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ABSTRACT

More than 90% of the genetic variants identified
from genome-wide association studies (GWAS) are
located in non-coding regions of the human genome.
Here, we present a user-friendly web server, Deep-
Fun (https://bioinfo.uth.edu/deepfun/), to assess the
functional activity of non-coding genetic variants.
This new server is built on a convolutional neural
network (CNN) framework that has been extensively
evaluated. Specifically, we collected chromatin pro-
files from ENCODE and Roadmap projects to con-
struct the feature space, including 1548 DNase I ac-
cessibility, 1536 histone mark, and 4795 transcription
factor binding profiles covering 225 tissues or cell
types. With such comprehensive epigenomics anno-
tations, DeepFun expands the functionality of exist-
ing non-coding variant prioritizing tools to provide a
more specific functional assessment on non-coding
variants in a tissue- and cell type-specific manner.
By using the datasets from various GWAS studies,
we conducted independent validations and demon-
strated the functions of the DeepFun web server in
predicting the effect of a non-coding variant in a spe-
cific tissue or cell type, as well as visualizing the
potential motifs in the region around variants. We
expect our server will be widely used in genetics,
functional genomics, and disease studies.

GRAPHICAL ABSTRACT

INTRODUCTION

Functional interpretation of genetic variants from genome-
wide association studies (GWAS) is critical to understand-
ing the molecular mechanisms of complex diseases (1,2).
This is because more than 90% of the genetic variants
from GWAS are located in non-coding regions (3), even in
gene deserts (4), making downstream analysis tremendously
challenging. To elucidate the potential molecular function
of non-coding variants, previous studies have shown that
most GWAS-reported variants are significantly enriched
in regulatory regions (5,6), such as DNA accessibility and
transcription factor (TF) binding regions (7,8). Current
studies of the function of non-coding variants often focus
on the alteration of TF binding accessibility. For exam-
ple, the single nucleotide polymorphism (SNP) rs1421085,
which has two alleles T and C, has been reported to disrupt a
conserved motif in ARID5B repressor gene. This disruption
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results in derepression of a potent preadipocyte enhancer
and 2-fold IRX3 and IRX5 gene expression during early
adipocyte differentiation (9). On the other hand, although
all human tissues carry on common genetic information,
interpretation of variants on regulatory elements remains
a main challenge due to the distinct transcription regula-
tory programs across different tissues or cell types (10). No-
tably, it has been revealed that the disease-related variants
only take effect in the relevant tissue or cell type. For ex-
ample, some risk variants for psychiatric disorders tend to
be in neuron-specific regulatory regions, while some of the
risk variants for Alzheimer’s disease are concentrated in mi-
croglial enhancers (11,12). To better illustrate the mecha-
nisms of causal variants, there is a pressing need to priori-
tize them in a tissue- or cell type-specific manner (13,14).

The comprehensive functional annotation data from
large projects such as the Encyclopedia of DNA Elements
(ENCODE) project (15) and the Roadmap Epigenomics
project (16) provides a unique opportunity to systemati-
cally assess the impact of all functional elements in the hu-
man genome towards tissue or cell type characteristics. The
current-omics data has made it possible to evaluate tissue-
or cell type-specific regulatory elements by using accessible
chromatin, histone modification and TF binding intensities
on various DNA sequences (10). These data enabled us to
assign biochemical functions for 80% of the genome, in par-
ticular outside of the well-studied protein-coding regions
(15). With these available extensive training data sets, many
deep learning-based frameworks, including DeepBind (17),
DeepSEA (18), Basset (7), DanQ (19), Basenji (20), DeFine
(10), ExPecto (21) and Seqweaver (22), have been developed
and shown remarkable advantages over the conventional
machine learning methods, such as CADD (23), GWAVA
(24) and FunSeq2 (25). Nevertheless, to explore novel ar-
chitecture and algorithms, collecting more comprehensive
annotation and chromatin profiling would help to improve
predictive accuracy, scalability and robustness (20,21). In
addition to the functional impact of non-coding variants in
the genome, it is important to further investigate the poten-
tially impacted genes or motifs around functional variants
(10,18).

To address these challenges, we introduced DeepFun web
server, a deep learning model for functional evaluation
(DeepFun) of genetic variants and assessment of their effect
in a cellular context at single-base resolution. Based on the
increasing availability of epigenetics tracks from ENCODE
and Roadmap, we constructed DeepFun models (26) by in-
tegrating 1548 DNase I accessibility, 1536 histone mark and
4795 transcription factor binding profiles. It is important to
note that our model does not take any specific variant infor-
mation into consideration. This feature in DeepFun enables
the prediction of accessibility effects even for those that
have never been observed previously (e.g. novel mutations
in any studies and de novo mutations identified from family-
based studies). Base on previous comprehensive evaluation
(26), we implemented two functions in DeepFun webserver
to predict the functional impact of any query variants. We
demonstrated that DeepFun can not only effectively assess
the functional impact of a non-coding variant and its im-
pact in a tissue- and cell type-specific manner, but also vi-
sualize potential motifs in the region around the variant.

The webserver is accompanied by detailed help pages. The
results can be viewed in the browser and downloaded for
further local analysis or record keeping. DeepFun, which is
freely available at https://bioinfo.uth.edu/deepfun/, is a use-
ful tool for prioritizing non-coding variants in the genome-
scale based on our algorithm for functional impact assess-
ment.

MATERIALS AND METHODS

DeepFun model training and functions

DeepFun aims to predict the effects of genetic variants on
a wide range of chromatin features, especially those located
in non-coding regions. Figure 1 illustrates the framework
of DeepFun web server. Briefly, we downloaded two types
of epigenomics data from the ENCODE Project and the
Roadmap Epigenomics Consortium: DNase-seq (DNA ac-
cessibility profiles) and ChIP-seq (include histone mark and
transcription factor binding profiles), totaling 7879 samples
(also called chromatin profiles). According to their func-
tional category and completeness, we classified these as-
says into two models. Model A integrated 3451 samples, in-
cluding all DNase-seq (1548), histone marks (1536) and the
transcription factor CTCF (367) binding profiles. Model B
integrated 4428 binding profiles for all the other TFs. After
the removal of technical or biological replicates, DeepFun
incorporates a total of 117 DNase-seq, 360 histone modifi-
cation, and 795 TF binding profiles, representing the non-
redundant number of assays.

For both datasets in models A and B, the downloaded
annotation for peaks was reformatted as 1000 bp genomic
intervals by extending 500 bp on each side of the midpoint
of any narrow peaks reported in the original dataset, ac-
cording to the Basset configuration (7). We then greedily
merged peaks based on their distance to an adjacent peak,
until no peaks overlapped by >200 bp (processed by the
preprocess features.py function). The center of the merged
peak was determined as a weighted average of the midpoints
of the merged peaks from the individual profile. These peaks
were regarded as potential epigenomic active sites. Next, we
applied an extended version of the Basset model (7) with
default three convolutional layers, two fully connected hid-
den layers, and a fully connected sigmoid transformation
layer to predict the peak accessibility or binding probability
across different chromatin features. We randomly selected
80% of epigenomic active sites for training, 10% for vali-
dation, and 10% for testing, respectively. We used the area
under receiver operating characteristic (AUROC) to evalu-
ate the performance on validation and testing sets. The net-
work training was stopped when the loss in the validation
set did not decrease within 12 successive epochs of Bayesian
optimization. By this measurement, we showed DeepFun
achieved a median AUROC value of 0.933 over all DNase-
seq assays, compared to 0.895 from the original Basset re-
sult (7). In addition, the area under precision-recall curve
(AUPRC) was used to evaluate the model performance since
the positive and negative datasets were imbalanced in size.
The predicted effect for DNase-seq and histone mark assays
had median AUPRC values of 0.544 and 0.354, compared
to 0.042 and 0.025 from a random classifier. This resulted in
a median AUPRC increase of 0.502 and 0.321 in DNase-seq
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Figure 1. The framework of the DeepFun models and analysis. For each genetic variant, DeepFun considers its nearby 1000-bp genomic region as its
context information, and then encodes it as one-hot code position weight matrix (PWM) to predict the accessibility or binding probability of sequences
containing reference allele or alternative allele, respectively. To investigate the impact of variant, we implemented screen analysis and in silico saturated
mutagenesis analysis.

and histone mark assays, respectively. More details of CNN
model construction and performance for each feature can
be found in our recent work (26).

The DeepFun model is designed to predict the functional
impacts of sequence alterations at single-nucleotide resolu-
tion. However, DeepFun does not directly predict the im-
pact of genetic variants. For each variant, DeepFun con-
siders its neighboring 1000 bp region for context informa-
tion, and then predicts the active (accessibility or binding)
probability of sequence(s) containing either reference allele
or alternative allele, respectively. To evaluate the impact of
variant, we implemented the previously defined SNP Ac-
tivity Difference (SAD) or relative log fold change of odds
(log-odds) difference between the two alleles (26).

DeepFun implements two functions that can greatly fa-
cilitate the interpretation of genetic variants: the screen
analysis (∼5 seconds per variant, up to 3000 variants per
job) and the in silico saturated mutagenesis analysis (∼20
min, one variant per job). The screen analysis screens (by
basset sad.py function) for potential functional variants
over all chromatin features rapidly, while the in silico sat-
urated mutagenesis analysis (by basset sat vcf.py function)
systematically scans along all potential single-nucleotide
substitutions within 200 bp of the query variant to assess the
effect of every base and prioritizes sequence features that
are informative for a specific chromatin profile. The specific

details of these two functions are provided on our website,
the Help page, and also in the original method publication
(26). The user-friendly web server DeepFun is available at
https://bioinfo.uth.edu/deepfun/.

Web server construction

The main functions of DeepFun were implemented in
Python and Torch7 framework. The web server is hosted by
a Linux server equipped with CentOS 7 and Apache (ver-
sion 2.4) as the running environment. The server has four
CPUs [Intel(R) Xeon(R) E5-2637 v3], 128 GB memory and
8TB hard disk to support computational tasks. DeepFun
was designed and implemented in a standard Model-View-
Controller (MVC) framework which is an architectural pat-
tern widely used in modern web applications. The DeepFun
web server contains three main logical components: Model,
View, and Controller. On the backend, there are two well-
trained CNN models for screen analysis and in silico satu-
rated mutagenesis analysis, which execute the real compu-
tational task. The models take the input data delivered by
the controller scripts and generate the results. In addition,
DeepFun implements an email service to send notification
messages to users regarding the running status of their sub-
mitted jobs. The email service is also part of our backend
side function. Views are the frontend side interfaces for in-
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teractions with users. In DeepFun, the view pages are de-
signed to guide users to input their data properly, show
job running status, display feedback including practical er-
rors, and present results when the job finishes successfully.
These pages were implemented using HTML5, CSS, and
JavaScript. To facilitate the different resolutions of users’
display screens, we used ‘Material Design for Bootstrap4
CSS library’ to build responsive web pages with fashion
component designs. Ajax technology was used for calling
the controller to submit jobs, retrieve data from the server-
side, and update the information in views without refreshing
the web page by utilizing the jQuery library. PHP was also
used as an auxiliary function for data display. Controllers in
our DeepFun are responsible for validating the input data
and passing data between the frontend side views and the
backend side models. The controllers were mainly written
in the Python language (version 3.6). The mod wsgi mod-
ule was used for Apache to work with Python scripts. By
utilizing the MVC framework, it provides a clear separa-
tion of logic making the testability to be frictionless. Our
design allows us to extend functions and add plugins easily
in the future. To avoid server overloading or task jams, we
designed a queue strategy to organize the submitted jobs.
Each user can submit as many jobs as necessary. DeepFun
allows a maximum of 5 jobs running in parallel and can au-
tomatically deal with the jobs in a queue.

The workflow of the DeepFun server is illustrated in Fig-
ure 2. The coordinating web server interface is shown in Fig-
ure 3. On the home page (Figure 3A), users submit a job
by selecting specific type of analysis and upload their data
(Figure 3C and E). The web server will first conduct a pre-
liminary check of the input data (e.g. correct formatting and
nucleotides). If the input data is qualified, DeepFun sends a
notification message of successful submission with the job
identifier to the email address if provided. Before the job
can be executed, DeepFun first checks the queue to find if
there is a free slot (referred to a worker) available for the
newly submitted job (Figure 2). Here, we name a worker
as a CPU thread for executing the program. If a worker is
available, DeepFun will run the new job and set the job sta-
tus to ‘Running’. Otherwise, DeepFun adds the new job to
the end of the queue and sets the status to ‘Pending’. After a
job is submitted successfully, users will be directed to a page
for monitoring the job status, where the status information
is updated every 10 s until the job is finished. A message will
be sent to the provided email address upon the job comple-
tion. Depending on the submitted job, the analysis may take
for a while. In that case, users can close the DeepFun web-
page while they should keep a record of the job identifier.
Users can always go to the Results page to check any job
status (Figure 3B), where DeepFun lists all the running and
pending jobs. Users can monitor their jobs by searching the
web site using the job identifier.

Input

In both the screen analysis and the in silico saturated mu-
tagenesis analysis (Figure 3C, E), users can query SNPs.
The inputs can be in a 4-column format: chromosome, po-
sition, reference allele, and alternative allele, separated by
space or tab. Each variant is in one line. The input file can

be in the VCF-like format with five or more columns, where
the first five columns are required, without a header line.
These five columns contain information for chromosome,
position, SNP ID, the reference allele, and the alternate al-
lele. For the screen analysis, DeepFun accepts up to 3000
variants per job over either model A or model B. Users can
paste the variants in the input box on the web page or up-
load a file that contains the variants following the formats as
required. For in silico saturated mutagenesis analysis, Deep-
Fun will only run the analysis on one variant each time over
a group of experiment targets in a specific tissue or cell line,
due to the time consuming of the very process.

Currently, we support input variants using the hu-
man genome version hg19/GRCh37 or hg38/GRCh38
(liftOver). DeepFun models were trained using profiling
data based on hg19/GRCh37 coordinates. Thus, for input
variants based on hg38/GRCh38 coordinates, the Deep-
Fun server first applies the liftOver software (27) to convert
hg38/GRCh38 coordinates to hg19/GRCh37. Variants that
cannot be mapped to appropriate hg19/GRCh37 coordi-
nates will be excluded from further analysis. Of note, Deep-
Fun only accepts variants located on chromosomes 1 to 22
and X. Any variants located on the Y chromosome or mi-
tochondrion genome will be automatically declined. This is
consistent with GWAS study design and analysis, which has
weaker power on the statistical association analysis for the
variants on sex chromosomes, especially Y chromosome. In
addition, when neither reference nor alternative allele can
match to the reference genome, an error log file will be au-
tomatically generated to guide the user to remove aberrant
variants or to check the correct genome version.

Output

Screen analysis. To predict the effects of any input ge-
netic variants on a wide range of chromatin features, Deep-
Fun screen analysis will predict the activity (accessibility
or binding) probabilities for each variant in its immediately
neighboring sequence (1000 bp) carrying the reference and
alternative allele over all chromatin features in the selected
model. The predicted activity for both alleles ranges from
0 to 1. Then, the change of the predicted activity between
sequence carrying reference and alternative alleles, which
corresponds to the impact of the variant on accessibility
or binding efficiency, is calculated over all chromatin fea-
tures in the selected model. We implemented two measure-
ments, SNP activity (accessibility or binding probability)
difference (SAD) score, defined as: SAD = P(alt) − P(ref),
and relative log fold change of odds difference between two
alleles, defined as: log-odds difference = log(P(alt)/(1 −
P(alt))) − log(P(ref)/(1 − P(ref))), where ref and alt rep-
resent the predicted activity probability for the reference al-
lele (original sequence) and the alternative allele (mutated
sequence), respectively. Both SAD and log-odds difference
values reflect the degree of the functional impact of se-
quence alterations at single-nucleotide resolution. More de-
tails are described in our online tutorial.

Output pages are generated to facilitate a better visual-
ization, screen potential functional variants, and present re-
sults for manuscript preparation. We demonstrate an out-
put page for DeepFun screen analysis. As shown in Fig-
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Figure 2. Overview of DeepFun web portal and workflow. DeepFun aims to predict the effects of genetic variants on a wide range of chromatin features
based on deep convolutional neural networks (CNN). DeepFun provides two major functions: screen analysis and in silico saturated mutagenesis analysis.
DeepFun can process all the submitted jobs automatically using a queue strategy.

ure 3D, a summary page lists the average, standard devi-
ation, maximum and minimum of SAD or log-odds differ-
ence values, as well as the most associated chromatin pro-
files for all the submitted variants across all chromatin fea-
tures in a selected model. In addition, we present variants
SAD heatmap summary to better demonstrate the impact
of variants tissue- and cell type-specificity from the same as-
say. It is noted that only the top 50 variants with the high-
est maximum SAD values are displayed. For better cus-
tom figure, we deposit the heatmap plot code at Github
https://github.com/bsml320/DeepFun.

To help users’ downstream analysis, we integrate
hg19/GRCh37-based refGene annotation results derived
from the ANNOVAR software (28) into the DeepFun
screen analysis summary page. Users can download all
the results to evaluate variant SAD or log-odd difference
values over all chromatin features. For the variants based
on hg38/GRCh38 coordinates, two additional files (the
variants that can be mapped to hg19/GRCh37 and those
variants are failed to map) are generated and reported to
the user.

In silico saturated mutagenesis analysis. DeepFun per-
forms ‘in silico saturated mutagenesis’ analysis to discover
informative sequence features. Specifically, it will mutate
every single base within 200 bp of the query variant and
calculates the SAD change pattern in the target chromatin
feature. As shown in Figure 3E, after determining the hu-
man genome assembly version, users need to specify tar-
get features of interests: Model/Panel → Experiment tar-
get →Tissue/Cell type → Accession. The in silico saturated
mutagenesis analysis is computationally intensive and takes

some time to compute. Therefore, we only accept one vari-
ant each time in the current version. We encourage users
to conduct DeepFun screen analysis first to prioritize the
target of interested chromatin features, for example, those
feature(s) with absolute SAD > 0.1, before they perform in
silico saturated mutagenesis analysis.

We demonstrate an example output page for DeepFun
in silico saturated mutagenesis analysis. As shown in Fig-
ure 3F, for each profile that the user selects, two heat maps
are displayed to show the effects (SAD values) of predicted
accessibility or binding activity from mutation at every po-
sition on reference and alternative alleles, followed by an
estimation of each nucleotide contribution to sequence’s
binding activity. Red color indicates the mutation would in-
crease epigenetic signal, while blue color indicates decreased
epigenetic signal. Users can download all figures in PDF
format. Furthermore, for the user’s convenience of down-
stream analysis, a table that includes the max gain and loss
SAD values within 200 bp of the query variant (from −99
to 100 bp) is provided.

Job archiving. Once the job is submitted successfully, a
unique job identifier, which can be customized partially by
the user, is automatically assigned to the job. The job iden-
tifier is confidential and can be used to track job status and
retrieve the results. Upon the completion of a job, all the re-
sult files will be zipped into one file, and a download button
will be provided on the job monitoring page. The DeepFun
server will keep all submitted jobs for 30 days. Within this
time frame, user can freely access their results and down-
load the zipped file to a local computer (Figure 3D, F).
We also deposit DeepFun pre-trained models at Github

https://github.com/bsml320/DeepFun
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Figure 3. Web interfaces of the DeepFun server. (A) Home page of DeepFun. (B) Job monitoring and result retrieval page. (C) Input page of the screen
analysis. (D) Output page of the screen analysis. (E) Input page of the in silico saturated mutagenesis analysis. (F) Output page of the Operation buttons
for uploading in silico saturated mutagenesis analysis. Details in C and E are below. (1) Job identifier can be generated automatically or customized by the
submitter. (2) Human genome reference assembly version: DeepFun supports the coordinates from the human genome version hg19/GRCh37 (default
training) or hg38/GRCh38 (internal conversion to hg19/GRCh37). (3) Model selection: Model A or Model B. (4) Input box for variants. (5) Input box
for email address. (6) Operation buttons for uploading and verifying inputs, submitting a job, resetting inputs and loading example data. (7) Function for
uploading a file containing the variants in the required format. (8) Selection of user-specified profiles for in silico saturated mutagenesis analysis.

https://github.com/bsml320/DeepFun in order to facilitate
users to run the pre-trained models on their local hardware.

Prior application and evaluation

Screen analysis. In our previous study, we have conducted
several independent validations using the ClinVar genetic
variants with benign, pathogenic and uncertain functions
(29), de novo mutations in autism spectrum disorder (ASD)
cohort from the Simons Simplex Collection (SSC) (30).
Furthermore, we demonstrated DeepFun model could re-
fine the significant GWAS associations to identify regu-
latory loci from background signals (26). Here, we fur-
ther demonstrate DeepFun can predict non-coding vari-
ant’s functional impact in a tissue- and cell type-specific

manner. As shown in Figure 4A, most disease-related vari-
ants have higher SAD values in relevant tissues. For exam-
ple, for most immune-related traits (celiac disease, multiple
sclerosis, type 1 diabetes and ulcerative colitis), their asso-
ciated risk loci have higher SAD values in intestines and
colon. And for neurodegenerative and neuropsychiatric dis-
ease (Alzheimer’s disease, autism spectrum disorder, depres-
sive symptoms, education and schizophrenia), their risk loci
have higher SAD values in brain and spinal cord. In ad-
dition, risk loci associated with body fat percentage had
higher SAD values in muscle, coronary artery disease in
heart and ventricle, fasting glucose and fasting insulin in
pancreas and placenta, and type 2 diabetes in kidney and
renal (Details in Supplementary Table S1). As above, our
results suggested that DeepFun could effectively predict the

https://github.com/bsml320/DeepFun
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Figure 4. DeepFun evaluation and application. (A) Screen analysis of the multiple human complex traits and diseases with the associated SNPs over
different DNA accessibility profiles. X-axis and Y-axis represent DNase accessibility profiles over different tissues and SNPs, respectively. (B) In silico
saturated mutagenesis analysis of ulcerative colitis-associated SNP rs6426833 on transcription factor NFE2 binding profile.

functional impact of variants in a tissue-specific manner,
as most of them are consistent with the disease symptoms.
Therefore, they supported our methods being reliable.

To demonstrate that the model with an increased size
would have better performance, we compared the results
above with DeepSEA model, by calculating their Pearson
correlation coefficient (PCC) for their averaged SAD score.
As shown in Supplementary Figure S1, we observed a sig-
nificant positive correlation in CTCF (PCC = 0.883, P-
value = 2.2 × 10−16) and DNase-seq (PCC = 0.751, P-value
= 1.46 × 10−10) assays between DeepFun and DeepSEA
models. Although the numbers of assays are extremely im-

balance for other histone marks (e.g. 595 H3K4me3 bind-
ing profiles in DeepFun, but only 8 in DeepSEA model),
DeepFun still demonstrated a moderately positive correla-
tion with DeepSEA model. For example, H3K4me3 (PCC
= 0.490, P-value = 2.28 × 10−4), H3K9ac (PCC = 0.451,
P-value = 7.99 × 10−4). We further compared them in cell
type-specific manner. As shown in Supplementary Figure
S2, most top impacted variants showed strong overlapping
degree between DeepFun and DeepSEA. However, only
∼30% of these variants have a maximum SAD > 0.1 within
DeepSEA model’s 125 DNA accessibility profiles. There-
fore, the analysis might lose those functional variants be-
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cause they might only function in specific tissue or cell type.
As shown in Figure 4A, the increased number of novel
epigenomic datasets in DeepFun web server will be a valu-
able resource to decipher variant effect in a tissue- and cell
type-specific manner.

In silico saturated mutagenesis analysis. To recognize in-
formative sequence features from chromatin profiles, in sil-
ico saturated mutagenesis approach by scanning along all
potential single-nucleotide substitutions was integrated to
DeepFun model to assess the effect of mutating every base
and informative sequence features for a specific chromatin
profiles effect prediction (7,18). To validate performance
of DeepFun model, we take one SNP (rs6426833) asso-
ciated with ulcerative colitis (31) on transcription factor
NFE2 binding profile as an example. We generated two
heat maps to display the SAD change patterns around
the variant (from upstream 99 to downstream 100 bp) for
both reference (G) and alternative (A) alleles. As shown in
Figure 4B, in silico saturated mutagenesis predicted bind-
ing activity statistics in A allele sequence (bottom figure)
is highly consistent with relevance NFE2 binding motif
TGACTCAGCA from CIS-BP database (32). Any muta-
tions around NFE2 motif and flanking regions would result
in a decreased predicted binding activity. In contrast, only
rs6426833 mutation from A to G would result in binding
activity increase (Figure 4B), while other mutations around
rs6426833 may not impact SAD (see details in Supplemen-
tary Table S2). Therefore, in silico saturated mutagenesis
analysis is an effective way to dissect potential impacted mo-
tifs around functional variants (7).

CONCLUSION

In this study, we have collected the comprehensive epige-
nomic annotation in DeepFun model. The abundant anno-
tation will serve as useful resources for further exploration
of the functional roles of non-coding variants in tissue-
and cell type-specific manner. We demonstrated that the in-
corporation of multiple tissues and cell types would be a
valuable approach to decipher those functional variants in
tissue- or cell type-specific manner. In addition, with the
help of in silico saturated mutagenesis analysis, the Deep-
Fun web server will be useful for interpreting potential tar-
get gene’s motifs around functional variants. We hope our
web server will be a valuable resource in GWAS down-
stream analysis (26) and also broadly non-coding variant
evaluation on the functional impact (30,33).

There are several ways to improve DeepFun server in
the future. First, recent efforts to describe the human
epigenome in ENCODE 3 (34) and advancement of com-
putational methodologies (35,36) have yielded thousands of
novel epigenomic maps. Investigating functional impact of
non-coding variants can be improved by training with the
growing number of epigenomic datasets (37). Second, the
performance of most CNN-based methods may strongly
depend on initial convolution filters for captured motif in-
formation. DeepFun model has not considered long-range
interactions, such as 3D DNA contact (20,37). Therefore,
novel CNN architecture, algorithms and integrating with
other epigenomic experimental data will further improve

the model accuracy. Third, during the training process, we
treated the ‘peaks’ as the binary format to represent the ex-
perimentally observed signal around each candidate ‘peak’
region. This procedure helps mitigate bias and noise caused
by the quality of antibodies and sequencing depth, or other
factors that may affect the quantitative signals. However,
it has ignored the quantitative information. In future, we
will explore appropriate normalization approach to elimi-
nate technical bias, and then integrate quantitative epige-
nomic signals into our updated model (20). We will con-
tinue to develop DeepFun as above, and regularly maintain
the web server by adding more data and functions.

DATA AVAILABILITY

All the data generated or analyzed in this study is available
from the authors upon request. We deposit DeepFun pre-
trained models and downstream analysis scripts at Github
https://github.com/bsml320/DeepFun.
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Supplementary Data are available at NAR Online.
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