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In silico analysis of the fucosylation-associated
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Abstract

Background: Carbohydrate structures of surface-expressed and secreted/excreted glycoconjugates of the human
blood fluke Schistosoma mansoni are key determinants that mediate host-parasite interactions in both snail and
mammalian hosts. Fucose is a major constituent of these immunologically important glycans, and recent studies
have sought to characterize fucosylation-associated enzymes, including the Golgi-localized fucosyltransferases
that catalyze the transfer of L-fucose from a GDP-L-fucose donor to an oligosaccharide acceptor. Importantly,
GDP-L-fucose is the only nucleotide-sugar donor used by fucosyltransferases and its availability represents a
bottleneck in fucosyl-glycotope expression.

Methods: A homology-based genome-wide bioinformatics approach was used to identify and molecularly
characterize the enzymes that contribute to GDP-L-fucose synthesis and Golgi import in S. mansoni. Putative
functions were further investigated through molecular phylogenetic and immunocytochemical analyses.

Results: We identified homologs of GDP-D-mannose-4,6-dehydratase (GMD) and GDP-4-keto-6-deoxy-D-mannose-
3,5-epimerase-4-reductase (GMER), which constitute a de novo pathway for GDP-L-fucose synthesis, in addition to a
GDP-L-fucose transporter (GFT) that putatively imports cytosolic GDP-L-fucose into the Golgi. In silico primary
sequence analyses identified characteristic Rossman loop and short-chain dehydrogenase/reductase motifs in GMD
and GMER as well as 10 transmembrane domains in GFT. All genes are alternatively spliced, generating variants of
unknown function. Observed quantitative differences in steady-state transcript levels between miracidia and
primary sporocysts may contribute to differential glycotope expression in early larval development. Additionally,
analyses of protein expression suggest the occurrence of cytosolic GMD and GMER in the ciliated epidermal plates
and tegument of miracidia and primary sporocysts, respectively, which is consistent with previous localization of
highly fucosylated glycotopes.

Conclusions: This study is the first to identify and characterize three key genes that are putatively involved in the
synthesis and Golgi import of GDP-L-fucose in S. mansoni and provides fundamental information regarding their genomic
organization, genetic variation, molecular phylogenetics, and developmental expression in intramolluscan larval stages.
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Background
The deoxyhexose sugar L-fucose is a major constituent
of an array of immunologically important carbohydrates
that are presented on surface-expressed and secreted/
excreted glycoconjugates of the human blood fluke
Schistosoma mansoni (reviewed by [1]). Although the
schistosome glycome is perhaps the most extensively
characterized among invertebrates, relatively little is
known about the enzymatic machinery responsible for
its expression. Recent studies by Fitzpatrick et al. [2]
and Peterson et al. [3] inventoried the schistosome
α3- and α6-fucosyltransferases (FucTs), which transfer
L-fucose from a GDP-L-fucose nucleotide-sugar donor
to an oligosaccharide acceptor to create α3 and α6
linkages, respectively. These studies also demonstrated
stage- and gender-specific variations in FucT gene
transcription, which may contribute to differential
fucosyl-glycotope expression that has been reported
among stages of S. mansoni [4-7].
While the population composition and cellular

organization of the expressed glycosyltransferases are
key determinants affecting carbohydrate structural diversity,
other factors are also important, including nucleotide-sugar
donor availability, Golgi membrane dynamics, intralumenal
pH, and competition for donor/acceptor substrates [8]. In
S. mansoni, this means that GDP-L-fucose synthesis and
Golgi import, which dictate fucose donor availability in the
Golgi, likely contribute to differential fucosyl-glycotope
expression. However, to date, no studies have examined
these aspects of fucosylation in schistosomes.
In general, GDP-L-fucose synthesis is localized in the

cytosol and can occur by two possible metabolic pathways,
the de novo and salvage pathways (reviewed by [9]), which
constitute approximately 90% and 10%, respectively,
of total GDP-L-fucose synthesis in mammalian cells
[10]. In de novo synthesis, GDP-D-mannose is converted
to GDP-L-fucose in three steps by GDP-D-mannose-4,6-
dehydratase (GMD, EC 4.2.1.47) and the bifunctional
enzyme GDP-4-keto-6-deoxy-D-mannose-3,5-epimer-
ase-4-reductase (GMER, EC 1.1.1.271; also called
GDP-L-fucose synthase). Alternatively, the salvage
pathway generates GDP-L-fucose from free cytosolic
L-fucose in two steps, which are generally catalyzed
by L-fucokinase (Fuk) and L-fucose-1-phosphate
guanylyltransferase (FPGT; also called GDP-L-fucose
pyrophosphorylase). Both pathways are summarized in
Figure 1. GMD and GMER are well conserved across
prokaryotic and eukaryotic taxa in terms of both
structure and function [11], but the salvage pathway
exhibits some variation. While homologs of Fuk and
FPGT have been described in several mammalian species
[12-15], the salvage pathway in Bacteroides and
Arabidopsis comprises a single bifunctional enzyme
(Fkp in Bacteroides; FKGP in Arabidopsis) that exhibits
both Fuk and FPGT activities [16,17]. Elements of a
salvage pathway do not exist in Drosophila [18] and
only a Fuk homolog has been identified in C. elegans
[11]. How GDP-L-fucose is synthesized in S. mansoni
is unknown.
In eukaryotes, fucosylation occurs primarily in the

Golgi. Consequently, following GDP-L-fucose synthesis
in the cytosol, the activated fucose is imported into the
Golgi lumen where it can be utilized by Golgi-localized
FucTs. This translocation is driven by a GDP-L-fucose
transporter (GFT), which couples GDP-L-fucose entry with
equimolar exit (i.e., antiportation) of GMP, a downstream
byproduct of fucosylation (reviewed by [19]).
Previous studies indicate that GDP-L-fucose synthesis

and transport are essential processes in the production of
fucosylated glycans. For example, increased expression of
GMD, GMER and GFT was linked to higher levels of
fucosylation in human hepatocellular carcinoma [20,21]
and elevated expression of sialyl Lewis X during inflamma-
tion and tumorigenesis [22]. Additionally, Omasa et al. [23]
observed decreased fucosylation of recombinant human
antithrombin III following RNAi-mediated knockdown of
GFT in transfected Chinese hamster ovary cells. The essen-
tial role of GFT in proper fucosylation is further evidenced
in humans by the rare autosomal recessive syndrome
leukocyte adhesion deficiency type II (LADII), which is
characterized by severe psychomotor and growth retard-
ation, facial malformation, and persistent and recurrent
infections with marked neutrophilia [24]. Red blood cells of
LADII patients feature a non-fucosylated variant of the H
antigen (called the “Bombay” phenotype), and leukocytes
lack the fucosylated Lewis-type blood groups that are
requisite for extravasation during immune challenge
[25]. Importantly, LADII results from a deficiency in
GDP-L-fucose transport, which is attributable to mutations
in the GFT gene [26-30]. These observations suggest the
possibility that GDP-L-fucose synthesis and Golgi import
play key roles in the regulated expression of fucosylated
glycotopes in S. mansoni as well.
In the present study, we used a homology-based genome-

wide bioinformatics approach to identify and characterize
putative GDP-L-fucose synthesis- and transport-associated
genes in S. mansoni. This study provides fundamental
information about the genomic organization, splicing and
molecular phylogenetics of these fucosylation-associated
genes as well as important insights regarding their putative
roles in glycotope expression in snail-associated larvae,
particularly miracidia and primary sporocysts.

Methods
Isolation and cultivation of S. mansoni larvae
Ethics statement: Research protocols involving mice,
including routine maintenance and care, have been
reviewed and approved by the Institutional Animal Care



Figure 1 Schematic diagram of GDP-L-fucose synthesis. GDP-L-fucose synthesis occurs by two cytosolic pathways, namely the de novo
and salvage pathways. In de novo synthesis (A), GMD with coenzyme NADP+ removes one H2O-equivalent from GDP-D-mannose to form
GDP-4-keto-6-deoxy-D-mannose. Then, GMER catalyzes epimerizations at C3 and C5 followed by an NADPH-dependent reduction of C4 to yield
GDP-L-fucose. In the salvage pathway (B), Fuk transfers a single phosphate from ATP to free cytosolic L-fucose, yielding L-fucose-1-phosphate and
the byproduct ADP. Next, FPGT transfers GMP from GTP to L-fucose-1-phosphate, producing GDP-L-fucose and pyrophosphate. Evidence
presented here strongly supports the exclusive use of the de novo synthetic pathway in S. mansoni. GMD, GDP-D-mannose-4,6-dehydratase;
GMER, GDP-4-keto-6-deoxy-D-mannose-3,5-epimerase-4-reductase; Fuk, L-fucokinase; FPGT, L-fucose-1-phosphate guanylyltransferase.
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and Use Committee (IACUC) at the University of
Wisconsin-Madison under assurance number A3368-01.
Generation of antibodies against recombinant proteins was
performed by GeneTel Laboratories LLC (Madison, WI,
USA) in accordance with protocols reviewed and approved
by the Office of Laboratory Animal Welfare (OLAW) at
the National Institutes of Health under assurance number
A4489-01.
Adult and larval S. mansoni (NMRI strain) were collected

and cultivated as described by Yoshino and Laursen [31].
Briefly, adults were harvested from infected mice by
perforation of the hepatic portal veins, and viable eggs were
isolated from liver tissue by homogenization and washed in
sterile 0.9% NaCl. Eggs were hatched in artificial pond
water [32], and the free-swimming miracidia were either
used immediately or transformed to primary sporocysts
by cultivation at 26°C in Chernin’s Balanced Salt Solution
(CBSS; [33]) containing glucose and trehalose (1 g/L each)
as well as penicillin and streptomycin (CBSS+). Trans-
formation of most miracidia was complete within 24 h of
culture origination. In this study, primary sporocysts were
maintained in CBSS+ for up to 10 days, with refreshment
of the culture medium at 2 and 7 days.

GDP-L-fucose synthesis and transport gene identification
The amino acid sequences of previously characterized
GDP-L-fucose synthesis- and transport-associated genes,
including GMDs, GMERs, GFTs, Fuks, FPGTs, Fkp and
FKGP, of Homo sapiens, Mus musculus, Drosophila
melanogaster, Caenorhabditis elegans, Arabidopsis thaliana,
and Bacteroides fragilis were downloaded from Reference
Sequence (RefSeq) and GenBank online databases at the
National Center for Biotechnology Information (NCBI;
accession numbers in Tables 1 and 2) and used as queries
in a genome-wide tBLASTn [34] screen of genomic
scaffolds and predicted genes to identify homologs in the
Schistosoma mansoni Database (SchistoDB; [35]).

Primer design
The oligonucleotide primers used in this study were
designed using Vector NTI Advance 11.0 software
(Invitrogen, Eugene, OR, USA) and the IDT SciTools
suite [87] based on available SchistoDB-derived genomic
sequence information as well as data obtained by this study,
and custom DNA oligonucleotides were purchased from
Integrated DNATechnologies (IDT, Coralville, IA, USA). A
complete list of primer sequences used in this study is
provided in (Additional file 1: Table S1A-E).

Reverse transcriptase-PCR and rapid amplification of cDNA
ends for GMD, GMER, and GFT transcript sequencing
Kits and reagents for molecular assays were used
according to the manufacturers’ recommendations unless
otherwise indicated. Primers used for reverse transcription
(RT)-PCR and rapid amplification of cDNA ends (RACE)
are provided (see Additional file 1: Table S1A-C). RT-PCR
and RACE protocols were performed as detailed in
[3] and are summarized as follows: Miracidia, 2-day
in vitro-cultivated primary sporocysts and mixed-sex
adults (i.e., pooled male and female worms) were
washed with artificial pond water (miracidia), CBSS
(sporocysts) or mammalian phosphate-buffered saline



Table 1 NCBI accession numbers (number.version) of GDP-L-fucose synthesis-associated genes referenced in this study

Source organism Gene identifier a Nt accession Prot. accession Function b References

Homo sapiens GMDS NM_001500.2 NP_001491.1 GMD [36-39]

TSTA3/FX NM_003313.3 NP_003304.1 GMER [20,37,40,41]

FUK NM_145059.2 NP_659496.2 FUK [14]

FPGT/GFPP NM_003838.3 NP_003829.2 FPGT [13,42,43]

Mus musculus Gmds NM_146041.2 NP_666153.1 GMD [22]

Tsta3 NM_031201.1 NP_112478.1 GMER [22,44,45]

Fuk NM_172283.2 NP_758487.2 FUK [15]

Fpgt NM_029330.2 NP_083606.2 FPGT " "

Danio rerio gmds NM_200489.2 NP_956783.2 GMD [46,47]

Drosophila melanogaster Gmd NM_135044.3 NP_608888.2 GMD [11,18]

Gmer NM_137890.2 NP_611734.1 GMER " "

Caenorhabditis elegans gmd-1 AM231683.1 CAJ77752.1 GMD [11]

gmd-2 NM_060705.1 NP_493106.1 " " " "

ger-1 NM_066139.3 NP_498540.1 GMER " "

Schistosoma mansoni GMD GU574757.1 ADO17520.1 GMD Present study

GMER GU574758.1 ADO17521.1 GMER " "

Mortierella alpina GMD GU299800.1 ADC54120.1 GMD [48]

GMER GU299801.1 ADC54121.1 GMER " "

Arabidopsis thaliana GMD1 NM_126026.3 NP_201429.1 GMD [11,49]

MUR1/GMD2 NM_114976.3 NP_190685.2 " " [11,49,50]

GER1 NM_105984.3 NP_177468.2 GMER [11,51,52]

GER2 NM_101652.2 NP_564040.1 " " [11]

FKGP NM_100004.3 NP_563620.1 FUK/FPGT (dual) [17]

Bacteroides fragilis Gmd CR626927.1 CAH07586.1 GMD [16]

Fcl CR626927.1 CAH07585.1 GMER " "

Fkp NC_003228.3 YP_212230.1 FUK/FPGT (dual) [16,53]
a Official gene names/identifiers are provided. Genes in boldface type were used as query sequences to search for homologs in the SchistoDB [35].
b GMD, GDP-D-mannose-4,6-dehydratase; GMER, GDP-4-keto-6-deoxy-D-mannose-3,5-epimerase-4-reductase; FUK, L-fucose kinase; FPGT, fucose-1-phosphate
guanylyltransferase; FUK/FPGT, bifunctional L-fucose kinase/fucose-1-phosphate guanylyltransferase.
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(8.41 mM Na2HPO4, 1.65 mM NaH2PO4·H2O, 146.4
mM NaCl, pH 7.4; adults), and total (“raw”) RNA
was extracted using TRIzol® Reagent (Invitrogen).
Genomic contamination was removed with TURBO™
DNase (Applied Biosystems, Foster City, CA, USA), and
the resultant DNA-free RNA was converted to RT-PCR
-ready cDNA using the SuperScript® III First-Strand
Synthesis System (Invitrogen). Reverse transcriptase-PCR
reactions were prepared with GoTaq® PCR reagents
(Promega, Madison, WI, USA), and amplification pro-
ducts were QIAquick-purified (Qiagen, Germantown, MD,
USA), ligated into pCR®4-TOPO® sequencing vector
(Invitrogen) and cloned in One Shot® TOP10
Chemically Competent Escherichia coli (Invitrogen).
Inserts in QIAprep-isolated plasmids (Qiagen) were
sequenced by BigDye Terminator dideoxy PCR se-
quencing (Applied Biosystems) and, following purification
with Agencourt® CleanSEQ® magnetic beads (Beckman
Coulter, Brea, CA, USA), reaction products were read
by the DNA Sequence Laboratory at the University of
Wisconsin Biotechnology Center (Madison, WI, USA).
Following RT-PCR confirmation of gene transcription,
RACE-ready cDNA was prepared from TRIzol®-derived
DNA-free total parasite RNA using a SMART™/SMARTer™
RACE cDNA Amplification Kit (Clontech, Mountain
View, CA, USA), and gene-specific cDNA ends were
PCR-amplified using an Advantage® 2 PCR Kit (Clontech).
Amplification products were isolated, cloned and sequenced
as above. Transcript sequences were assembled from
the compiled sequence data and edited using Vector
NTI Advance 11.0 software. The complete coding se-
quences (CDSs) were then verified by RT-PCR amplification
and sequencing (as above) using primers flanking the open
reading frames (ORFs).



Table 2 NCBI accession numbers (number.version) of nucleotide-sugar transporter genes referenced in this study

Source organism
(tree prefix) a

Gene identifier b Nt accession Prot. accession NST Substrate(s) c References

Homo sapiens (Hs) SLC35C1 NM_018389.4 NP_060859.4 GDP-L-Fuc [21,27,28,54]

SLC35B4 NM_032826.4 NP_116215.1 UDP-Xyl, UDP-GlcNAc [55]

SLC35A3/hUGlcNAcT NM_012243.1 NP_036375.1 UDP-GlcNAc [56]

SLC35D2/hUGTrel8/HFRC1 NM_007001.2 NP_008932.2 UDP-Glc, UDP-GlcNAc, GDP-Man [57]

hUGTrel7 AB044343.1 BAB18586.1 UDP-GlcA, UDP-GalNAc [58]

hUGT1 D84454.1 BAA12673.1 UDP-Gal, UDP-GalNAc [59-62]

Canis lupus (Cl) SLC35A3 NM_001003385.1 NP_001003385.1 UDP-GlcNAc [63]

SLC35A2 NM_001003059.2 NP_001003059.2 UDP-Gal [64]

Mus musculus (Mm) Slc35c1 NM_211358.2 NP_997597.1 GDP-L-Fuc [30,65]

Slc35b4 NM_021435.3 NP_067410.1 UDP-Xyl, UDP-GlcNAc [66]

mUGT1 AB027147.1 BAA86885.1 UDP-Gal [67]

Slc35a1 NM_011895.3 NP_036025.2 CMP-Sia [68]

Cricetulus griseus (Cgr) Slc35a1 NM_001246755.1 NM_001246755.1 CMP-Sia [69]

Drosophila melanogaster (Dm) Gfr NM_141525.1 NP_649782.1 GDP-L-Fuc [70,71]

Efr NM_132071.1 NP_572299.1 " " [72]

Frc AB062677.1 BAB62105.1 UDP-GlcA, UDP-GalNAc, UDP-Gal,
UDP-GlcNAc, UDP-Xyl

[73,74]

ugt AB055493.1 BAB62747.1 UDP-Gal, UDP-GalNAc [62,75]

Caenorhabditis elegans (Ce) C50F4.14 AF323969.1 AAK50396.1 GDP-L-Fuc [28]

SQV-7 NM_063035.4 NP_495436.1 UDP-GlcA, UDP-GalNAc, UDP-Gal [76]

Schistosoma mansoni (Sm) GFT GU574756.1 ADO17519.1 GDP-L-Fuc (putative) Present study

Leishmania donovani (Ld) LPG2 U26175.1 AAC46914.1 GDP-Man, GDP-Ara, GDP-Fuc [77]

Cryptococcus neoformans (Cn) GMT1 XM_571496.1 XP_571496.1 GDP-Man [78]

GMT2 XM_571874.1 XP_571874.1 " " " "

Saccharomyces cerevisiae (Sc) YEA4 NM_001178819.1 NP_010912.1 UDP-GlcNAc [79]

Candida albicans (Ca) VRG4 AF164627.1 AAK74075.1 GDP-Man [80]

Candida glabrata (Cgl) Vrg4 AF360395.1 AAK51897.1 GDP-Man [81]

Arabidopsis thaliana (At) GONST1 AJ314836.1 CAC69066.1 GDP-Man [82,83]

GONST2 NM_100603.5 NP_172209.4 " " [83]

AtUTr1 AY115566.1 AAM48281.1 UDP-Gal, UDP-Glc [84]

NST-K1 NM_179196.1 NP_849527.1 UDP-Gal [85]

udpgalt1 AJ633720.1 CAG18176.1 " " [86]

udpgalt2 AJ633721.1 CAG18177.1 " " " "
a “tree prefix” refers to nomenclature applied in phylogenetic analyses of NSTs (Figure 6, in Additional file 3: Figure S2).
b Official gene names/identifiers are provided. Genes in boldface type were used as query sequences to search for GDP-L-fucose transporter homologs in the
SchistoDB [35].
c NST activity has been demonstrated for these substrates. GDP-Fuc, GDP-L-fucose; UDP-Xyl, UDP-D-xylose; UDP-GlcNAc, UDP-D-N-acetylglucosamine; UDP-Glc,
UDP-D-glucose; UDP-GlcA, UDP-D-glucuronic acid; UDP-GalNAc, UDP-D-N-acetylgalactosamine; UDP-Gal, UDP-D-galactose; GDP-Man, GDP-D-mannose; CMP-Sia,
CMP-sialic acid; GDP-Ara, GDP-D-arabinose.
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Phylogenetic analysis of nucleotide-sugar transporters
Representative amino acid sequences of functionally char-
acterized nucleotide-sugar transporters were compiled from
RefSeq and GenBank databases with our data from S.
mansoni (Table 2). Sequences were aligned using default
settings in MUSCLE v 3.6 [88], with subsequent manual
correction in Mesquite [89]. A guide tree was developed
for Bayesian phylogenetic inference using neighbor-joining
methods in FastTree v 2.0.1 [90] with a Jukes-Cantor +
CAT model. Analyses were then performed using mixed
amino acid models within MrBayes v 3.1.2 [91] with two
parallel runs of four Markov chain Monte Carlo (MCMC)
chains, each for five million generations, with subsampling
every 100th generation. To ensure the tree search was not
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trapped at local optima, two independent replicates were
conducted [92]. Stationarity of molecular evolutionary
parameters was assessed at effective sample sizes >400 in
Tracer v1.5 [93]. Additionally, convergence of the MCMC
chains was evaluated using the online program AWTY
[94]. Trees prior to stationarity were burned-in, and
remaining trees were used to assess posterior probabilities
for nodal support.

Real-time quantitative PCR analysis of GMD, GMER, and
GFT mRNA expression in miracidia and primary
sporocysts of S. mansoni
Real-time quantitative (q)PCR protocols used in this study
were performed according to the recommendations by
Applied Biosystems [95], including strict criteria for qPCR
primer design, validation and optimization. Relative
transcript abundance in miracidia and primary sporocysts
was examined using the comparative CT (ΔΔCT) method.
ATP synthase f (herein termed “ATPsf”; SAGE tag 195
corresponding to Smp_140480 in the SchistoDB) and the
GroES chaperonin (SAGE tag 132 corresponding to
Smp_097380) were selected as endogenous calibrators
based on SAGE data [96], which indicate stable expression
between miracidia and primary sporocysts. The com-
patibility of calibrator and gene of interest (GOI)
qPCR primers under normal reaction conditions was
assessed by plotting ΔCT at 10-fold dilutions of cDNA
input and determining the slope of the resultant
semi-log regression line; primer efficiencies were deemed
compatible if the absolute value of the slope was less than
0.1. Validated calibrator and GOI primer sequences are
listed in Additional file 1: Table S1D.
Miracidia and in vitro-cultivated primary sporocysts

were washed with artificial pond water and CBSS,
respectively, followed by extraction of total RNA and
immediate preparation of first-strand cDNA as above. It
should be noted that RNA integrity was not routinely
assessed prior to cDNA synthesis (as per MIQE guidelines
[97]) due to limited raw RNA yields; however, integrity in
select samples was visually inspected via electrophoretic
fractionation. Also, raw and DNA-free RNA concentrations
were estimated using a NanoDrop 1000 Spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA), and only
samples exhibiting A260:A280 and A260:A230 ratios >1.8 were
processed for inclusion in qPCR analyses. Real-time qPCR
reactions (50 μL/rxn) were performed in triplicate using an
ABI 7300 Real-Time PCR System (Applied Biosystems),
with reaction mixtures comprising 1× SYBR Green
PCR Master Mix (Applied Biosystems), 20 ng RNA
input-equivalents of parasite cDNA and gene-specific
primers (100 nM each forward and reverse for GMD,
GMER and GFT; 200 nM each for GroES and ATPsf ).
Cycling parameters included an initial denaturation at 95°C
for 10 min followed by 40 cycles of 95°C for 15 sec and
60°C for 1 min. Amplification fidelity was confirmed
by post-cycling thermal dissociation and agarose gel
fractionation of qPCR products. The geometric mean
of ATPsf and GroES CT values was used to normalize
GOI CT values such that ΔCT = CT-GOI - CT-GeoMean

(ATPsf, GroES), and ΔCT values were compared across
three independent biological replicates using iterative
heteroscedastic two-sample t- and Wilcoxon rank
sum tests, with significance set at p≤0.05 and p=0.10,
respectively. It should be noted that the nonparametric
Wilcoxon rank sum test lacks statistical power when
sample size is low (e.g., n=3) and a p-value of 0.10 is
acceptable in the current analyses.

Expression and purification of recombinant GMD and
GMER for antibody production
Heterologous expression and purification of recombinant
GMD and GMER proteins were performed using the GST
fusion vector pGEX-6P-1 (GE Healthcare, Piscataway,
NJ, USA), which incorporates N-terminal GSTand an inter-
ceding PreScission™ Protease cleavage site, according to rec-
ommendations by Amersham Biosciences (GE Healthcare).
The complete CDSs of GMD and GMER were amplified
from RT-PCR-ready larval cDNA (generated as above)
using 5′-tagged primers designed to incorporate
BamHI or EcoRI restriction sites at the amplicon ends
(GMD, BamHI-forward and EcoRI-reverse; GMER,
BamHI-forward and BamHI-reverse; in Additional file 1:
Table S1E). Reverse transcriptase-PCR reactions (25 μL/rxn)
comprised 2.5 U GoTaq® Flexi DNA Polymerase, 1× Green
GoTaq® Flexi Reaction Buffer, 400 nM each forward and
reverse restriction-tagged primers, 1.6 mM dNTP mix
(400 μM each), 1.5 mM MgCl2 and ~200 ng RNA
input-equivalents of larval cDNA. The thermal profile
included initial denaturation at 94°C for 3 min, 40
cycles of 94°C for 15 sec, 58°C for 30 sec and 72°C
for 2 min, and final extension at 72°C for 10 min.
Following electrophoretic fractionation and ethidium
bromide-meditated visualization in 1% agarose gel,
the tagged amplification products were isolated by
QIAquick gel extraction. To prepare GMD and GMER
expression constructs, stock pGEX-6P-1 vector and
purified restriction-tagged PCR products were digested
with BamHI-HF™ and EcoRI-HF™ (New England
BioLabs, Ipswich, MA, USA) (double digest, GMD)
or with BamHI-HF™ alone (GMER). Double digests
(25 μL/rxn) included 500 U each BamHI-HF™ and
EcoRI-HF™, 1× NEBuffer 4 and ~4 μg pGEX-6P-1
stock vector or restriction-tagged GMD amplicon.
The protocol for single digests of restriction-tagged
GMER and the stock pGEX-6P-1 vector excluded
EcoRI-HF™. In both schemes, reactions were incubated at
37°C for 2 h. To prevent self-ligation, 2 U calf intestinal
alkaline phosphatase (CIP, New England BioLabs) in
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1× NEBuffer 4 was added to the linearized pGEX-6P-1 vec-
tor, and reactions (30 μL total volume) were incubated at
37°C for 1 h. Both CIP-treated pGEX-6P-1 vector and
restriction-digested GMD/GMER amplicon were purified
by electrophoretic fractionation in 1% agarose gel, and the
DNA fragments were isolated by QIAquick gel extraction.
Next, GMD/GMER amplicon and CIP-treated pGEX-6P-1
vector were combined (5:1 cohesive ends ratio) with 2000
U T4 DNA Ligase and 1× T4 DNA Ligase Reaction Buffer
(New England BioLabs), and ligation reactions were
incubated at 22°C for 30 min followed by 65°C for 15 min.
Recombinant plasmids were cloned in One Shot® BL21
(DE3) Chemically Competent E. coli (Invitrogen), and
QIAprep-purified plasmids were sequenced using pGEX 5′
Sequencing Primer 5′-d[GGGCTGGCAAGCCACGTTT
GGTG]-3 and pGEX 3′ Sequencing Primer 5′-d[CCGGG
AGCTGCATGTGTCAGAGG]-3′ (GE Healthcare).
To express GMD and GMER proteins, plasmid-bearing

BL21 cells were grown overnight at 37°C in 2YT medium
(1.6% tryptone, 1.0% yeast extract, 0.5% NaCl) containing
100 μg/mL ampicillin (2YTA). Overnight cultures were
diluted 1:40 with 2.4 L 2YTA (6*400 mL/flask), and cells
were grown at 37°C until A600 reached ~0.6. Then cultures
were induced with 0.1 mM isopropyl β-D-1-thiogalactopy-
ranoside (Sigma-Aldrich, St. Louis, MO, USA) and
incubated overnight (~16 h) at 26°C with shaking at 200
rpm. Cells were pelleted by centrifugation for 10 min at
7000 g and 4°C, after which pellets were freeze-thawed
three times and resuspended in GST-A buffer (20 mM
Tris, 1 M NaCl, 0.2 mM EDTA, 1 mM DTT) containing
1× Protease Inhibitor Cocktail Set III (EMD Chemicals,
Gibbstown, NJ, USA). Cells were disrupted on ice by four
pulses for 25 sec/pulse at output 5 and duty cycle 40%
using an S-450A Branson® Sonifier (Branson Ultrasonics
Corp., Danbury, CT, USA). Triton X-100 (Sigma-Aldrich)
was added to 1.0% final concentration, and homogenates
were gently mixed for 30 min at 4°C. After centrifugation
for 10 min at 12000 g and 4°C to remove cellular debris,
supernatants were filtered with a 0.45 μm Nalgene®
syringe filter (Thermo Fisher Scientific), and the GST
fusion proteins were affinity-purified on 1 mL GSTrap FF
columns (GE Healthcare) using a TRIS™ peristaltic pump
(Teledyne Isco, Lincoln, NE, USA). Columns were primed
with 10 mL phosphate-buffered saline (PBS: 10 mM
Na2HPO4, 1.8 mM KH2PO4, 140 mM NaCl, 2.7 mM
KCl, pH 7.3) at a flow rate of 1.0 mL/min, loaded
with filtered extract at 0.5 mL/min, washed with 10 mL
PBS at 1.0 mL/min, equilibrated with PreScission™
cleavage buffer (PCB: 50 mM Tris–HCl, 150 mM
NaCl, 1 mM EDTA, 1 mM dithiothreitol, pH 7.5) at
1.0 mL/min, incubated 4 h at 4°C with 160 U
PreScission™ Protease in 1 mL PCB and eluted from the
column with 3 mL PCB. Eluates containing cleaved
GMD/GMER were concentrated 10-fold with an Amicon®
Ultra-4 30 kDa MWCO centrifugal filter (Millipore,
Billerica, MA, USA) and fractionated on a preparative
10% polyacrylamide gel (~1-2 mg protein load). Proteins
were visualized with Bio-Safe Coomassie Stain (Bio-Rad
Laboratories, Hercules, CA, USA), and GMD and GMER
bands were excised and stored at −20°C in PBS. Polyclonal
chicken IgY antibodies against gel-isolated GMD and
GMER proteins were commercially produced by GeneTel
Laboratories LLC (Madison, WI, USA).

Antibody purification using blotted recombinant GMD
and GMER proteins
To reduce nonspecific binding and cross-reactivity of
GMD and GMER chicken IgY antibodies, 200 μg puri-
fied GMD/GMER protein was fractionated in 12.5%
polyacrylamide gel and electroblotted for 1.5 h at 100
mA onto 0.2 μm nitrocellulose (Bio-Rad Laboratories)
using a TE 77 Semi-Dry Transfer Unit (Hoefer, San
Francisco, CA, USA). Following transfer, the membrane-
immobilized proteins were visualized with Ponceau S stain
(Sigma-Aldrich), and bands were excised by razorblade.
After destaining, the protein-bearing membrane strips
were blocked overnight at 4°C with 5% nonfat dry milk in
tris-buffered saline (TBS: 20 mM Tris, 150 mM NaCl, pH
7.5), rinsed two times with TBS containing 0.05% Tween®
20 (Thermo Fisher Scientific) (TBST), incubated overnight
at 4°C with 10 mL crude pre-immune or gene-specific
chicken IgY and washed three times with TBST. Finally,
bound antibodies were eluted twice by incubation for 10
min in 5 mL 0.1 M Glycine-HCl (pH 2.7), with eluates
being immediately neutralized with 400 μL 2 M tris
(pH 8.0) followed by dialysis in PBS overnight at 4°C
using a 7K MWCO Pierce Slide-A-Lyzer® Dialysis
Cassette (Thermo Fisher Scientific). This antibody isola-
tion procedure was repeated twice more using the same
antigen-bound strips. Dialyzed eluates were combined and
concentrated ~250-fold with a 9K MWCO Pierce Protein
Concentrator (Thermo Fisher Scientific), and stored for
later use at 4°C in 50% glycerol.

Preparation of cytosolic, membrane/organelle, nuclear
and cytoskeletal protein fractions from larval S. mansoni
Subcellular fractionation of miracidia, primary sporocysts
and mixed-sex adult worms was performed using a
modification of the ProteoExtract® Subcellular Proteome
Extraction Kit (EMD Chemicals) protocol, which was
originally optimized for use with mammalian cell/tissue
samples. Parasites were gently washed four times with
artificial pond water (miracidia), CBSS (sporocysts) or
mammalian PBS (adults), followed by two washes with
Calbiochem® Wash Buffer (kit component). After the final
wash, the parasites were pelleted by centrifugation for 1
min at 300 g and 4°C, resuspended in 1.5 mL Extraction
Buffer I containing 1× protease inhibitor cocktail (PIC)
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(kit components), and gently agitated for 10 min at 4°C on
a LABQUAKE® Rotatory shaker (Barnstead/Thermolyne,
Dubuque, IA, USA). The parasite residua were pelleted
by centrifugation for 10 min at 1100 g and 4°C, and
the supernatant (cytosolic fraction, F1) was transferred to a
clean tube on ice. Residua were then resuspended in 1.5 mL
Extraction Buffer II containing 1× PIC (kit components)
and incubated 30 min at 4°C on the rotary shaker.
Following centrifugation for 10 min at 6500 g and 4°C,
the supernatant (membrane/organelle fraction, F2) was
placed on ice. Parasite residua were resuspended again in
0.75 mL Extraction Buffer III containing 1× PIC and 562.5
U Benzonase® (kit components), and suspensions were
incubated on the rotary shaker for 10 min at 4°C. The
insoluble material was pelleted by centrifugation for
10 min at 8200 g and 4°C, and the supernatant
(nuclear fraction, F3) was set aside on ice. Finally, the
residua were resuspended in 0.75 mL Extraction Buffer IV
containing 1× PIC (kit components) and incubated for 30
min at room temperature on the rotary shaker. Insoluble
cell debris was pelleted for the last time by centrifugation
at 8200 g and room temperature and the final fraction
(cytoskeletal fraction, F4) was set on ice. All frac-
tions were then dialyzed in PBS overnight at 4°C
using 6-8K MWCO D-Tube™ Dialyzers (EMD Chemicals)
and concentrated ~15 fold with a Microcon® YM-10
Centrifugal Filter Device (Millipore).

SDS-PAGE and western blot analyses of schistosome
subcellular protein fractions
Subcellular protein extracts (8.5 μg protein/lane) were
fractionated in 12.5% polyacrylamide gel, and proteins
were electroblotted for 1.5 h at 100 mA onto 0.2 μm
nitrocellulose. Membranes were blocked overnight with
5% milk in TBS at 4°C, incubated 2 h at room temperature
with membrane-purified chicken IgY diluted 1/20 with 5%
milk in TBS, washed three times with TBST (5 min/wash),
treated 2 h with alkaline phosphatase-conjugated rabbit
α-chicken IgY (GeneTel Laboratories LLC) diluted 1/10000
with 5% milk in TBST, washed three more times with TBST
and developed in alkaline phosphatase buffer (100 mM Tris,
100 mM NaCl, 50 mM MgCl2, pH 9.5) containing
5-bromo-4-chloro-3-indoylphosphate p-toluidine salt and
nitro-blue tetrazolium chloride (Thermo Fisher Scientific).

Processing of schistosome larvae for confocal laser
scanning microscopy
Preparation of parasite larvae for confocal laser scanning
microscopy was performed as described by Peterson et al.
[7] with modifications. All in-tube washes and treatments
were performed at 4°C on a rotary shaker, and parasite
larvae were pelleted by centrifugation for 2 min at 300 g
between incubations. Briefly, miracidia and 2- and 10-day
in vitro-cultivated primary sporocysts were washed five
times with artificial pond water (miracidia) or snail PBS
(sPBS: 8.41 mM Na2HPO4, 1.65 mM NaH2PO4·H2O,
45.34 mM NaCl, pH 7.4; sporocysts) and transferred to a
Sigmacote®-treated (Sigma-Aldrich) microfuge tube.
Larvae were simultaneously fixed and permeabilized by
overnight incubation in 4% paraformaldehyde and 1%
Triton X-100 (Sigma-Aldrich) in sPBS (pH 7.2), washed
five times with 2% bovine serum albumin (BSA) and
0.02% azide in sPBS (15 min/wash) and blocked overnight
in sPBS containing 5% BSA and 0.02% azide (blocking
buffer). Blocked larvae were incubated for 3 days in
membrane-purified anti-GMD/GMER antibody concen-
trates diluted 1/100 in blocking buffer containing 0.1%
Tween® 20. Following primary treatment, larvae were
washed six times with 1% BSA, 0.02% azide and
0.1% Tween® 20 in sPBS (wash buffer) (20 min/wash)
and treated overnight with a mixture of Hoechst
33258 dye (50 μg/mL; Invitrogen), Alexa Fluor®546-
conjugated phalloidin (7.5 U/mL; Invitrogen) and
Alexa Fluor®488-conjugated goat anti-chicken IgY
secondary antibody (4 μg/mL, Invitrogen) in blocking
buffer containing 0.1% Tween® 20. Finally, larvae were
washed six times with wash buffer (five 20 min washes,
one overnight wash), mounted in Vectashield® mounting
medium (Vector Laboratories, Burlingame, CA, USA) and
imaged at 600× total magnification under oil immersion
using an A1R confocal microscope (Nikon Instruments
Inc., Melville, NY, USA) equipped with laser lines of
408 nm, 488 nm and 561 nm for the excitation of
Hoechst, Alexa Fluor®488 and Alexa Fluor®546 dyes,
respectively. Confocal fluorescence images were processed
using Adobe Photoshop CS v9.0 (Adobe Systems Inc.,
San Jose, CA, USA), and antibody reactivities were
assessed against secondary-only and membrane-purified
preimmune controls.

Results and discussion
Composition, genomic organization, and splicing of
schistosome GDP-L-fucose synthesis and transport genes
An exhaustive homology-based search of the Schistosoma
mansoni Database (SchistoDB; [35]) using a diversity of
previously characterized GDP-L-fucose synthesis- and
transport-associated enzymes (see Tables 1–2) identified
three homologs in the schistosome genome, herein
termed GMD, GMER and GFT (genes and corresponding
SchistoDB annotations listed in Table 3). GMD and
GMER putatively constitute a complete de novo pathway
for GDP-L-fucose synthesis. No homologs of salvage
pathway-associated genes (Fuk, FPGT, Fkp, FKGP)
were identified, suggesting that GDP-L-fucose synthesis
in S. mansoni occurs only by de novo conversion of GDP-
D-mannose. Unlike Caenorhabditis and Arabidopsis,
which encode multiple paralogs of GMD and GMER
[11,49], only one homolog of each gene occurs in S.



Table 3 Genomic organization of GDP-D-mannose-4,6-dehydratase (GMD), GDP-4-keto-6-deoxy-D-mannose-3,5-epimerase-
4-reductase (GMER) and a GDP-L-fucose transporter (GFT) in Schistosoma mansoni

Gene Gene ID a Scaffold ID a Approx. size (bp) No. of exons ORF length (nt) b Prot. length (aa) b

GMD Smp_153490 Smp_scaff000159 >4,911 10 1,089 363

GMER Smp_104720 Smp_scaff001995 ≥7,696 7 954 318

GFT Smp_155830 Smp_scaff000188 >13,167 11 1,149 383
a Smp gene and scaffold IDs refer to nomenclature in the SchistoDB [35].
b ORF and protein sizes are provided for the main/major transcripts. Alternative splicing may alter ORF length and protein coding.
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mansoni. In addition to known Golgi-associated GFTs,
search queries included the ER-resident transporter Efr,
which imports GDP-L-fucose donor substrates for
consumption by ER-associated protein O-FucTs in
Drosophila. These searches failed to identify a homologous
ER-type GFT in S. mansoni despite the previous finding
that schistosomes express two putative ER-resident protein
O-fucosyltransferases [3]. Notably, Ishikawa et al. [72]
observed that Drosophila Golgi- and ER-resident
GFTs (Gfr and Efr, respectively) function redundantly
in the O-fucosylation of Notch receptor, suggesting
the existence of two pathways for supplying GDP-L-fucose
to ER-resident protein O-FucTs. Therefore, a second,
ER-type GFT may not be necessary for O-fucosylation
in S. mansoni.
To confirm mRNA expression of GMD, GMER and

GFT in S. mansoni and obtain full-length CDSs, transcript
sequences were RT-PCR and RACE-amplified from
miracidial, primary sporocyst and adult worm cDNAs.
Complete nucleotide sequences were submitted to
GenBank at NCBI (accession numbers in Tables 1–2).
While GMD and GMER sequence data generally validate
the corresponding SchistoDB predictions, the data indi-
cate that annotation Smp_155830 erroneously combines a
portion of the GFT CDS with an upsteam gag-pol
polyprotein-coding gene, which comprises ~65% of the
predicted GFT CDS. Mapping sequence data onto the
corresponding SchistoDB-derived genomic scaffolds
demonstrated that schistosome GMD, GMER and
GFT are all multiexonic, with CDSs spanning 10, 6 and 8
exons, respectively (Table 3, Figure 2A).
Alternative splicing was observed for all schistosome

GDP-L-fucose synthesis- and transport-associated genes
(Figure 2B). Because many of these observations were
based on data obtained by RT-PCR and RACE, which
target specific sections of each transcript rather than
complete CDSs, the relationships among alternative splice
events (i.e., whether splice events occur co-dependently in
the formation of particular isoforms) are largely unknown.
Most modes of alternative splicing were observed,
including exon skipping (GMD, GMER and GFT),
intron retention (GMD, GMER and GFT), mutual
exclusion (e.g., exons 1 and 2 of GFT) and use of
alternative splice donor sites (GMD and GMER). An
in silico analysis to determine the consequences of
alternative splicing revealed that many of these events
altered protein coding by introducing a premature
termination codon (PTC), forcing a downstream
frameshift, or effecting an in-frame deletion or addition.
However, additional studies are required to determine the
true biochemical effects of these variations.
In eukaryotes, alternative splicing is often an important

source of phenotypic complexity, which is driven by splice-
mediated expansion of the proteome, posttranscriptional
gene regulation (e.g., introduction of a PTC that leads to
nonsense-mediated decay) and alteration of cis-regulatory
elements that control mRNA translation efficiency, stability
and localization (reviewed by [98]). Additionally, in many
biological systems, alternative splicing is an important
mechanism of modulating physiological activity during
development, differentiation and stress responses, and such
developmentally regulated alternative splicing has been well
documented in S. mansoni (e.g., [99-101]). While a compre-
hensive investigation of splice variation in the context of
parasite development was beyond the scope of the present
study, the data feature multiple examples of variant splice
events that potentially modulate GMD, GMER and GFT
expression. For instance, the observed splice-mediated
introduction of PTCs and frameshifts could target the
affected GMD, GMER and GFT transcripts for nonsense-
mediated decay, and developmental regulation of these
processes could yield stage- and/or tissue-specific
GDP-L-fucose synthesis and transport activities.
Moreover, this could affect FucT activity in the Golgi
and ultimately determine the developmental expression of
fucosylated glycotopes.

In silico characterization of schistosome GMD, GMER,
and GFT
To provide support for their putative roles in GDP-L-fucose
synthesis and transport, the predicted amino acid sequences
of schistosome GMD, GMER and GFT were compared
against previously characterized homologs of other organ-
isms, and proteins were examined for the presence of key
primary sequence elements. GMDs and GMERs of other
organisms are cytosolic soluble enzymes of the short-chain
dehydrogenase/reductase (SDR) gene family and feature a
Rossman dinucleotide-binding domain (reviewed by [9];
also see references in Table 1). Amino acid alignment
of schistosome GMD and GMER to functionally



Figure 2 Genomic organization and splicing of GDP-L-fucose synthesis- and transport-associated genes in Schistosoma mansoni. The
mRNA transcript sequences of GMD, GMER and GFT were mapped onto genomic scaffolds in the SchistoDB [35] (A). Exons (boxes, numbered
below) and introns (connecting lines) are drawn to scale (bar = 1000 nt) with GMD/GMER/GFT-coding elements, including exons and a subset of
retained introns, depicted as black boxes and non-coding exons depicted as gray boxes. Caret marks indicate gaps in the genomic sequence.
Alternative splicing, including exon skipping, intron retention, mutual exclusivity and use of alternate splice donor sites, was observed during
transcript sequencing (B). Bent connectors indicate splicing between exons (boxes, numbered below), with solid lines representing splicing in the
main/major full-length GMD/GMER/GFT-coding transcripts and dotted lines representing alternative splice events. In this panel, exons are drawn
to scale (bar = 1000 nt) and spacing of exons is arbitrary. Interexonic boxes represent retained introns (estimated lengths in parentheses) with
solid outlines signifying retention in the main/major transcript and dotted lines indicating retention in other isoforms. The positions of the
prototypical start and stop codons (AUG and UAA/UAG, respectively) are shown. Colors convey the in silico consequences of splicing: black,
conservation of the prototypical ORF; red, introduction of a PTC; orange, induction of a downstream frameshift; green, in-frame deletion/addition.
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characterized homologs of humans, Mus, Danio,
Drosophila, Caenorhabditis, Mortierella, Arabidopsis
and Bacteroides (listed in Table 1) demonstrated that
both genes are well conserved across taxa (30.2% overall
identity for GMDs, 13.6% for GMERs) (Figures 3 and 4). In
pairwise comparisons, schistosome GMD shares ~53-61%
of its primary sequence with homologs (61.2% identical to
Bacteroides Gmd), while schistosome GMER is ~25-62%
identical to its homologs (61.7% identical to human FX).
Both GMD and GMER alignments demonstrated the pres-
ence of a well-conserved glycine-rich phosphate-binding
loop (GxxGxxG; alignment positions 57–63 in GMD;
positions 23–29 in GMER), which is key to water-
mediated hydrogen bonding between the Rossman
fold of redox-associated enzymes and the pyrophosphate
of dinucleotide enzyme cofactors (e.g., NAD+/NADP+)
[102], and both enzymes feature the catalytically important
SDR-associated [S/T]-Y-K triad (alignment positions 187,
211 and 215 in GMD; positions 126, 155 and 159 in
GMER) [103-105]. Additionally, schistosome GMER
features conserved cysteine and histidine residues
(C-128, H-198) that are thought to be involved in proton
exchange between GMER and its epimerization reaction
intermediates [105]. Finally, analyses using the Simple
Modular Architecture Research Tool (SMART; [106]) and
Phobius transmembrane topology and signal peptide
prediction server [107] demonstrated that schistosome
GMD and GMER lack either a transmembrane domain



Figure 3 Amino acid alignment of GDP-D-mannose-4,6-dehydratases. The predicted amino acid sequence of schistosome GMD (Sm) is
compared to GMDs of humans (Hs), Mus musculus (Mm), Danio rerio (Dr), Drosophila melanogaster (Dm), Caenorhabditis elegans (Ce-1, Ce-2),
Mortierella alpina (Ma), Arabidopsis thaliana (At-1, At-2) and Bacteroides fragilis (Bf) (accession numbers in Table 1). Alignment position is indicated
above each block, and sequence length is reported to the right of each line. Positions exhibiting greater than 80% conservation are highlighted
in gray, and identities are identified in black. A well-conserved glycine-rich phosphate-binding loop (GxxGxxG), which is key to water-mediated
hydrogen bonding between the Rossman folds of redox-associated enzymes and the pyrophosphates of dinucleotide enzyme cofactors (e.g.,
NAD+/NADP+) [102], is underlined. Also, the catalytically important [S/T]-Y-K triad common to members of the SDR family of enzymes is indicated
by asterisks [103,104]. Vector NTI Advance 11.0 software alignment settings: BLOSUM45 matrix, gap opening penalty = 12, gap extension
penalty = 0.1, gap separation penalty range = 0, no residue-specific or hydrophobic residue gaps.
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(TMD) or signal sequence, indicating that both proteins
are likely soluble and cytosolic.
Previous studies have demonstrated that GFTs are

generally Golgi-resident multispan transmembrane
proteins with 10 TMDs [27,28,30,70]. Moreover, these
genes feature a high degree of conservation across
invertebrate and vertebrate taxa. Protein alignments
of schistosome GFT with functionally characterized
orthologs from Caenorhabditis, Drosophila, Mus and
humans (see Table 2) revealed 25.2% overall identity,
with pairwise comparisons indicating that schistosome
GFT shares ~37-41% identity with orthologous GFTs
(Figure 5). A unique feature of the schistosome protein is
its conspicuously long C-terminal tail; however, the



Figure 4 Amino acid alignment of GDP-4-keto-6-deoxy-D-mannose-3,5-epimerase-4-reductases. The predicted amino acid sequence of
schistosome GMER (Sm) is compared to GMERs of humans (Hs), Mus musculus (Mm), Drosophila melanogaster (Dm), Caenorhabditis elegans (Ce),
Mortierella alpina (Ma), Arabidopsis thaliana (At-1, At-2) and Bacteroides fragilis (Bf) (accession numbers in Table 1). Alignment position is indicated
above each block, and sequence length is reported to the right of each line. Positions of identity are indicated in black, and gray-highlighted
positions are greater than 80% conserved among the sampled sequences. A well-conserved glycine-rich phosphate-binding loop (GxxGxxG),
which mediates the binding of dinucleotide cofactors (e.g., NAD+/NADP+) by redox-associated enzymes [102], is underlined. Additionally, the
catalytically important [S/T]-Y-K triad of the short-chain dehydrogenase/reductase-type enzymes is indicated by asterisks (*), and residues thought
to be involved in proton exchange between GMER and its epimerization reaction intermediates are marked with carets (^) [105]. Vector NTI
Advance 11.0 software alignment settings: BLOSUM45 matrix, gap opening penalty = 12, gap extension penalty = 0.1, gap separation penalty
range = 0, no residue-specific or hydrophobic residue gaps.
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significance of this extension remains unknown. An
analysis of membrane topology using the Phobius server
suggested the presence of 10 tightly spaced TMDs,
with both N- and C-terminal tails oriented into the
cytoplasm (in Additional file 2: Figure S1). For comparison,
the positions of the 10 TMDs in known GFTs were also
determined using the Phobius server, and alignment
with schistosome GFT demonstrated that the spacing
of TMDs is roughly conserved across taxa (Figure 5).
Altogether, these data support a role for schistosome
GFT in GDP-L-fucose transport.
Alternative splice isoforms of GFT that exclude exons

7 and 8 (and the intervening intron) encode a truncated
protein featuring 7 TMDs. Importantly, nucleotide-sugar
transporters (NSTs), including the GFTs, are part of a
diverse drug/metabolite transporter superfamily composed
of multispan transmembrane proteins (typically with 4–10
TMDs) that function in drug export, nutrient/metabolite



Figure 5 Amino acid alignment of GDP-L-fucose transporters. The predicted amino acid sequence of schistosome GFT (Sm) is compared to
GFTs of Caenorhabditis elegans (Ce), Drosophila melanogaster (Dm), Mus musculus (Mm) and humans (Hs) (accession numbers in Table 2).
Alignment position is indicated above each block, and sequence length is reported to the right of each line. Positions of identity and positions
exhibiting at least 80% conservation are highlighted in black and gray, respectively. The positions of ten well-conserved TMDs (underlined below
sequences and alignment blocks) were determined using the Phobius transmembrane topology and signal peptide prediction server [107].
Vector NTI Advance 11.0 software alignment settings: BLOSUM45 matrix, gap opening penalty = 12, gap extension penalty = 0.1, gap separation
penalty range = 0, no residue-specific or hydrophobic residue gaps.
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efflux and compartmental metabolite exchange [108,109].
While the observed in-frame deletion of three TMDs likely
abolishes GDP-L-fucose transport activity (given it lacks
definitive primary sequence characteristics), the truncated
GFT could retain its function as an NST (but with altered
substrate specificity) or adopt a new class of metabolite
transport function altogether. Future studies should assess
the biochemical significance of this truncation.
The above topological analyses employed several

transmembrane prediction tools (e.g., TMHMM 2.0 and
TMpred [110,111]), but Phobius was the only one that
predicted all 10 TMDs in most genes. Only TMD 9
of the human GFT was undetected using this method.
Lubke et al. [27] reported similar difficulty in demonstrating
this same TMD, which they attributed to its unusually high
hydrophilicity. In general, in silico predictions of NST
membrane topology are inherently difficult because current
algorithms do not account for the relative thinness of the
Golgi membrane (~20% thinner) and thus fail to recognize
the concomitantly short TMDs of Golgi-resident
transmembrane proteins such as NSTs [112]. In fact,
at a typical length of 17–22 aa, the TMDs of Golgi
proteins are on average five aa shorter than those of
plasma membrane-associated proteins [113-115].
Phylogenetic analysis of nucleotide-sugar transporters
Primary sequence identity alone cannot reliably predict
substrate specificity among NST genes [54,112]. NSTs
can share as much as 50-60% of their primary sequences
and exhibit different substrate specificities while proteins
that are only 20% identical can transport the same
nucleotide-sugar substrates [63]. However, previous
studies have demonstrated that phylogenetic analyses
can separate NSTs into functional groups [108,116]. To
refine the predicted substrate specificity of schistosome
GFT and better understand the structure-function
relationship between GFTs and other NSTs, we conducted
a phylogenetic analysis of schistosome GFT and a function-
ally diverse sampling of previously characterized NSTs. The
topology of the resultant phylogeny is consistent with
observations by Martinez-Duncker et al. [108]: the
current repertoire of NSTs can be divided into three main
families/groups (NST families 1–3), which form separate
monophyletic clades (Figure 6; see in Additional file 3:
Figure S2 for a rooted tree demonstrating the three NST
families). Consistent with the notion that closely related
NSTs can be functionally divergent, all three families
include members with aberrant substrate specificities.
While structure-function relationships in families 1 and 2



Figure 6 Phylogenetic tree of nucleotide-sugar transporters. The amino acid sequences of previously characterized NSTs and putative GFT of
Schistosoma mansoni (RefSeq/GenBank accession numbers in Table 2) were included in a phylogeny annotated with substrate specificity data.
Posterior probabilities are indicated at each node, and genetic divergence (substitutions per site) is represented by the scale bar. Family 3 NSTs
[108], which include transporters of GDP-L-fucose, are labeled on the right. To demonstrate the topology of NST families 1 and 2, these data
are also presented as a rooted tree in (Additional file 3: Figure S2). UDP-Xyl, UDP-D-xylose; UDP-GlcNAc, UDP-D-N-acetylglucosamine; UDP-Glc,
UDP-D-glucose; UDP-GlcA, UDP-D-glucuronic acid; UDP-GalNAc, UDP-D-N-acetylgalactosamine; UDP-Gal, UDP-D-galactose; GDP-Fuc, GDP-L-fucose;
GDP-Man, GDP-D-mannose; GDP-Ara, GDP-D-arabinose; CMP-Sia, CMP-sialic acid
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remain somewhat unclear, NST family 3 can be broken
down into four daughter clades (corresponding to subfam-
ilies J-M in [108]) that correspond to substrate specificity.
Subfamily J includes NSTs exhibiting multispecific UDP-
sugar transport activities, while subfamilies K, J and M fea-
ture NSTs having relatively narrow substrate specificities
(GDP-D-mannose, UDP-D-galactose or GDP-L-fucose,
respectively). Of the 18 previously characterized family 3
NSTs examined here, only LPG2 of Leishmania donovani
features uncharacteristic activity for its clade, transporting
GDP-L-fucose and GDP-D-arabinose in addition to GDP-
D-mannose. Schistosome GFT forms a monophyletic clade
with known Golgi-resident GFTs, supporting a predicted
role in GDP-L-fucose transport. Notably, Drosophila Efr,
which delivers GDP-L-fucose to the ER, clusters with NST
family 2. This is consistent with other NST family 2 trans-
porters that function in the ER and not the Golgi. Indeed,
Martinez-Duncker et al. [108] reported that 54% of NST
family 2 members feature a C-terminal di-lysine (KKxx)
ER-retention/retrieval signal, and one such signal (KKVE) is
present in Drosophila Efr. In contrast, similar ER-retention
/retrieval signals do not exist in schistosome GFT or any of
the family 3 NSTs examined here.

GMD, GMER and GFT mRNA expression in miracidia and
primary sporocysts of S. mansoni
Given recent data demonstrating the abundant expression
of fucosylated glycotopes in snail-associated schistosome
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larvae [7,117] and their predicted immunomodulatory roles
in snail hosts, GMD, GMER, and GFT steady-state tran-
script levels were assayed by qPCR in miracidia and 2- and
10-day in vitro-cultivated primary sporocysts. The results
indicate that all three genes are differentially expressed
during the miracidium-to-primary sporocyst transform-
ation and subsequent cultivation (Figure 7). In conjunction
with larval transformation, GMER and GFT transcript
levels declined 48% and 31%, respectively, after two days in
culture, while GMD expression remained unchanged.
During subsequent in vitro cultivation of primary
sporocysts (up to 10 days), GMD transcript abundance
climbed ~4-fold while expression of GMER and GFT stayed
the same. These results are somewhat confounding since
GMD and GMER constitute a single biosynthetic pathway.
For comparison, the S. mansoni Serial Analysis of Gene

Expression (SAGE) Database [96] was examined for rele-
vant SAGE tags, and tags 7188 and 10882 corresponding to
GMD and GMER, respectively, were identified. Consistent
with the present study, the SAGE data indicate that GMD
transcript abundance increases ~3-fold from miracidia to
6-day primary sporocysts while the GMER-specific tag
10882 was not detected in either larval stage. Interestingly,
Figure 7 GDP-L-fucose synthesis- and transport-associated gene
transcription in larvae of Schistosoma mansoni. Real-time qPCR was
used to examine GMD, GMER and GFT transcription in miracidia (Mir)
and 2- and 10-day in vitro-cultivated primary sporocysts (2dS and 10dS,
respectively). Transcript abundances in primary sporocysts were
compared to miracidia (arbitrarily set at 1), and data were analyzed
across three biological replicates using heteroscedastic two-sample
t- and Wilcoxon rank sum tests, with significance set at p≤0.05
(indicated by *) and p=0.10 (indicated by †), respectively.
both genes exhibited peak expression in 20-day primary
sporocysts, suggesting that GDP-L-fucose synthesis poten-
tially increases in older larvae. GFT transcript expression
(as indicated by tag 4514) followed a similar profile, with
relatively low transcript levels in miracidia and 6-day
primary sporocysts and peak expression after 20 days in
culture. In the present study, if sporocyst cultivation times
had been longer, the expression of all three genes may have
peaked similarly in older larvae (i.e., >10 days in culture).
The GMDs in bacteria participate in several overlapping

synthetic pathways, with reaction intermediates being
converted to GDP-L-fucose, GDP-D-rhamnose or
GDP-D-talose by GMER, GDP-6-deoxy-d-lyxo-hexos-
4-ulose-4-reductase (RMD) and GDP-6-deoxy-D-talose
synthetase (GTS), respectively (reviewed in [118]).
Additionally, GMDs of Paramecium bursaria, Chlorella
virus 1 and some bacteria (e.g., Pseudomonas aeruginosa)
are bifunctional, having the added ability to catalyze the
same stereospecific reduction as RMD. A similar, still
unknown dual functionality or involvement in other bio-
chemical pathways in schistosomes could explain why the
observed GMD and GMER expression profiles vary inde-
pendently; however, participation of GMD in GDP-D-rham-
nose or GDP-D-talose biosynthesis in particular is unlikely
because rhamnose and talose, as well as homologs of RMD
and GTS, are not observed in S. mansoni.

Recombinant GMD and GMER protein expression,
purification, and antibody production
To facilitate analyses of protein expression in larval S.
mansoni, GMD and GMER were heterologously expressed
and purified, and the recombinant proteins were used to
raise GMD- and GMER-specific chicken IgY antibodies
(in Additional file 4: Figure S3A-B). To assess specificity,
antibodies were tested against blotted crude parasite
extracts and pure GMD and GMER recombinant antigens.
Initially, immunoblots revealed unacceptable levels of
crossreactivity (especially between anti-GMD IgY and
recombinant GMER; in Additional file 4: Figure S3C), so
antibodies were further purified by membrane adsorption
against the purified antigens. Subsequent immunoblots
demonstrated that antigen specificities of both IgY
preparations were greatly improved, showing essentially
monospecific reactivities (in Additional file 4: Figure S3D).
Membrane-isolated antibodies were used in downstream
immunoblot and microscopic analyses.

Characterization of GMD and GMER protein expression in
miracidia and primary sporocysts of S. mansoni
Multiple attempts were made to demonstrate the presence
of GMD and GMER in crude adult and larval extracts using
western blotting, but only faint bands were produced
(Peterson, unpublished data). To enhance detection of
GMD and GMER in western blot analyses and concurrently
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demonstrate their cytosolic localization, 2-day primary spo-
rocysts were serially extracted using a ProteoExtract®
Subcellular Proteome Extraction Kit, yielding enriched
cytosolic, membrane, nuclear, and cytoskeletal protein
fractions. While application of the ProteoExtract® kit for
subcellular fractionation of whole schistosome larvae has
yet to be experimentally validated regarding the fidelity of
differential extraction, Coomassie-stained gels clearly
demonstrated compositional differences in the resultant
protein fractions and fractionation successfully facilitated
Figure 8 GMD and GMER protein expression in larval and adult Schist
(see in Additional file 4: Figure S3) were used in western blot analyses of 2-day
enriched fractions were examined: (F1) cytosol, (F2) membrane/membrane orga
GMD and GMER only in the cytosolic fraction. Next, cytosolic fractions were use
miracidia and 2- and 10-day in vitro-cultivated primary sporocysts (B). In both ex
detection of GMD and GMER in subsequent immunoblots
(Figure 8A). Consistent with their expected roles in
cytosolic GDP-L-fucose synthesis, immunoblots revealed
the presence of GMD and GMER only in the presumptive
cytosolic fraction (bands at 38 and 35 kDa, respectively).
In a comparison of cytosolic extracts from miracidia

and 2- and 10-day primary sporocysts, GMD and GMER
proteins appear to be stably expressed during larval
transformation and subsequent in vitro cultivation
(Figure 8B). This result seemingly contradicts qPCR and
osoma mansoni. Membrane-purified chicken IgY antibodies
in vitro-cultivated primary sporocyst subcellular protein extracts (A). Four
nelle, (F3) nucleus, and (F4) cytoskeleton. Blots indicate the presence of
d to compare GMD and GMER protein expression among mixed-sex adults,
periments, total protein was visualized in-gel by Coomassie staining.
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SAGE data described above, which indicate stage-specific
differences in GMD and GMER transcript levels among
snail-associated larvae. One possible explanation for the
apparent discrepancy between transcript and protein
abundances is the inability of qPCR and SAGE
approaches to adequately differentiate between “functional”
GMD/GMER-coding transcripts and variants that are
pretranslationally targeted for nonsense-mediated decay or
are translated to truncated proteins not detected by
the above methods. For example, while GMD gene
transcription appears to increase ~4-fold in 10-day
in vitro-cultivated primary sporocysts, the absolute
abundance of “functional” GMD-coding transcripts might
remain unchanged, thus resulting in no detectable
alteration in protein expression. Additionally, protein
turnover rates may be sufficiently low to permit persistence
and stable detection regardless of declining transcript
abundance (e.g., GMER). Lastly, it should be noted that
colorimetric precipitation-mediated detection of immuno-
reactive proteins is perhaps inadequate for the demonstra-
tion of relatively minor differences in protein abundance
and application of more quantitative detection methods
(e.g., fluorescence) might have revealed low-level stage-
specific variations in GMD and GMER expression that
mirror the observed changes in gene transcription.
Immunoblots also examined GMD and GMER

expression in mixed-sex adult worms (Figure 8B). Cyto-
solic extracts were seemingly devoid of immunoreactive
GMD, suggesting differential expression between adults
Figure 9 Localization of de novo GDP-L-fucose synthesis in miracidia
scanning microscopy was used to assess the localization of schistosome GMD
sporocysts. Fixed and permeabilized larvae were immunostained with membra
(rows 2 and 4, respectively), and antibody reactivities were assessed relative to
eluates (rows 1 and 3). Panels include paired micrographs depicting GMD/GME
(e.g., muscles, flame cells; red) and DNA (e.g., nuclei; blue). Approximate scale is
and larvae. Additionally, adult extracts featured two anti-
GMER IgY-reactive bands, one corresponding to GMER
and a second at ~42 kDa. The added band potentially
represents the translated product of an adult-specific
alternative splice isoform; however, none of the observed
variants can account for the increased protein size.
Alternatively, the band is an artifact of antibody
crossreactivity. That adult worms apparently lack GMD
while expressing one or more GMER isoforms is
confounding, given their roles in the same biosynthetic
pathway. One possible explanation is that GMER or an
alternative protein isoform has an unknown role in a
separate pathway, which drives its expression independent
of GMD.
Finally, the membrane-purified antibodies were employed

in confocal laser scanning microscopy to demonstrate the
tissue localization of GMD and GMER proteins in miracidia
and 2- and 10-day primary sporocysts (Figure 9). Both
proteins were observed predominantly in the ciliated
epidermal plates and tegument of miracidia and sporocysts,
respectively, while antibodies exhibited at least minor
reactivities in internal somatic tissues. Similar patterns
of expression in schistosome larvae were observed for
several prominent fucosylated glycotopes, including Fucα1-
3GalNAcβ1-4GlcNAc (F-LDN) and Fucα1-3GalNAcβ1
-4(Fucα1-3)GlcNAc (F-LDN-F) [7]. Importantly, co-
localization of schistosome GMD and GMER implies the
presence of a complete de novo pathway for GDP-L-fucose
synthesis, and further supports their roles in fucosylation.
and primary sporocysts of Schistosoma mansoni. Confocal laser
and GMER in miracidia and 2- and 10-day in vitro-cultivated primary
ne-purified chicken IgY raised against schistosome GMD and GMER
control larvae incubated with membrane-adsorbed pre-immune
R expression (green) alone and merged with counterstained actin
represented in the lower right corner (bar = 50 μm).
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Conclusions
The present study used a genome-wide homology based
bioinformatics approach to identify GDP-L-fucose
synthesis- and transport-associated genes in the human
blood fluke Schistosoma mansoni. The above data indicate
that GDP-L-fucose in S. mansoni is generated in the cytosol
by a de novo synthetic pathway comprising GMD and
GMER enzymes, after which the resulting activated fucose
is imported into the Golgi by the multispan transmembrane
protein GFT. Importantly, these enzymes represent a
bottleneck in the fucosylation process since GDP-L-fucose
is the sole nucleotide-sugar donor utilized by Golgi- and
ER-resident FucTs. This research has provided a necessary
foundation for future investigations that further
explore the role of GDP-L-fucose synthesis and transport
in schistosome development and immunobiology.
Additionally, the genes identified in this study are poten-
tial targets for the development of novel anti-schistosomal
chemotherapeutics.
Additional files

Additional file 1: Table S1. This PDF document contains Additional file
1: Table S1, which lists the oligonucleotide primers used for RT-PCR,
RACE, qPCR and protein expression in this study.

Additional file 2: Figure S1. This TIF document contains Additional file
2: Figure S1, which features the results of an in silico analysis of GFT
membrane topology. Transmembrane domains were identified in the
schistosome GFT protein using the Phobius transmembrane topology
and signal peptide prediction server [107]. The Phobius output suggested
10 TMDs, a number that is consistent with GDP-L-fucose transporters of
other organisms [27,28,30,70] (also see Figure 5) (A). A model based on
this output was constructed, portraying the arrangement of the 10 TMDs
(numbers indicating the amino acid boundaries of each TMD) as well as
the most likely orientation for schistosome GMD within the Golgi
membrane (B).

Additional file 3: Figure S2. This TIF document contains Additional file 3:
Figure S2, which features a rooted phylogenetic tree of nucleotide-sugar
transporters (see Figure 6 for detailed unrooted tree). The amino acid
sequences of NSTs with previously characterized substrate specificities were
obtained from RefSeq and GenBank databases at NCBI (accession numbers in
Table 2). A tree was constructed using Bayesian methods implemented in
MrBayes v3.12 with mixed amino acid evolutionary models. Monophyletic
clades representing NST families 1–3 [108] are indicated, and genetic
divergence (substitutions per site) is represented by the scale. The tree is
rooted on NST family 2.

Additional file 4: Figure S3. This TIF document contains Additional file 4:
Figure S3, which describes heterologous expression and isolation of
recombinant schistosome GMD and GMER proteins and downstream affinity
purification of GMD- and GMER-specific polyclonal chicken IgY. GST-GMD
and -GMER fusion constructs were created in pGEX-6P-1 vector, and the
encoded proteins were expressed in E. coli. Fusion protein expression in
induced (Ind) and uninduced (Un) cultures was compared by SDS-PAGE
fractionation and Coomassie staining of soluble cellular extracts (A). Fusion
protein-containing extracts were passed through a GST-affinity column,
and bound GMD and GMER were eluted by PreScission™ Protease-mediated
cleavage of the GST fusions. Eluates were then analyzed by SDS-PAGE
fractionation and Coomassie staining (B). Polyclonal chicken IgY
antibodies were raised against recombinant GMD and GMER proteins,
and the resultant antibodies were tested by immunoblotting the
pure recombinant antigens (C). Due to crossreactivity among the
antibodies and antigens (especially between anti-GMD IgY and
recombinant GMER), antibodies were affinity-purified by membrane
adsorption using bound GMD and GMER antigen. Following elution,
antibody preparations were again tested against blots of pure
antigen, demonstrating greatly reduced crossreactivity (D).
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