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Abstract: Nowadays, the disinfection of classrooms, shopping malls, and offices has become an
important part of our lives. One of the most effective disinfection methods is ultraviolet (UV)
radiation. To ensure the disinfection device has the required wavelength spectrum, we need to
measure it with dedicated equipment. Thus, in this work, we present the development of a UV
spectrum detector capable of identifying UV wavelength spectrums, with a wide range of probes and
the ability to transmit data to a PC for later evaluation of the results. The device was developed with
four UV sensors: one for UV-A, one for UV-B, one for UV-C, and one with a wide range of detection
of UVA, with a built-in transimpedance amplifier. An Arduino Nano development board processes
all the acquired data. We developed a custom light source containing seven UV LEDs with different
central wavelengths to calibrate the device. For easy visualization of the results, custom PC software
was developed in the Processing programming medium. For the two pieces of electronics—the UV
detector and calibration device—3D-printed housings were created to be ergonomic for the end-user.
From the price point of view, this device is affordable compared to what we can find on the market.

Keywords: UV radiation; UV sensors; UV LED; Arduino; Bluetooth

1. Introduction

Disinfection has always been an essential field for research due to the varied needs for
disinfection in hospitals, clinical, sanitary, and food production areas. With the COVID-19
pandemic, these places of use have been expanded to nearly all areas of everyday life.

Disinfection based on electromagnetic radiation from the ultraviolet (UV) range C,
which is between 100 nm and 280 nm, requires electromagnetic radiation with wavelengths
from 222 nm (1350 THz) to 265 nm (1131 THz). The corresponding energy is in the order
of 5 x 107192 x 10717 J, which interacts with living tissue in the human body in a
specific way.

The electromagnetic radiation from the UV-C spectrum offers efficient disinfection
properties at the level of bacteria, germs, and viruses in sterilization processes (water, air,
volume, surface, materials, components, food, etc.) Since the middle of the nineteenth
century, it has been used with solar UV exposure, and starting in the middle of the twentieth
century, it has been used widely with artificial UV generators [1-10].

From the electromagnetic radiation of the UV spectrum generated by the Sun, only
partially filtered UV-A, almost completely filtered UV-B, and filtered UV-C reaches the
Earth’s surface due to the ozone layer in the atmosphere. The possibility of exposure of
living tissue to UV-C radiation, which is dangerous, comes from artificial radiation sources:
e.g., lamps or UV LED, lasers, and electric arc welding.

The germicidal range of electromagnetic radiation in the UV-C spectrum has the peak
for traditional germicidal activity at 265 nm. According to the latest research, this peak is
at 222 nm. These UV-C radiations are absorbed by the DNA and RNA of microorganisms
and destroy the structure of DNA and RNA, causing an inability to reproduce. A cell that
cannot reproduce is considered dead since it cannot multiply the number of infected cells
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in a host. The process is also called antibacterial, germicidal, or anti-viral ultraviolet irra-
diation, proving its high efficiency against a broad spectrum of microorganisms (bacteria,
germs, viruses).

Advantages of UV-C radiation disinfection are a short disinfection time, simplicity,
no air flow, no room insulation, no chemicals, low maintenance, and a long service life.
There are also limitations: it requires direct radiation, is inefficient in shaded areas, does
not penetrate deep into living tissues or organic materials, and the irradiation distance
decreases the yield. Thus, it is necessary to prevent and spread infections in public and
private places by disinfecting rooms, surfaces, objects, and medical instruments, and
improve the existing classical methods for disinfection and cleaning [11].

Directly measuring the UV radiation wavelengths of disinfection systems contributes
deeply to the process by ensuring the user is in the efficient spectrum for disinfection.

Different approaches have been used to precisely measure the UV wavelength energies
of a light source. All of them involve using some physical sensors developed especially
for these applications. Registered patents use gas-type sensors [12] or semiconductor-type
sensors to detect UV energy [13-18].

Regarding the semiconductor type of sensor, many UV detection devices have been
developed. To obtain a high energy measurement accuracy, or at least the detection of
each wavelength from the UV spectrum, the best solution is using a wide window optical
detector combined with high-resolution selective filters or diffraction gratings. This concept
is known as a spectrometer and involves high costs.

Affordable spectrometers can be implemented in the visible spectrum, as in [19], where
a light-dependent resistor (LDR) was used to detect the wavelengths with a low resolution.

A spectrometer that detects only spectrum presence in ultraviolet-visible (UV-Vis)
is detailed in [20]. The presence of 280 nm and 595 nm central wavelength spectrum
emissions of the two LEDs was detected using a wide spectrum (200-1100 nm) OSD5.8—-7Q
photodetector in an interaction with biological protein probes.

A similar spectrometer to [20] was implemented in [21]. The 280 nm spectrum presence
was detected using a PDU-G106B photodetector (200-320 nm) and the interaction of the
UV emission of a T9H28C LED, at a peak wavelength of 280 nm, with a goat anti-human
immunoglobulin (GaHIgG) probe.

In work [22], a UV energy measurement device is presented for emissions from the
Sun. The device was developed using an ML8511 photodetector module, incorporating a
broad spectrum photodiode and a transimpedance amplifier. It was calibrated for use in
different regions of the globe.

In all the works above, the small resolution spectrometers can be considered spectrum
detectors from the operational point of view. They use narrow-spectrum emission LEDs as
reference light sources and different agents (proteins or solutions) as indirect filters.

The interest in the disinfection process and the development of new UV LEDs in this
direction is an active research field, as shown in recent works [23-31].

In our work, we extended the spectrum detection in the field of UV emissions to
three main regions—UV-A, UV-B, and UV-C—using four different spectrum detection
photodiodes and seven UV LEDs with narrow-spectrum emission for the calibration process
of the device.

2. System Description
2.1. System Overview

We present a UV wavelength-measuring device called the KS UV METER, designed to
detect the presence of the three UV radiation spectrums found in the 200-400 nm range. It
directly measures the wavelength of ultraviolet radiation in the 400-315 nm range for UV-A
radiation, 315-280 nm for UV-B range radiation, and 280-200 nm for UV-C range radiation.

The development and implementation of the final device involve two hardware parts
(the measuring device and the calibrator) and two software parts (the device firmware and
custom PC software for the interpretation of the data and results.
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The measuring process flow is presented schematically in Figure 1.
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Figure 1. Block diagram of the device.
2.2. Hardware
2.2.1. UV Spectrum Detection Device
When a flux of UV radiation drops on the UV sensor (photodiode or modular sensor),
it ionizes the semiconductor, and the electrons start to flow. Energy is converted from UV
radiation to electrical power. The generated photocurrent is proportional to the incident
optical power and depends on its wavelength. Thus, to accurately detect the energy
present in one of the three UV spectrums, we chose three UV sensors (SD008-2151-112,
SD008-2161-112, and SD008-2171-112) with high sensitivity in each of these spectrums and,
at the same time, to act as a cutting filter for the other spectrums. To detect the presence of
the UV spectrum from 240 nm to 370 nm, we used the modular GUVA-512SD photodetector
with a built-in transimpedance amplifier. The spectral response of these photodetectors is
presented in Table 1 and Figure 2.
Table 1. Spectral parameters of the UV sensors.
UV Spectrum Peak Wavelength for Responsivity
Photodetector Purpose Reference (nm) Responsivity (nm) (A/W)
SD008-2151-112 UV-A D1 220-370 350 0.18
5D008-2161-112 UV-B D2 240-320 300 0.1
SD008-2171-112 UV-C D3 220-280 270 0.06
GUVA-512SD General UV IC1 240-370 360 0.14

All four UV sensors are Schottky-type photodiodes with high responsivity, low dark
current, and good visibility blindness. We used reverse polarization in the circuit for the D1,
D2, and D3 photodetectors by connecting the anode to the ground and the cathode at the
non-inverting input of the precision instrumentation amplifier, type OA1ZHA (Figure 3).
The amplifier is used in transimpedance configuration and provides low input and output
resistance to short-circuit the UV sensor signal source. This signal source, with proper
resistance, behaves as a constant current source, dependent only on the wavelength and
the intensity of the measured incident UV radiation and achieving a linear ratio between
the current generated by the UV sensor and the output voltage of the operational amplifier
powered by the 3.3 V internal voltage stabilizer of the Arduino Nano development board.
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Figure 2. Spectral response of the photodetectors: (a) D1 (SD008-2151-112), (b) D2 (SD008-2161-
112), (c) D3 (SD008-2171-112), (d) IC1 (GUVA-512SD). (All the graphs were extracted from the
manufacturer’s datasheet).

The ambient temperature sensor was implemented with a negative temperature coeffi-
cient (NTC) thermistor with a negative temperature characteristic of 1 k().

The signal from the output of the transimpedance amplifier is digitized by a
16-bit ADS1115 precision digital-analog converter. The ADS1115 has four analog inputs,
adjustable amplification, internal reference voltage, an internal clock, a programmable
internal comparator that can transmit a signal on a dedicated output, and a programmable
interface inter-integrated circuit protocol (I>C) that allows several integrated circuits of
the “slave” type to communicate with one or more integrated circuits of the “master” type
on the same protocol. We chose to use this option because the Arduino Nano board can
use the I?°C communication protocol for both the 2 x 16 LCD display and the precision
digital-analog converter through pins A4 and A5—the only analog pins of the development
that can be used for digital communication (SDA—the data transmission line and SCL—the
internal clock synchronization line).

The ADS1115 collects analog data from the output of the transimpedance amplifier
at its analog input A3, from the output of the IC1 modular sensor at its analog input A2,
and from the thermistor at its analog input Al. It can generate a generous 65.536 sampling
levels, compared to the only 1024 levels provided by the 10 bit ADC from the Atmega328
incorporated into the Arduino Nano board.

The spectrum detection device (Figure 4) was mounted on a transparent acrylic glass
(perspex) housing with 3 mm walls for visualizing the interior components and laser-
engraved labels for the inscriptions on the front and side connection panels. The design
was done in Corel Draw.
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Figure 3. Electronic circuit for the UV measurement device.

Figure 4. UV spectrum detector device in housing with probes.

A

UV .-PROBE

~gim)




Sensors 2022, 22, 4852

6 of 16

Precision UV probe housing D1, D2, D3, and IC1 and calibrator housing were designed
in Solid Works and printed with a Flashforge Createbot F43 3D printer (Figure 5).

Figure 5. UV sensor probes mounted on 3D-printed enclosures and wired up for Arduino connection.

The wiring diagram of the wavelength-measuring device and the UV calibrator circuit
was designed in Eagle. The corresponding layout of these electronic circuits was done in

the Sprint Layout program.

2.2.2. The Calibrator Device

The calibration process of the measuring device is done through seven standard UV
LEDs that radiate wavelengths between 275 nm and 395 nm. Thus, the device with the
seven LEDs is called the calibrator. The detailed electro-optical parameters of these LEDs

are given in Table 2 and Figure 6.

Table 2. Electro-optical parameters of the UV LEDs used in the calibrator device.

4 UV LED Peak Wavelength,  Radiant Flux  IF Current Spectrum Radiant Angle
Ap (nm) (mW) (mA) Half-Width, AA (nm) 2 01/2 (deg)
1 CUD7QF1A 275 2 20 11 125
2 PB2D-UCLA-KB 309 3.3 20 12 120
3 ATS2012UV365 365 13 20 10 150
4 LTPL-C034UVH365 365 720 500 10 130
5 VLMU1610-365-135 367 23 20 8 130
6 VAOL-5GUV8T4 385 * 20 40 30
7 UV5TZ-395-30 395 40 15 35 30

* Values given in med.
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Figure 6. Optical spectrum emission of the seven UV LEDs from the calibrator device: (a) #1
(CUD7QF1A); (b) #2 (PB2D-UCLA-KB); (c) #3 (ATS2012UV365); (d) #4 (LTPL-C034UVH365); (e) #5
(VLMU1610-365-135); (f) #6 (VAOL-5GUV8T4); (g) #7 (UV5TZ-395-30). (All the graphs were obtained
from the manufacturer’s datasheet).

The LEDs were chosen for a narrow half-width spectrum and optical power generated
by a few milliwatts. From Table 2, it can be observed that all the LEDs have a half-width
spectrum close to 10 nm. The area of the light-emitting semiconductor was not provided in
the manufacturer’s datasheet, and we considered the general case of such devices to have
an area of emission under 1 mm? (hundreds of um?).

The LEDs are supplied using a constant current generator with an LM317 voltage
regulator (Figure 7). The input of the voltage regulator is connected to the positive terminal
of the power supply via the “start” button of the calibrator. The output of the voltage
regulator is connected to the anode of the UV LED through resistance for current regulation.
The adjustment terminal (ADJ) for the continuous monitoring of the voltage drop of
1.25 V on the current control resistor ensures the continuous regulation of the current
passing through the UV LED. With such a connection, the LM317 acts as a voltage regulator
and a constant current generator for the UV LEDs. To fulfill the correct operation of the
LM317, the voltage difference between the input and output voltage must be at least 3 V
(Equation (1)). The output voltage includes the 1.25 V (V zpj) regulated voltage and the
voltage drop (Vg) across the UV LED, which is in the range of 3.5 V-4 V (Equation (2)).
Based on the above consideration and the extreme case for the UV LED forward voltage, a
minimum input voltage of 8.25 V is necessary (Equation (3)). Thus, we considered using a
9V battery as the power supply for the calibrator. An alkaline battery can work for around
three hours, and with a zinc—carbon battery, for about two hours continuously (Figure 8).
Table 3 presents the values for the resistances and the constant current generated with the
LM317 for each UV LED.

Vin — Vour = 3V @

Vout = Vapy + Ve ()
Vi min = 3V + 1.25V + 4V 3)
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Figure 7. Electronic circuit of calibrator.
Figure 8. Assembled calibrator with UV LEDs on.
Table 3. Constant current conditions for each UV LED in the calibrator circuit.
LED # 1 2 3 4 5 6 7
Resistance () 68 68 68 45 68 68 68

Current (mA) 18 18 18 277 18 18 18
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2.3. Software
2.3.1. Firmware

An Arduino Nano open-source development board controls the spectrum detector
device. The measured data, identified spectrum, temperature, and UV sensors are displayed
on a2 x 16 matrix LCD.

The Arduino board communicates through the serial communication port (Rx/Tx)
with its converter, type CH340 (which performs the serial conversion—USB), transmitting
the data to the PC. Alternatively, using the Bluetooth serial port, type HC-05, the data
can be transmitted through wireless communication at a short distance (0.5-100 m max.).
The control and adjustment buttons (MC) and three LEDs as signaling elements (ML) are
mounted on the device’s front panel.

Powering the device with a 9 V battery, preferably alkaline or zinc—carbon, with a fuse
of 200 mA for short-circuit protection, ensures the continuous operation of approximately
four (zinc—carbon battery) to six hours (alkaline battery).

A “FLASH” memory of 32 kb from the ATmega328 microcontroller contains the
program that automatically loads the boot operating system (bootloader), which occupies
2 kb together with the dedicated program for operation and is accessed only at startup
by reading, operating at an internal clock frequency of 16 MHz. An 8 kb static random-
access memory (SRAM) device is loaded after starting the circuit and is the program for
performing calculations and decisions after measurements, operating at 8 MHz, which
is half the frequency of the internal clock. For data storage, 1 kb of electrically erasable
programmable read-only memory (EEPROM) is used. This is necessary for calculations
after measurements and preset action (e.g., the calibration of sensor parameters, commands
for various preset settings, lighting or without lighting 2 x 16 LCD, etc.), with a write speed
of approx. 4 ms (250 Hz), and for readings of approx. 16 MHz/4 = 4 MHz.

The logic diagram of the operational built-in functions of the firmware program is
presented in Figure 9.

void read average _|calculate &
measure() sensors() readings() store

void setup()

—>

void loop()

void display
display() gt data
control LED
—> sheduler

process

void read “ update
button() buttons EEPROM

update
. variables

., void send data
datafetch() to serial

Figure 9. Logic diagram of the firmware.
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The Arduino Nano can execute only a single threading process during its operation
(e.g., when reading a sensor, it cannot send data to the 2 x 16 LCD simultaneously). Thus,
the program has been split into several executable functions that are accessed cyclically
and continuously in the main function, called void loop (vl):

- The first function, void measure (vm), is called at equal time intervals of 200 ms
and ensures the performance of the UV measurements and ambient temperature by
reading the measurement data from the UV and ambient temperature sensors. The
measured data are compared with the data from the EEPROM memory to decide the
subdomain (UV-A, UV-B, UV-C) of radiation of the UV spectrum.

- The second function, called void button (vm), is called at equal time intervals of 300 ms
and follows the commands of the control buttons, based on which it navigates in the
program menu (MENU). Each menu screen has a code, based on which the set task
is executed.

- The third function, called void display (vm), is called at equal intervals of 200 ms and
rewrites (REWRITE) the LCD 2 X 16, deleting and rewriting all the information for
display, as well as ensuring the coupling or decoupling of the green LED to indicate
the possibility of taking measurements (OK).

- The fourth function, called void data fetch (vd), is called at equal intervals of 2 s and
sends the measurement data through the serial communication port (Rx/Tx) by the
comma separation method (comma-separated values), with a semicolon at the end of
a series of data (e.g., 278, 3, 25, 31 indicates that the UV wavelength was measured at
278 nm in the UV-A subdomain (no. 3 means subdomain A, according to the coding),
the measured ambient temperature value was 25 °C, the sensor type code used was
31 (no. 31 means the UV-A sensor type was SD008-2151-112), and the semicolon (;) at
the end means the end of the measurement).

The void setup (vs) function runs outside of the main void function and only once at
the start of the circuit for primary function initialization (e.g., writes the initial message on
the 2 x 16 LCD: UV meter ver. 1.4). It reads from the EEPROM memory the stored data
necessary for the calculations performed in the following measurements for evaluation and
preset action (e.g., sensor characteristic information, whether to turn on the 2 x 16 LCD
lighting, etc.).

2.3.2. PC Program

The program is called UV-meter Data Collector PRO v1.1. It was developed in the
open-source Processing language and can be installed in the Windows, Linux, and Mac OS
operating systems. It was created to store and evaluate the measured data of a UV meter.
After launching the program and choosing the appropriate COM port for the UV device
connection, it displays the main menu and waits for the data packets of measurements to
be received via the Rx/Tx serial port (via wired connection by USB cable or via Bluetooth
connection). The data are displayed in numerical values and graphically (bar graph). The
errors of the data packet of transmission are not displayed on the screen, appearing only
as an information error (ERROR), or the existence of the connection with the computer is
displayed, and/or when not receiving data for 5 s (Connected/Disconnected) (Figure 10).

PRO v.1.1. creates a file with the extension “.csv”. This file contains the measurement
data (wavelengths, ambient temperature, date, time, UV spectrum A-B-C, sensor type). It
can be opened directly in the data management program Excel within Microsoft Office and
processed as such (statistical, graphical).
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Figure 10. UV-meter Data Collector Pro v1.1 PC data logging software.

3. Measurements, Results, and Discussion

To have a reference point for the sensitivity of all the UV sensors using the radiant
power emitted by the UV LEDs, we used a monochromator as a controllable light source
that can cover a part of the UV spectrum.

We used a Newport IQE-200B monochromator to test the sensitivity of the IC1 sensor
(Figure 11). We used this sensor because it presents sensitivity for the emission spec-
trum of 350 nm to 400 nm, which can be covered by the monochromator’s light source of
350-1100 nm. The wavelength accuracy of the monochromator is +0.5 nm. The 100 W Xenon
lamp (model #6257) incorporated in the monochromator generates a constant irradiance of
100 mW /m? for each wavelength to a maximum distance of 0.5 m. The smallest concen-
trated spot size generated by the monochromator is 0.8 mmx 1 mm (0.8 mm?) at 74 mm [32].
The active area of the photodiode sensors given in the manufacturer’s datasheet is
0.076 mm?. In these conditions, the monochromator will generate irradiance values of
100 mW /0.8 mm? and 9.5 mW/0.076 mm?.

Figure 11. Testing the IC1 sensor with the monochromator (the emission wavelength is 555 nm):
(a) view with the measuring device in action; (b) close-up view on the sensor probe.

The measured results depend directly on the intensity of the UV radiation flow, so the
angle at which the incident UV radiation falls on the UV sensors is essential.

The maximum values of the measurements are reached in a perpendicular arrange-
ment of a UV sensor directed towards a flux of UV radiation.
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The UV measurements taken with the monochromator as a light source are presented
in Figure 12, where the “RAW data” represents the number of sampling levels read by
the ADS1115.

8000

6000

— IC1

4000

RAW Data

2000

340 350 360 370 380 390 400

Wavelength [nm]
Figure 12. Measurements with the IC1 sensor under monochromator light source exposure.

For the UV measurements with the UV LED light sources, we considered that their
large radiation angle at a considerable distance will significantly reduce their irradiance.
Thus, we placed them in front of the sensors at a distance small enough (a few millime-
ters). At this distance, the irradiance can be considered proportional to the surface of the
radiance of the LED. The sensors” housing has a dotted spacer to keep the same distance
from the UV LEDs to the sensors. With these considerations and the data presented in
Tables 2 and 3, the optical power emitted by the LEDs reaching the sensors should be as
presented in Table 4. The “RAW data” measurements taken with the sensors using the UV

LEDs are presented in Figure 13.

5000
X o D1
D2
4000 | A D3
X IC1
@ 3000 |
s
@©
a
=
§ 2000 +
1000 |
x x
R o o o o . x
0t R x n n 0 I o ,
0 1 2 3 4 5 6 7 8
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Figure 13. Measurements with the sensors under the exposure of the UV LEDs from the calibrator circuit.
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Table 4. Evaluated irradiance on the sensors using the UV LEDs from the calibrator circuit.

LED # 1 2 3 4 5 6 7

Irradiance (mW) 0.15 0.25 0.99 30 1.75 0 3

Analyzing the measurements results obtained with the monochromator and the UV

LEDs along with the data from Tables 1, 2 and 4, we obtained the following;:

At 355 nm and an irradiance of around 9.5 mW /0.076 mm? on sensor IC1, we measured
6600 raw data;

By exposing sensor IC1 to UV LED 4 with a central wavelength of emission of 365 nm
and a half-width spectrum of 10 nm, we measured 4500 raw data;

With the above two measurements (monochromator and UV LED 4) on IC1, we could
estimate a real irradiance of around 6.5 mW, which reaches this sensor. This means
that only 20% of a radiant flux of 30 mW /0.076 mm? reaches the sensors’ surface. Thus,
even using a very small distance between the UV LEDs and the sensors, significant
radiant power is lost because of the large angle of emission of the UV LEDs;

The plotted measurements in Figure 13 show the excellent filtering of the sensors in
the undesired spectrums. Thus, they will react only to the spectrum where they are
very sensitive, as presented in Table 1 and Figure 2;

The measurements obtained with the low-power emission LEDs (1, 2, 3, 5, 6, and 7)
prove that the sensors do not react to such low UV emissions.

Figure 14 presents the measuring device, probes, and calibrator in a suitcase.

]
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Figure 14. The whole setup.
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4. Conclusions

The measured results depend directly on the intensity of the UV radiation flow, so the
angle at which the incident UV radiation falls on the UV sensor of the device is essential.
The maximum values of the measurements are reached with the perpendicular arrangement
of a UV sensor directed towards a flux of UV radiation.

Similar devices are available on the market, but with costs above 1000 EUR, whereas
our prototype can be built for under 200 EUR. Performance characteristics of different
products cannot be directly compared because the available measurement devices measure
UV radiation intensity and power in fixed or limited wavelength regions. In contrast, our
device can only detect the presence of one of the subdomains of the UV spectrum.

The overall technical specifications of the system are as follows:

Universal input: 240-380 nm of one domain of measurement;
High precision input: UV-A/B/C, 200-400 nm, with three subdomains of measure-
ment. Subdomains of measurement include UV-A: 315-400 nm; UV-B: 280-315 nm;
UV-C: 200-280 nm;
Measure interval: 200 ms;
Adequate time of measurement: 1.16 ms;
Display of arithmetical average of 50 measurements;
LCD 2 x 16 dotted-shape matrix display with 2 x 16 characters (numbers or letters),
with a refresh rate of 200 ms;
Measurement send time to PC: 2 s;
Measured data transmission: USB cable/Bluetooth;
Standalone measuring device with a 9 V battery power supply (type 6F22);
Dimensions: 103 mm x 60 mm x 173 mm;
Weight: 392 g (without battery), 428 g (with battery);
High-precision probes D1 (UV-A), D2 (UV-B), D3 (UV-C), diameter: 27 mm, length:
64 mm, cable: 950 mm, weight: 40 g (with cables and connectors);
e  Probe UV of large band UV (IC1), diameter: 31 mm, length: 63 mm, cable: 950 mm,
weight: 49 g (with cables and connectors);
e Calibrator: 45 mm x 30 mm x 279 mm, weight: 277 g (without battery), 313 g
(with battery);
Operating temperature: +5-+40 °C/0-45 °C;
Operating humidity: 80% to 20 °C;
Operating atmospheric pressure: 800-1060 mbar.
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