where such movement
cannot occur, we consider this event as a traffic jam. If the simulation
attempts initiation, but cannot, since the first ðl þ 1Þ=2 codons are not
empty, we count this as ‘initiation jam occurrence’ and we measure
the total time difference between the failed initiation attempt and the
next time an initiation is successfully performed as ‘initiation jam
time’. If the simulation attempts to move a ribosome to site i, but
cannot—since the next ðl þ 1Þ=2 codons are not empty, we count this
as ‘jam occurrence’. We then ensure that a ribosome would move at

the same time the subsequent ribosome clears the next ðl þ 1Þ=2 codon
sites, i.e. when it is possible for ribosome to proceed. We also measure
the mean time the delayed ribosome had to wait as ‘mean jam time’.

8. Data

8.1. Escherichia coli sequence data

We took E. coli str. K-12 substr. MG1655 mRNA sequences, including
50UTR and ORF annotations from RegulonDB version 9.1 (http://regu
londb.ccg.unam.mx).33 The two files, UTR_5_3_sequence.txt and
Gene_sequence.txt, were downloaded directly from the Downloadable
Experimental Datasets web page on 31 July 2016.

For our analysis of the initiation and translation rates, we chose ei-
ther operons with a single gene or the first gene in operons that contain
multiple genes. Overall, we found 1,500 genes with 2,035 unique
50UTR and ORF sequences. For some of these transcripts, we could not
calculate initiation rate (either the start codon is not ATG, CTG, GTG,
or TTG or we did not find a suitable ribosome-binding site); after elimi-
nating those, we were left with 1,904 transcripts. Finally, the initiation
calculation sometimes reaches non-feasible initiation time (e.g. millions
seconds); thus, to remove extreme outliers we discarded the transcripts
with top 50 initiation times from our analysis. Out of the transcripts left,
we took only those whose initiation time was lower or equal to 5 times
standard deviation away from the initiation time median. Thus, we were
left with 1,835 transcripts. Additional details regarding the transcripts
discarded from the analysis are available in the supplementary material
and Supplementary Table S2.

Unless otherwise specified, the results in this paper are calculated
per transcript. When comparing the model results with per-gene
expression levels, we used the mean results across the different
transcripts for the same gene, prior to calculating the correlation.

Figure 1. (A) Based on the 5’UTR and the beginning of the ORF, the Gibbs free energy is calculated. (B) Summing together the free energies results with the

expected initiation rate. (C) Using codon translation times and the mRNA ORF, the per-codon elongation rate is calculated. (D) TASEP calculation is performed using

the initiation rates and elongation rates from the previous steps. (E) TASEP results with translation rate, ribosomal density, termination count and ribosome jam-

ming. (F) We study the relation between transcript nucleotide composition and translation based on the simulation results. (G) Illustration, as described by the RBS

calculator where DGmRNA is the folding energy. The location of DGstandby is depicted in purple, DGmRNA:rRNA is in green, DGspacing is in blue and DGstart is in red.

197G. Shaham and T. Tuller

Deleted Text: E
Deleted Text: R
Deleted Text: <sup>31</sup>
Deleted Text: T
Deleted Text: J
Deleted Text: <italic>.</italic>
Deleted Text: <italic>c</italic>
Deleted Text: S
Deleted Text: D
Deleted Text: '
http://regulondb.ccg.unam.mx
http://regulondb.ccg.unam.mx
Deleted Text: <sup>33</sup>
Deleted Text: ,
https://academic.oup.com/dnaresearch/article-lookup/doi/10.1093/dnares/dsx049#supplementary-data
https://academic.oup.com/dnaresearch/article-lookup/doi/10.1093/dnares/dsx049#supplementary-data


8.2. Escherichia coli protein abundance

The E. coli str. K-12 substr. MG1655 protein abundance (PA) inte-
grated dataset, a weighted average of all E. coli datasets, published
in 2015, was downloaded from PaxDB,34 accessed on 7 May 2016.
We excluded any gene with zero reads. Note that similar conclusions
were obtained when we analyzed different databases separately
(refer to supplementary material for more details).

8.3. Escherichia coli mean mRNA levels

The mean mRNA levels were obtained from Taniguchi et al.35 Data
include mean mRNA levels and mRNA levels per cell cycle.

8.4. Escherichia coli protein per mRNA levels

We used the protein abundance, described above and divided it by
the corresponding mean mRNA levels, described in the previous
subsection to calculate the protein abundance per mean mRNA.

8.5. Escherichia coli ribo-seq

Two ribosomal profiling datasets were obtained from the Gene
Expression Omnibus: GSE35641, E. coli MG1655 rep1-2.36

Transcript sequences were obtained from EnsEMBL for E. coli (K-12
MG1655 release 121, accessed 28 July 2015). We trimmed 30 adap-
tors from the reads using Cutadapt37 version 1.8.3, and utilized
Bowtie38 version 1.1.1 to map them to the E. coli transcriptome. In
the first phase, we discarded reads that mapped to rRNA and tRNA
sequences with Bowtie parameters ‘-n 2-seedlen 21-k 1–norc’. In the
second phase, we mapped the remaining reads to the transcriptome
with Bowtie parameters ‘-v 2 -a –strata –best –norc -m 200’. We fil-
tered out reads longer than 34 nt and shorter than 26 nt. Unique
alignments were first assigned to the ribosome occupancy profiles.
For reads that are mapped to more than one position, the best align-
ments in terms of number of mismatches were kept. Then, multiple
aligned reads were distributed between locations according to the
distribution of unique ribosomal reads in the respective surrounding
regions. To this end, for each position i, a 100 nt window was used
to compute the read count density RCDi (total read counts in the
window divided by length, based on unique reads) in vicinity of the
M multiple aligned positions in the transcriptome, and the fraction
of a read assigned to each position was RCDi=

PM
j¼1 RCDj.

8.6. Functional annotation

We performed functional annotation of specific groups of genes
using DAVID bioinformatics resources version 6.7 (https://david.
ncifcrf.gov/).39,40 We set the background list to be the genes in the
selected dataset, as described in the E. coli Sequence Data subsection.

8.7. Simulating single-nucleotide mutations

For each transcript in our selected dataset, we simulate a single nucleo-
tide mutation in the range of�35 to�1 andþ3 toþ34 (where 0 is the
first nucleotide in the ORF). We excluded the start codon change, as
most mutations would result with an invalid start codon. Furthermore,
mutations that introduced premature STOP codons were not allowed.

8.8. Correction for multiple comparisons

The enrichment analysis P-values were for multiple comparisons
using Bonferroni correction. All the correlation P-values pass
Benjamini and Hochberg correction for false discovery rate.

9. Results

9.1. A toolkit to estimate translation dynamics of

transcripts

We created a software tool that enables the estimation of the
initiation rate and translation rate, as well as the sequence features
affecting those rates, such as folding energies, ribosome binding effi-
ciencies, and elongation rate. The tool is executed via command line
interface, where one should provide either a single mRNA sequence
or a list of different mRNA sequences and execution parameters via
an input file.

Special attention was given to optimize the code, thus allowing al-
most immediate results for a single mRNA calculation and performing
large-scale calculations within reasonable computational time.

We named the toolkit Translation Simulator, or Transim, and it is
available to download for academic use at the authors’ website—
http://www.cs.tau.ac.il/�tamirtul/transim.

9.2. Higher correlation of predicted translation rate

with experimental measurements than the correlation

of predicted initiation rate with experimental

measurements in endogenous genes

As a first step, we aimed at checking how well our biophysical
model, and different components of the model, can predict measured
(i.e. ‘true’) gene expression levels. Today, there are no direct large-
scale measurements of translation (measurements of protein levels or
mRNA levels, e.g. are related to the transcription step, and the
mRNA degradation step; protein levels are related also to the protein
degradation step). Thus, we used the measure most correlated/related
to translation rate that is available today, protein abundance (PA)
divided by mRNA levels which is the estimation of the number of
proteins generated per mRNA molecule.

We calculated Spearman correlation of protein abundance (PA)
divided by mRNA levels (protein per mRNA) with the calculated ini-
tiation rates, elongation rates and translation rates. As can be seen in
Fig. 2, the correlation with the translation rate was higher and more
significant than that with the initiation rate and elongation rate
alone. In addition, the partial correlation of translation with PA di-
vided by mRNA given the initiation or the elongation is significant:
R(translation, PA/mRNA j initiation)¼0.265, (P¼4.23�10�7),
R(translation, PA/mRNA j elongation)¼0.1932 (P¼2.55�10�4).
These results support the usage of the complete model (which in-
cludes both the initiation and the elongation steps).

In the future, it will be interesting to further validate our model
with direct experimental measurements of translation.41

9.3. About the distributions of initiation rates,

elongation rates, and translation rates

It is worth noting that the distribution of the translation rate is differ-
ent from the initiation rate and elongation rate, as seen in Fig. 3 and
Supplementary Fig. S11. Specifically, all distributions are not normal
(KStest P-value<10�10 for initiation and translation and P-value is
5:86� �10�6 for elongation) with positive skewness of 6 and 6.6 for
initiation and translation, respectively due to right tails, and small
negative skewness (�1.28) for elongation. The positive skewness
of the initiation and translation may be related to traffic jams and/or
extremely low initiations rate in some genes at the initiation step
(extreme and unexpected delays in the initiation times contribute to
very high and non-typical initiation times, resulting in the right
tail).18
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As can be seen (Fig. 3), the mean initiation time per transcript is
54.4 s while the mean elongation time is 138.1 s and the mean trans-
lation time is 174.2 s. This is expected, as translation includes both
initiation and elongation. While there are cases with very low initia-
tion time (the minimum is 0.04 s), the minimum elongation and
translation times are 96.3 and 98.6 s, respectively. In the cases where
initiation rates are very fast, we would expect elongation to be the
rate-limiting factor. We also see the maximum initiation time found
is 1,629 s, while the maximum translation time is 1,739.7 s. The
maximum elongation time is 155.3 s, but 80% of the initiation rates
are below 52.2 s and 80% of the translation rates are below 155.7 s
and we expect the initiation to be rate-limiting factor when it is slow.

The fact that the typical initiation rate is significantly lower than
the typical translation rate demonstrates that, in practice, not only
the initiation step affects translation rate but that also the elongation

rate tcontributes to the final translation rate;7,42 this insight provides
a better understanding to previous models in the field.43

While translation rate can be significantly affected by the initia-
tion rate, fast initiation rates (i.e. low initiation time), can increase
the translation rate, but up to a point. In these cases, the elongation
rate becomes a limiting factor, effectively creating a maximum
threshold for the translation rate. This limit in translation rate may
be important for biological processes, such as prevention of depletion
of the ribosome pool. Hence, genes that have high and efficient initia-
tion rate may have codons that partially limit their overall transla-
tion rate and ribosome consumption.7 Limiting the translation
elongation rate may also assist in allowing the resultant protein to
cotranslationally fold correctly.44–48

The results reported here suggest that changes in the codon composi-
tion of a gene should have significant effect on translation, even if the

Figure 2. (A) Spearman correlation of initiation rate, elongation and translation rate with protein abundance (PA) per mRNA levels. The values in parenthesis in-

dicate the P-value. (B)–(E) Scatter plots for each of the cases. In the case of the complete translation model there are two ‘regions’ in the figure: one related to

low initiation rate where the initiation rate is low and rate limiting and the density is low; the second region related to higher initiation rate where the elongation

rate becomes more rate limiting and the density is higher.
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initiation rate is optimal/maximal and this can be further validated ex-
perimentally via the design of relevant libraries of gene variants and the
measurements of translation of the different variants.

9.4. Only specific locations of single nucleotide

mutation affect initiation and translation rates

At the next step, we aimed at understanding the effect of mutations
in different regions surrounding the start codon on translation rate
in endogenous transcripts. This was done under the assumption that
the expression levels of each transcript is not extremely high such
that the mutations should not affect the translation rate of other

transcripts.49 Thus, for each transcript in our dataset and each nucle-
otide in the range of �35 to �1 and þ3 to þ34 (where 0 is the first
nucleotide of the ORF), we changed the actual nucleotide to all three
other possible nucleotides. We then calculated the new initiation rate
and translation rate per each change. For each position, we calcu-
lated the mean result and compared it to the mean of the unmodified
transcript.

Results are available in Fig. 4. On average, there is a clear reduc-
tion in initiation rate when mutations occur at the RBS site (which is
generally 5–13 nucleotides upstream of the start codon, with a
typical distance of about 8–10 bases relative to the start codon),50–52

Figure 3. The distribution of various translation variables: initiation rates (A), elongation rates (B), ribosome densities (C), translation rates (D), translation rate

to initiation rate ratio (E). Note that the bin sizes are not uniform, but grow exponentially.
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although the translation rate is less affected. Apart from the RBS site,
changes in the first nucleotides of the ORF also tend to slightly de-
crease mean initiation rate. When we examine this in more detail
(Supplementary Figs S1–S4), while we still see the same effect in the
RBS site, we also see that for translation, only a small group of tran-
scripts had an increase in translation rate, and some had a decrease,
but for most transcripts, no change occurred in translation rate. For
initiation, we also see several groups, and a large portion remains
unchanged. These results demonstrate that translation rate tend to
be immune to single point mutations in the transcript. We also see
slight increase in codon rate in that region due to the mutation,
this occurs since codons are usually ‘less optimal’ (in terms of their
translation rate) in the beginning of the ORF.7

The fact that the most prominent effect is seen in the RBS site is
in agreement with previous studies, which have demonstrated that
mutations in the Shine-Delgarno regions have the strongest effect on
translation rate.53,54 This could be further validated in large-scale
experiments in the future.

We further examined the impact of mutation type on the initiation
rate (Supplementary Fig. S10). The type of mutation tends to have
significant position-based effect most prominent in the RBS: G to C
and G to T seem to decrease the initiation rate while the inverse
mutation C to G and T to G have the opposite effect and tend to
increase the initiation rate in that region. This inverse effect does not
always exist, for example, G to A tends to reduce the initiation rate,
but A to G tends to have an almost neutral effect. It is likely these
changes in the initiation rate are due to changes in the ribosome
binding to the mRNA, since the mutation can change the binding site
to be closer or farther from the Shine-Delgarno sequence.

The result reported here provides an estimation of different type
of mutations in different regions surrounding the start codon on
translation. This estimation can be further validated experimentally
via the design of relevant libraries of gene variants and the measure-
ments of translation of the different variants.

9.5. Correlation between initiation rate, elongation rate,

ribosome density, and translation rate

Next, we aimed at understanding the relations between initiation
rate, elongation rate, ribosome density and translation rate in

endogenous transcripts. Thus, we calculated the Spearman correla-
tion between these values. The results are shown in Table 1.

We can see weak correlation between elongation rate and initiation
rate and strong relationship between initiation rate and ribosome den-
sity. We also find that translation rate is highly correlated with all three
other measurements. Please note that mathematically there can be cases
where some of these correlations do not exist (refer to the supplementary
material for more details). In endogenous/real sequences, a correlation
can be explained by the fact that the translation process depends on ribo-
some initiation and elongation; in addition, sequences with high transla-
tion rates will require more ribosomes in average (due to higher
initiation rate). The magnitude of the correlation, provided here for the
first time, allows estimation of the relative ‘contribution’ of initiation and
elongation to translation rate variability in endogenous/real transcripts.
In general, when increasing the initiation rate while keeping the elonga-
tion rate constant, we expect to see an increase in ribosome density (as
more ribosomes are ‘pumped’ into the coding region). Higher elongation
rate, for a constant initiation rate, is expected to decrease the ribosome
density (as it corresponds to faster removal of ribosomes from the coding
region); indeed the partial Spearman correlation between translation
elongation and ribosome density when controlling for the initiation rate
r elongation; densityinitiationð Þ is negative (r¼�0.044; P-value is bor-
derline significant 0.0597). Increase in initiation and elongation rates
(when they are rate limiting) is expected to correspond to an increase in
the translation rate. Our analysis demonstrates that genes that tend to
have increased/higher initiation rate tend to also have higher elongation
rate; the increase in initiation rate in highly expressed genes is more
‘dominant’ in terms of the effect on ribosome density as the correlation
between translation rate/protein levels and ribosome density is positive.
This supports the approach of various studies that measure translation
efficiency via measurements that are related to ribosome density.55

It should be interesting to study in the future other organisms to
see if the positive relation between initiation and elongation rate vs.
ribosome density is universal.

9.6. Traffic jams study in different gene groups and the

way they are effected by mutations

One advantage of our model is the fact that it provides estimations
related to variables such as ribosome collisions/traffic jams that

Figure 4. Impact of single single nucleotide mutation on the mean initiation rate, the mean change in codon decoding rate for the position where the mutation

occurs, and the mean translation rate.
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cannot be accurately predicted based on models that estimate only
the initiation or only the elongation. For native/endogenous tran-
scripts, we see that most of the jam time can be attributed to the initi-
ation step: across all transcripts, the mean time for initiation
jamming is 8.7% of the total initiation time, while for the elongation
jam time, the mean is up to 2.4% of the total time (Fig. 5).
Furthermore, the maximum initiation jam time over all gene is
96.9% of the total initiation time, whereas the maximum elongation
jam time at a codon is at most 8%. When we measure the mean elon-
gation jam time across all codons, we see the mean is almost 20%
out of the elongation time and for 25% of the genes this value is
above 27%.

In addition, the Spearman correlation between initiation rate and initi-
ation jam time is 0.72 (P-value¼3:61� 10�293) and between initiation
rate and mean elongation jam time it is 0.39 (P-value¼1:7� 10�69).
The correlation between translation rate and initiation jam time is 0.56
and with mean elongation jam time it is 0.54 (P-value<2:2� 10�308).

At the next step, we analyzed the effect of mutations on jamming
(Supplementary Figs S5–S8). We found that the initiation jam time
relative change has significantly high correlation with the initiation
rate, where for the same position a change occurs—a similar number
of transcripts decrease or increase in the same magnitude. We deter-
mined that the correlation between the relative change of initiation
rate and initiation jam time is 0.93 (P-value<2:2� 10�308). If we
check the same correlation per each mutation position, the minimum
correlation is 0.738, and if we exclude the two extreme mutation po-
sitions, we see the minimum correlation is 0.856 and a total of 61 out
of 67 position have a correlation of above 0.9 (all P-values are lower
than 2:2� 10�308). While we have seen in previous sections that
translation rate was mostly unaffected by single nucleotide mutations,
there is greater impact on the jam time during elongation. This change
may indeed further propagate towards changes in initiation rate and
initiation jam time, as a change in jam time during elongation may
free or occupy codons at the beginning of the ORF, depending on
whether the jam time decreased or increased.

Previous studies have shown that a conserved region (codons
18–50) exists where the codons tend to be slower.7,56 It was previ-
ously suggested that both slower initiation and slower elongation
rates at the beginning of the coding region should contribute (inde-
pendently) to decreased jamming.7,56 To examine this, we per-
formed the following simulation: first, we changed the codons at
positions 18–50 to be the fastest synonymous codons; as a result,
the mean traffic jam increased by 6.2%. This value is very
significant since increase in traffic jams/ribosome-density should be
proportional to the decrease in the number of free ribosomes, which
consequently affects the organism growth rate.49 The effect was

even higher when we changed the codons in positions 51–100 to be
the slowest (Traffic jam increased by 25.2%) or when we changed
all codons downstream the first 50 codons to be slowest (Traffic
jam increased by 68.2%).

In this sub-section, we provide some estimation of traffic jams and
the effect of codon distribution/bias on traffic jams. These estimation
and relations can further validated experimentally via the design of
relevant libraries of gene variants and the measurements of the
profile or ribosome densities (e.g. using ribo-seq) of the different
variants.

9.7. Genes with relatively extreme translation initiation

and translation elongation rate

Our model enables recognizing and studying groups of genes with
unique translation features. In this subsection, we demonstrate this
via the analyses of various group of genes with extreme translation
elongation and initiation levels.

We first considered the group of genes with high initiation rate
but with relatively low elongation rate. These genes are interesting
because, in general, there is a positive correlation between transla-
tion initiation and elongation (see previous sections). Relative
slower elongation for these genes may be related to additional
constraints such as co-translational folding.57 We found 16 genes
to be in the top 10% of the initiation rate and the bottom 10% of
the elongation rate. When we raised the threshold to 20%, we
found 63 genes (see Supplementary Table S1) and 267 genes
were found with a threshold of 40%. Using functional annotation
(Gene Ontology: GO; http://www.geneontology.org) we found
that, among others, the latest group of genes includes 37 genes
that are related to organelle inner membrane (GO: 0019866;
P-value¼6:84� 10�19; all the P-values reported in this section
were adjusted for multiple comparison—see the Methods section)
and 57 genes that are related to ‘plasma membrane’ (GO: 0005886;
P-value¼6:84� 10�9).

Table 1. Spearman correlation between initiation rate, elongation

rate, ribosome density, and translation rate

Elongation
rate

Ribosome
density

Translation
rate

Initiation rate 0.1137 0.7822 0.6487
(1.034� 10�6) (<2.2� 10�308) (1.125� 10�219)

Elongation rate — 0.1155 0.6454
(6.984� 10�7) (1.046� 10�216)

Ribosome density — — 0.6514
(<2.2� 10�308)

The values in parenthesis indicate the respective P-value (all P-values pass
correction for false discovery rate).

Figure 5. The fraction of time ribosome jam occurs for initiation, on start

codon, and mean jam time across the entire ORF. Note that the bin sizes are

not uniform but grow exponentially.
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One explanation for these results may be related to the suggestion
that membrane proteins undergo various maturation aspects during
the elongation step which requires slower elongation (while the initi-
ation may remain efficient).7,58–60

The second gene group we study includes genes with relatively
low initiation rate (bottom 40%) and high elongation rate (40%).
We found 170 such genes (see Supplementary Table S1); the group
was enriched with genes relate to purine nucleotide biosynthetic pro-
cess (GO: 0006164/ecx00230; P¼2.52�10�3) and genes related to
translation/ribosome (GO: 0006412; P¼0.03). It is possible that
these are highly expressed genes with constraints on the nucleotide
composition near the start codon that effect the evolution of and
optimality of their initiation (e.g. due to specific amino acids at the
50end or signals related to transcription); it is also possible that some
of them have non-canonical initiation regulation.

The third gene group we study includes genes with relatively high ini-
tiation rate (bottom 40%) and high elongation rate (40%). We found
228 such genes (see Supplementary Table S1); this group, naturally, in-
cludes highly expressed genes and enriched with housekeeping gene
groups/functions such as amino acid metabolism (e.g. GO: 0008652
with P¼1.44�10�5) translation/ribosome (e.g. GO: 0003735 with
P¼7.25�10�6), protein folding/chaperone (GO: 0006457 with
P¼0.0067).

The groups of genes described here can be further experimentally
studied in the future, by introducing silent mutations into the coding
sequences and the UTRs of these genes and examining their effect on
the improvement of translation rate, the functionality of the related
proteins, and the organism fitness.

9.8. Mutations with reciprocal effect on initiation and

elongation

In this section we aimed at further demonstrating how the new
model can answer new important questions related to the effect on
transcript evolution and mRNA translation regulation and biophys-
ics. The (non intuitive) reciprocal effect of mutations on elongation
and initiation in different regions is a simple example of such a
question which was already discussed in the past7 but with no clear
quantitative analyses.

Thus, mutations causing reciprocal effect in initiation and elonga-
tion are of interest, given that we naturally see/expect significant cor-
relation between elongation and initiation rate. To study these types
of mutations, for each possible mutation occurring in the beginning
of the ORF (positionsþ3 untilþ34), we looked for cases where the
initiation rate was increased by at least 25%, while the codon trans-
lation rate was reduced by at least 25% (which we name ‘type 1
mutations’). We also looked for cases where initiation rate decreased
by at least 25% and codon translation rate was increased by 25%
(which we name ‘type 2 mutations’). For each of the above cases
such occurrence happens in 4.6% of the ORF mutations. More de-
tails of per-position changes are available in Supplementary Fig. S9.
Interestingly, we found that, on average, in positions 3–17 of the
coding region there are higher levels of mutations of type 2.
Conversely, there are more occurrences of type 1 mutations in posi-
tions 18–34. Using Wilcoxon signed-rank test61 we compared, per
each mutation position, the relative initiation rate and the relative co-
don decoding rate. In about half of the positions within the range of
3 and 17, and in all of the positions in the range of 18–34, we found
significant differences. These results demonstrate that many point
mutations can have reciprocal effect on initiation and elongation and
that the first nucleotides of the coding region tend to be relatively

more ‘optimized’ to the translation initiation stage than the elonga-
tion stage. Previous studies have suggested that the beginning of the
coding sequence includes ‘late initiation’ signals, which are part of
the initiation step but encoded in the coding region.7 Our model en-
ables the prediction of the exact boundaries of this region.

In this sub-section, we provide estimations of the effect of each nucle-
otide/region on initiation and elongation. These estimations and rela-
tions can be further validated experimentally via the design of relevant
libraries of gene variants and the measurements of the profile or ribo-
some densities (e.g. using ribo-seq) or better performing high resolution
tracking of ribosome movements62 over the different variants.

10. Discussion

The model described in this study allows predicting, for the first time,
translation dynamics based on the transcript features alone. As we
demonstrate here, the model enables performing analyses that were
not possible within the framework of previous models (e.g. statistical/
machine learning models, or models that consider only the initiation
or elongation step). Specifically, we demonstrate how the model can
be used for predicting expression levels of endogenous and heterolo-
gous genes and predicting various aspects related to the translation
dynamics. In addition, the model is very useful for studying the
molecular evolution of translation aspects via studying the effect of
mutations on translation dynamics.

Among others, we demonstrate a close association between
changes in initiation rate and jam time during initiation. Within the
framework of our model, it is easy to explain such relations, as in-
crease or decrease in initiation rate can directly alter jam time.
Within the cell, it is also possible that changes affecting the initiation
jam time (such as those occurring in the ORF) can influence the initi-
ation rate. We also demonstrate that mutations at the RBS region
have the strongest effect on translation and we show that membrane
genes tend to have relatively slower elongation and high initiation.
Furthermore, we show that around 4–5% of the mutations near the
beginning of the ORF increase initiation rate by at least 25% while
decreasing by at least 25% the elongation efficiency. We also find
4–5% of these mutations increase elongation while reducing initia-
tion rate by the same factor. Our analysis provides an estimation of
the ratio between translation rate and initiation rate in the E. coli
endogenous genes and found that its median is 10.13%. This result
further implies that elongation (and the coding region itself) and not
only initiation has central effect on the translation rate.

It is important to emphasize that this model connects, for the first
time, the impact of mutations (possibly silent) in the transcripts with
fundamental biophysical phenomena (e.g., ribosome allocation, traf-
fic jams, translation rate, etc.), which are directly related to the or-
ganism fitness. Thus, with this model (and additional relevant
adjustments), we are able to understand the effect of silent mutations
on fitness and thus estimate their corresponding selection pressure;
this is an important aspect that should be integrated into any realistic
molecular evolution models. While existing models (including non-
physical ones such as regressors) may similarly predict the expression
levels of endogenous genes,23,25,63 it is important to emphasize that
our model’s novel potential to predict the impact of single mutations
on initiation and elongation biophysics, as well as other translation
aspects, based on the mRNA sequence alone.

These results can only be derived from a combined model, such
as the one presented here. The model’s application can be down-
loaded and used in future quantitative studies related to translation
in the field.
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Future work can extend the current model to support wider and
more complex aspects of translation. For instance, whole cell simula-
tions, taking into account additional constraints, such as the tRNA
pool size and ribosome pool size may provide additional insights.
mRNA and protein degradation rates can be incorporated to better
correlate mRNA levels with protein abundance, etc.

We chose to calculate the initiation rates only for the first gene in
each operon. Extending the calculations to genes in other positions
of the operon may yield additional interesting results but this re-
quires modifications in the model due to additional possible interac-
tions of the mRNA molecules with itself and with the ribosome.64

Furthermore, although we provide some initial results for B. subtilis
(see in the Supplementary material), our analysis focused on E. coli
simply since it is the prokaryote with the most abundance relevant
large-scale measurements. It is important to emphasize that the
model (with some small adjustment) can be used on other prokary-
otes and in the future, it will be interesting to comprehensively study
other prokaryotes with similar models. In addition, it will be interest-
ing to develop similar model for Eukaryotes and in different tissues;
specifically, for this domain currently there is no initiation model
while elongation model exists and is relatively similar between the
two domains.65

Finally, in this work, we assume steady state of the translation
process. A more dynamic model, taking into account mRNA folding
during ribosomes detachment and mRNA decay rate may result in
simulations of higher accuracy and a better understanding of the
biophysics of translation.
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