
Received: 25 January 2018 | Revised: 1 December 2018 | Accepted: 24 January 2019

DOI: 10.1002/rob.21863

F I E L D R E POR T

Overview obstacle maps for obstacle‐aware navigation
of autonomous drones

Jesús Pestana1 | Michael Maurer1 | Daniel Muschick2 | Manuel Hofer1 |
Friedrich Fraundorfer1

1Institute for Computer Graphics and Vision

(ICG), Graz University of Technology

(TU Graz), Graz, Austria

2BIOENERGY2020+ GmbH, Graz, Austria

Correspondence

Jesús Pestana, Institute for Computer

Graphics and Vision (ICG), Graz University of

Technology (TU Graz), Inffeldgasse 16/II,

8010 Graz, Austria.

Email: pestana@icg.tugraz.at

Funding information

Österreichische

Forschungsförderungsgesellschaft, Grant/

Award Numbers: Bridge1 project 843450,

FreeLine (2014‐2016); Austrian Science Fund

I‐1537, Grant/Award Numbers: V‐MAV:

Cooperative micro aerial vehicles, I‐1537;
OMICRON electronics GmbH

Abstract

Achieving the autonomous deployment of aerial robots in unknown outdoor environ-

ments using only onboard computation is a challenging task. In this study, we have

developed a solution to demonstrate the feasibility of autonomously deploying drones in

unknown outdoor environments, with the main capability of providing an obstacle map of

the area of interest in a short period of time. We focus on use cases where no obstacle

maps are available beforehand, for instance, in search and rescue scenarios, and on

increasing the autonomy of drones in such situations. Our vision‐based mapping approach

consists of two separate steps. First, the drone performs an overview flight at a safe

altitude acquiring overlapping nadir images, while creating a high‐quality sparse map of

the environment by using a state‐of‐the‐art photogrammetry method. Second, this map is

georeferenced, densified by fitting a mesh model and converted into an Octomap obstacle

map, which can be continuously updated while performing a task of interest near the

ground or in the vicinity of objects. The generation of the overview obstacle map is

performed in almost real time on the onboard computer of the drone, a map of size

×100 m 75 m is created in ≈2.75 min, therefore, with enough time remaining for the

drone to execute other tasks inside the area of interest during the same flight.

We evaluate quantitatively the accuracy of the acquired map and the characteristics of

the planned trajectories. We further demonstrate experimentally the safe navigation of

the drone in an area mapped with our proposed approach.

K E YWORD S

aerial robotics, computer vision, mapping, planning

1 | INTRODUCTION

The utilization of drone technology in civilian applications is being limited

by the requirement for drone operations to have a human pilot to ensure

collision avoidance at all times. From a technical standpoint, first, most

drones are not equipped with obstacle‐sensing technologies. And second,

drone‐automated flight tends to make strong assumptions about the

absence of obstacles along the flight route, for instance, during the

takeoff and landing operations and more generally when flying close to

the ground, buildings, and trees; hence, the requirement in practice for a

pilot to ensure obstacle avoidance during flight. These are currently

limiting factors for the automated operation of drones in promising high‐
value operations, such as infrastructure inspection and package delivery.

In addition, due to this current lack of automatic obstacle avoidance

© 2019 The Authors. Journal of Field Robotics Published by Wiley Periodicals, Inc.

J Field Robotics. 2019;36:734–762.734 | wileyonlinelibrary.com/journal/rob

- -
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

http://orcid.org/0000-0002-0093-3092

capabilities, setting up a fully automated flight in environments from

which the operator has limited information, for instance, for search and

rescue and disaster relief operations, is not feasible.

Early works on this topic motivated by the International Aerial

Robotics Competition (IARC) Missions 3 and 4 (AUVSI Association,

2018) running, respectively, on years 1998–2000 and 2001–2008

showed promising results using unmanned helicopters and computer

vision. In Mission 3, the aerial robot had to detect and avoid obstacles,

identify survivors, and recognize drum containers. The winning team

from the Technical University of Berlin (Kondak & Remuß, 2007; Musial,

Brandenburg, & Hommel, 2000) was able to perform the target

identification and localization tasks; however, their helicopter did not fly

near the debris, but rather flew high over the area (Greer, McKerrow, &

Abrantes, 2002). In Mission 4, the aerial robot had to identify a

particular building and deploy a rover to accomplish a task inside it. A

team of the Georgia Institute of Technology won this challenge

(Johnson, Mooney, & Christophersen, 2013; Rooz et al., 2009) by

completing the entire mission. Working in topics that relate to our

presented work, the same team also developed a helicopter system able

to fly over an area and acquire an accurate three‐dimensional (3D)

reconstruction using a pan‐tilt‐mounted laser range finder (LADAR or

LIDAR) and explored the 3D obstacle avoidance problem in simulation

(Geyer & Johnson, 2006). A comparison of the 3D reconstructions

obtained by performing an overview flight and acquiring and processing

data from either a LIDAR or a camera is discussed on the work by

Leberl et al. (2010). The IARC Mission 5 (2009) proposed the challenge

of autonomously exploring an indoor area with tight spaces while

searching for a target object on a wall. Mission 5 was fully accomplished

using a quadrotor drone and a low‐weight LIDAR and a stereo camera

system as main sensors by a team from the Massachusetts Institute of

Technology (MIT; Bachrach, Prentice, He, & Roy, 2011). The same

authors demonstrated similar capabilities using only LIDAR and a

smaller drone platform in their work (Bachrach, He, & Roy, 2009).

As these early works show, the fast deployment of autonomous

drones in unknown outdoor environments is since several years an

ongoing research problem. In this study, some of the main challenges

related to this topic are tackled, namely the acquisition of a good‐quality
obstacle map and the calculation of trajectories that allow fast

navigation in the area of interest. Our presented approach uses only

onboard computation power, and as a result, the drone does not need

to transfer data to a ground‐station via a wireless communication link.

Our vision‐based mapping approach consists of two separate steps.

First, the drone performs an overview flight at a safe altitude acquiring

overlapping downward‐looking images, while creating a high‐quality
map of the environment by using a state‐of‐the‐art photogrammetry

method, the online Structure from Motion (SfM) pipeline (Hoppe et al.,

2012; Rumpler et al., 2016). Second, this map is georeferenced and

converted into an Octomap, see Figure 1, which is used as an initial

overview obstacle map that can be updated during the rest of the flight

while performing a task of interest near the ground. The generation of

the overview obstacle map is performed in a few minutes on the drone

onboard computer, and thus, with enough time remaining for the drone

(Figure 2) to execute other tasks inside the area of interest during the

same flight.

Our trajectory planning approach is designed to provide smooth

trajectories away from obstacles. We have tested our navigation and

trajectory planning algorithms, experimentally utilizing an obstacle

map obtained using our mapping method. The aim of the experiment

is to demonstrate the feasibility of autonomously deploying drones in

unknown outdoor environments.

F IGURE 1 Obstacle map of an outdoor environment of size 105m× 75m generated from 56 images, with 12m high buildings and up to

14m high trees, generated using our method explained in Section 3.1. The obstacle map is displayed color‐coded according to the height and
has a minimum voxel resolution of 1m. On the left, “Google Earth ©2015,” an overview image of the area is shown, where the target
50m× 50m region of interest is located around the parking lot and a red contour denotes the effectively mapped area. The onboard processing

time for the creation of this obstacle map was ≈2.75 min. Man‐made obstacles, such as buildings and cars, and big trees are quite well
reconstructed and included in the obstacle map. However, small trees are often not correctly mapped and need to be sensed later on during
lower altitude flight. For this purpose, our drone, see Figure 2, is equipped with several stereo‐heads that can acquire point‐clouds of trees along
with unmapped and dynamic obstacles during flight, which can be used to update the map [Color figure can be viewed at wileyonlinelibrary.com]

PESTANA ET AL. | 735

The concept of overview obstacle maps and the presented solution

for drone deployment were inspired by the objectives of the 2016 DJI

Developer Challenge.1 This competition consisted of a search and rescue

mission, in which the drone needed to explore a designated area

searching for survivors. Our team, the Graz Griffins, took part in this

challenge and was among the few participants that qualified to

participate in the finals, where we demonstrated our solution at work.

The outline of this study is the following. The related work and

our contributions are discussed in Section 2. The algorithms utilized

for the realization of this study are described in Sections 3 and 4: the

mapping approach in Sections 3.1 and 3.2, the navigation control in

Section 4.1, and our trajectory planning solution in Section 4.2. The

experiments are described and discussed in Section 5 with: the

evaluation of the trajectory planner in Section 5.2, a qualitative and

quantitative evaluation of the capabilities of our overview obstacle

maps in Section 5.3, and an experimental flight showcasing

performance of our system in a map acquired using our proposed

approach in Section 5.4. Sections 6 and 7 contain the conclusions and

a discussion about possibilities for future work.

2 | STATE OF THE ART

Generating maps of areas of medium size in real‐time onboard a drone

or leveraging offboard computing resources is a challenging task, and

much research has been dedicated to it with varying degrees of success.

The swarm of micro flying robots (SFLY) project (http://www.sfly.org/)

(Scaramuzza et al., 2014) developed several novel algorithms for drones.

A real‐time loosely coupled visual‐inertial odometry (VIO) framework,

by Weiss, Achtelik, Lynen, Chli, and Siegwart (2012), was developed

based on a modified version of parallel tracking and mapping (PTAM)

(Klein & Murray, 2009) improved for onboard execution and on a

computationally fast estimation algorithm used as a fall‐back method

fusing the inertial measurement unit (IMU) readings with optical flow,

thus only requiring a minimal amount of feature correspondences in

consecutive frames. Using this, efficient version of PTAM (Weiss,

Achtelik, Kneip, Scaramuzza, & Siegwart, 2011) showed an effective

terrain exploration technique for micro‐aerial vehicles (MAVs) that

generate, in real time in a ground‐station, a textured 3D mesh by means

of a Delaunay triangulation (Labatut, Pons, & Keriven, 2007), which

supports the drone operator in understanding the MAV’s environment.

Several research works have focused on the creation of maps that

can be later reused by the drone to localize in real time during an

autonomous flight. Surber, Teixeira, and Chli (2017) use the VIO

algorithm open keyframe-based visual-inertial SLAM (OKVIS) (Leuteneg-

ger et al., 2013, 2015) to acquire a map of an area during a manual flight,

and later reuse this map to reduce the UAV’s dependency on global

positioning system (GPS) and evaluated their system against ground‐truth
position data acquired with a Leica Total Station. Recently, researchers

from the ETH Zürich have released a visual‐inertial mapping framework

to process and produce multisession maps (T. Schneider et al., 2018),

which uses robust visual inertial odometry (ROVIO) (Bloesch, Omari,

Hutter, & Siegwart, 2015) as the VIO front‐end, and has been used to

achieve autonomous drone flight (Burri, Oleynikova, Achtelik, & Siegwart,

2015). In Burri et al. (2015), the full bundle adjustment (BA) result and

the obstacle map are generated after a manual flight and are later used in

autonomous flights achieving precise indoor localization, navigation, and

obstacle avoidance. The known state‐of‐the‐art visual SLAM frameworks

ORB‐simultaneous localization and mapping (SLAM) (Mur‐Artal, Montiel,

& Tardós, 2015) and ORB‐SLAM2 (Mur‐Artal & Tardós, 2017) also

provide the capability of reusing a map acquired during a previous session

or experiment. In Qiu, Liu, and Shen (2017), the authors propose the

usage of mesh models obtained using well‐accepted off‐line SfM

algorithms (Triggs, McLauchlan, Hartley, & Fitzgibbon, 1999) to substitute

the usage of GPS. To achieve the vision‐based localization against the

model, the authors propose an edge alignment scheme for the current

image against a virtual image extracted from the model that is used as a

reference or keyframe. A visual odometry framework (Schenk &

Fraundorfer, 2017) using a similar algorithm for RGB‐D sensors provides

a better evaluation on the approach and produces estimates with a drift

accumulation on par with state‐of‐the‐art visual odometry (VO) methods.

Achieving dense mapping onboard a drone is very challenging due

to the limited computational capabilities of their onboard computers.

Several methods have been proposed that are too computation

intensive and require powerful graphics processing units (GPUs), but

the achieved levels of detail, and thus, the high quality of their dense

maps would be extremely desirable for navigating drones. Examples

of such dense‐reconstruction algorithms are the following: KinectFu-

sion (Newcombe, Izadi, et al., 2011), ElasticFusion (Whelan, Leute-

negger, Salas‐Moreno, Glocker, & Davison, 2015, 2016), MonoFusion

(Pradeep et al., 2013), and dense tracking and mapping (DTAM;

Newcombe, Lovegrove, & Davison, 2011), or the similar approach by

Stühmer, Gumhold, and Cremers (2010). There is, thus, interest in the

community in developing algorithms with better computational

efficiency and accuracy trade‐off that could be executed onboard

drones. Heng, Lee, Fraundorfer, and Pollefeys (2011) propose a

F IGURE 2 Hardware setup: DJI M100 drone, autopilot, GPS,
gimbal camera, DJI Guidance system with five stereo camera heads,
and a Nvidia Jetson TK1 onboard computer. GPS: global positioning

system; GPU: graphics processing unit [Color figure can be viewed at
wileyonlinelibrary.com]

1https://developer.dji.com/challenge2016/

736 | PESTANA ET AL.

http://www.sfly.org/

method to generate a real‐time dense‐reconstruction offboard while

guiding the drone by means of onboard VO. A framework to assist a

surveyor while acquiring an SfM data set was proposed by Hoppe

et al. (2012), an offboard calculated color‐coded mesh model is

displayed in real time for the purpose of providing the surveyor with

feedback about the local quality of the reconstruction. Wendel,

Maurer, Graber, Pock, and Bischof (2012) utilize the drone onboard

PTAM‐based calculated poses in an offboard server to produce a life

dense 3D reconstruction that is displayed in real time on a tablet. The

dense monocular 3D reconstruction algorithm regularized monocular

depth estimation (REMODE) (Pizzoli, Forster, & Scaramuzza, 2014)

measures depth against a reference view and performs uncertainty‐
dependent point‐cloud smoothing achieving real‐time execution

using CUDA (https://en.wikipedia.org/wiki/CUDA) by combining an

algorithm to generate dense point‐clouds using patch‐level or per‐
pixel Bayesian depth estimation using a parametric model (Vogiatzis

& Hernández, 2011) and the fast state‐of‐the‐art visual odometry

method semidirect visual odometry (SVO; Forster, Pizzoli, &

Scaramuzza, 2014). REMODE has since been utilized on data

acquired with drones to generate dense depth maps in real time

for various research projects: creating medium‐sized maps in an

offboard ground‐station by streaming the acquired data (Faessler

et al., 2016), the creation of dense maps onboard (Forster, Faessler,

Fontana, Werlberger, & Scaramuzza, 2015) by restricting their size to

a relatively small 2.5D fixed‐size grid‐map around the robot

(Fankhauser, Bloesch, Gehring, Hutter, & Siegwart, 2014), and the

feasibility of sharing the 2.5D map acquired by the drone to guide a

ground robot. Regarding the latter and still using REMODE, a mobile

robot plans and executes trajectories in rough terrain in a small area

mapped by a drone (Delmerico, Mueggler, Nitsch, & Scaramuzza,

2017), by training a terrain classifier on‐the‐fly (Delmerico, Giusti,

Mueggler, Gambardella, & Scaramuzza, 2016), and a legged robot and

the drone achieve localization on the same global coordinate frame in

Käslin et al. (2016). In Lynen et al. (2015), an efficient indexed

nearest‐neighbor search to achieve image‐based relocalization on a

prebuilt map is proposed, where the map is obtained using standard

SfM techniques with its scale recovered using IMU data and the

recursive nonlinear filtering approach OKVIS (Agarwal et al., 2012;

Leutenegger et al., 2013, 2015), and a VIO method for local pose

tracking inspired on the multi-state constraint kalman filter (MSCKF)

(Mourikis et al., 2009) is used. Using OKVIS (Leutenegger et al., 2013,

2015) as VIO front‐end, the research work (Oleynikova, Burri, Lynen,

& Siegwart, 2015) also proposes a method to localize a drone and a

ground robot on the same map by means of a previously acquired

reference map. Recently, a drone dense‐reconstruction (Karrer,

Kamel, Siegwart, & Chli, 2016) data set has been released, which

focuses on small working areas and producing precise 3D dense

models for the purpose of object manipulation, in which ground‐truth
position data acquired with a Leica Total Station are available.

The system developed by J. Schneider et al. (2016) creates a

relatively dense georeferenced point‐cloud of very high accuracy while

localizing the drone in real time at 100Hz using only onboard

computation on a 3.6GHz Intel CPU (Santa Clara, CA) with 4 cores.

Another possibility to create dense reconstructions is using VO

semidense methods, which extract the depth of high‐gradient regions

of the scene, such as large‐scale direct LSD‐SLAM (Engel, Schöps, &

Cremers, 2014), Direct Sparse Odometry (DSO; Engel, Koltun, &

Cremers, 2018), or semidense mapping (SDM; Mur‐Artal & Tardós,

2015). However, these methods are not well suited for this purpose

because their depth estimates are not filtered or optimized for dense

mapping. The direct tracking and mapping method dense piecewise‐
planar tracking and mapping (DPPTAM; Concha & Civera, 2015) achieve

good results by including piecewise‐planar surfaces in the model, but the

computation requirement is too high for direct onboard execution. The

method by Teixeira and Chli (2016) is extremely fast but the produced

mesh results include strong interpolations causing error in sharp‐edges,
such as corners. A later method from the same authors (Teixeira & Chli,

2017) uses large-scale direct monocular SLAM (LSD-SLAM), super‐pixels,
and filtering that eliminates most depth outlier estimates, and it achieves

very competitive runtimes on an Intel‐i7 4700MQ/Intel‐i7 5557U/Intel

NUC processor (Intel Corporation (Intel), Santa Clara, CA) that can be

mounted onboard drones.

The trajectory planner presented in this study was designed using

methods from the state of the art to deliver long and smooth

trajectories on our overview obstacle maps and it is presented as a

component of the developed system. The reader is here directed to

work in the field of fast trajectory replanning that would allow the

drone to explore unknown cluttered environments while flying near

the obstacles. These types of planners are able to regenerate an

obstacle‐free smooth trajectory at a high rate, for instance, the

following recent works make computation efficiency improvements

by using operations in an OcTree data structure (Chen, Liu, & Shen,

2016), a local multiresolution discretization (Nieuwenhuisen &

Behnke, 2016), and local replanners (Oleynikova et al., 2016; Usenko,

vonStumberg, Pangercic, & Cremers, 2017).

In this study, we propose a method to create an overview

obstacle map of a desired outdoor area onboard the drone. The

success of our approach is a direct consequence of utilizing a survey

flight trajectory that provides an image data set of a large area with

high and approximately constant image overlap resulting in a very

well constrained BA problem. This choice reduces the size of the

optimization problem, for which the associated Hessian matrix has a

known structure (Triggs et al., 1999), and keeps it at an onboard

computationally manageable size. The resulting sparse 3D model is

meshed to generate an obstacle map by using a Delaunay

triangulation (Labatut et al., 2007). Although our approach comes

at the cost of only mapping the obstacles that are well represented

by the sparse SfM model, consisting of 3D points and lines, our

densification operation is computationally very efficient. When

compared with related work, our approach presents several

novelties.

In comparison to previous work that re‐utilizes a map acquired on an

earlier session for navigation (e.g., Burri et al., 2015; Qiu et al., 2017; T.

Schneider et al., 2018), our solution allows the acquisition of a moderately

sized obstacle map onboard the drone, which we demonstrate for maps

of size 100m× 75m that are created in ≈ 2.75 min, allowing the drone

PESTANA ET AL. | 737

https://en.wikipedia.org/wiki/CUDA

to perform a near‐ground navigation task on the same flight. Because the

creation of our sparse 3D model is incremental, the mapping operation

can be stopped at any time resulting in a smaller mapped area and a

shorter map creation time. Similarly, in comparison to the discussed

onboard dense‐reconstruction methods, our maps cover much bigger

areas than the onboard solutions from the related work (e.g., Forster

et al., 2015; Teixeira & Chli, 2017). Accuracy evaluation of our obstacle

map is performed to provide a basis for the comparison of our obstacle

map to that of other methods. Here, it is noted that in some works (e.g., J.

Schneider et al., 2016), the accuracy is evaluated based on the distance of

the mapped points to the ground‐truth point‐cloud rather than the other

way around, which is not as informative for the purpose of using the 3D

reconstruction as an obstacle map.

Similarly to Weiss et al. (2011), we densify the sparse model

representation into an obstacle map by fitting a mesh model by using a

Delaunay triangulation (Labatut et al., 2007), which is computationally

very efficient. In comparison to the work by Weiss et al. (2011), we use

(a) a conventional photogrammetry pipeline that reconstructs points and

lines rather than an efficient version of PTAM and (b) a survey flight

trajectory for the image acquisition, which together should result in a

more accurate mesh model. In addition, our experiments provide new

insights on the usage of the Delaunay triangulation from a sparse SfM

model to create an obstacle map by (a) providing an accuracy evaluation

of the generated mesh models using as ground‐truth dense point‐clouds
obtained using a photogrammetry method and (b) demonstrating the

usage of the calculated overview obstacle map for autonomous

navigation.

In a nutshell, the main contributions of this study are as follows:

• We propose the concept of overview obstacle map generation for

the fast deployment of drones in unknown outdoor environments.

A short survey flight provides the data for the vision‐based
incremental generation of the obstacle map onboard and leaves

enough time to directly exploit the created map for near‐ground
navigation.

• An accurate** evaluation of the generated obstacle map is

presented in Section 5.3.

• We demonstrate the potential of our solution by performing

autonomous obstacle‐free navigation on a map acquired using our

proposed method.

3 | OVERVIEW OBSTACLE MAP
GENERATION

The calculation of the overview map is performed using an SfM

algorithm. This choice allows us to use a minimal set of sensors

commonly available on drones: a GPS sensor, used for scaling and

georeferenciation, and a standard camera. In comparison to visual‐
inertial approaches, we forgo the intersensor calibration of the camera

with respect to the IMU sensor and the time synchronization of the data

from both sensors, which could be achieved, for instance, using the

Kalibr open‐source library from Furgale, Rehder, and Siegwart (2013).

Additionally, SfM algorithms do not require a high frame rate and work

well with still images, so that they can be used without a navigation

computer vision camera. These characteristics allow the use of our

solution in a broad range of commercially available drones.

3.1 | Online SfM

The multirotor autonomously performs an overview flight at a safe

high altitude over the region of interest. This region is defined by its

GPS corner points. The drone takes off and ascends to a safe height,

approaches the region of interest, and plans and executes a regular

survey flight trajectory according to a desired image overlap setting.

The set of acquired overlapping nadir images is used to generate a

sparse 3D map enhanced with line features on‐the‐fly. Simulta-

neously, a 3D mesh representing the surface model is fitted to the

sparse model and at the end of the survey flight, it is rasterized to

obtain the overview obstacle map.

The utilized online SfM pipeline, developed at our institute,2 was

first proposed by Hoppe et al. (2012), and it is very runtime efficient.

The task of the online SfM is to reconstruct the scene 3D points and

simultaneously calculate the camera poses against the calculated sparse

point‐cloud. The pipeline is based on a precalibrated camera model that

we obtained with the method of Daftry, Maurer, Wendel, and Bischof

(2013) and utilizes scale invariant feature transform (SIFT) features

(Lowe, 2004; Wu, 2007) to be able to handle imagery with large

baselines. The sparse model is initialized from the first two images, for

which a valid relative pose estimate can be computed by using the

robust version of the five‐point pose estimation algorithm (Nistér,

2004). Afterward, the absolute pose estimation method by Kneip,

Scaramuzza, and Siegwart (2011) is used to align the incoming images to

the current sparse 3D reconstruction in real time. Meanwhile, iterative

bundle adjustment (Triggs et al., 1999) is performed in a parallel thread

to prevent the scene drift likely to be caused by the incremental map

building procedure. Using an incremental and real‐time version of

Line3D+ + (Hofer, Maurer, & Bischof, 2017), a set of 3D lines is

calculated from the aligned images.

The sparse 3D model, thus, consists of a point‐cloud, a set of line

segments and the camera pose. The calculated set of 3D lines is

sampled so as to add points and information for the calculation of the

surface model. In addition, the lines enhance the interpretability of

the visualization of the sparse 3D map, especially for man‐made

structures and line‐rich regions.

Following the method (Rumpler et al., 2014, 2016), the GPS

measurements and the camera poses of the sparse model are aligned

by means of a robust random sample consensus (RANSAC)‐based least‐
squares minimization of the distance between both sets of locations. This

effectively provides the correct scale, rotation, and relative translation for

the sparse 3D map. A better georeferenciation could be obtained by

placing georeferenced fiducial markers on site; however, in this study, we

forgo the use of markers so as to maintain our approach suitable for

search and rescue scenarios.

2http://icg.tugraz.at/—Institute of Computer Graphics and Vision, Graz University of

Technology.

738 | PESTANA ET AL.

In addition to the sparse 3D map, the pipeline also creates a

surface model on‐the‐fly (Hoppe, Klopschitz, Donoser, & Bischof,

2013). The current implementation uses the approach by Labatut

et al. (2007), rather than the approach outlined in Hoppe et al.’s

(2013) work. This model is directly converted into an Octomap

(Hornung, Wurm, Bennewitz, Stachniss, & Burgard, 2013) obstacle

map representation by direct point‐sampling of the triangle mesh.

The obtained Octomap can be updated in real time and is utilized by

our trajectory planner during flight.

Because all these map representations of the environment are

georeferenced, the drone can be localized in the map, with up to GPS

precision, by simply using its internal GPS + IMU fusion provided by

the autopilot board. Further, georeferenciation enables us to, first,

add GPS‐defined no‐fly zones. And, second, it allows one to show the

geolocation of objects of interest detected during flight.

The experimental setup for the onboard real‐time execution of

our mapping software is the following. The image stream from the

Zenmuse X3 Gimbal (SZ DJI Technology Co., Ltd. (DJI), Shenzhen,

Guangdong, China) (resolution of 1,280 × 720 pixels) is fully

processed onboard our drone. This is made possible by leveraging

the GPU of the onboard computer, an Nvidia Jetson TK1

development board, to extract image features using SiftGPU

(Wu, 2007). The Online SfM pipeline is able to process one image

every 3.0 s during flight experiments, or one image every 1.5 s

when only processing a data set. A region of interest of size

50 m× 50 m with a final map size of up to around 105 m× 75 m (at

ground‐level) is mapped onboard in ≈ 2.75 min (Figure 1). This

processing time includes: the overview flight, the acquisition of

images, the generation of the sparse 3D model, the 3D mesh

generation, the georeferenciation, and the conversion to the

obstacle map representation (Figure 3).

3.2 | Obstacle map representation

We use the Octomap (Hornung et al., 2013) obstacle map

representation for this purpose, which is an OcTree‐based volumetric

map representation (Figure 1, right). Its implementation is open‐
source3 and it is integrated to be easily used with the Robot

Operating System (ROS)4. We selected it for various reasons: It is

memory and runtime efficient and achieves real‐time execution

onboard and it can represent general‐shaped obstacles. In our

approach, the obstacle map is obtained from a single mesh model, for

which Octomap is a good fit. In contrast, methods based on creating

the surface model using Truncated Signed Distance Fields (TSDFs),

such as Voxblox (Oleynikova, Taylor, Fehr, Siegwart, & Nieto, 2017),

are better suited to be used with depth sensors, such as RGB‐D and

stereo cameras.

To accelerate the calculation of obstacle‐free trajectories, we use

a precalculated distance map that provides the clearance of any point

in free space to its closest obstacle. An efficient implementation of

such an algorithm for Octomap was developed by Lau, Sprunk, and

Burgard (2013) and released open‐source as a library named

“DynamicEDT3D: A library for Incrementally Updatable Euclidean

distance transforms in 3D’5. Its main advantages are featuring

constant access‐time, because its internal data structure storing the

distance map is an array, and being capable of time‐efficient
incremental updates.

For the specific case of our drone, see Figure 2, the point‐
clouds provided by our stereo‐heads are of low resolution

(320 × 240 pixels). For this reason, during flight, we are able to

apply fast incremental updates to both, the obstacle map and the

distance map, by using their native Application Programming

Interfaces (API). We have tested the runtime of this operation on

data sets and for an Octomap with a minimum voxel resolution of

1 m, the updates can be applied onboard in real time, at a

frequency higher than 1 Hz.

4 | NAVIGATION USING THE OVERVIEW
OBSTACLE MAP

The navigation controller design and tuning is explained in Section

4.1. To achieve safe near‐ground navigation in cluttered environ-

ments, we implemented a trajectory planner (see Section 4.2) that

generates trajectories at a configurable clearance distance from

obstacles.

F IGURE 3 Successive steps undertaken to generate an obstacle map of size ×105 m 75 m, see explanation in Section 3.1: autonomous
overview flight at a safe altitude over the ×50 m 50 m area of interest, generation of the sparse model using our incremental SfM pipeline,

generating a dense surface model from the sparse one, conversion to Octomap by direct sampling of the surface model and successive updates
during flight at low altitude by processing the stereo‐head data streams. The Octomaps are displayed color‐coded according to the height and
have a minimum voxel resolution of 1m [Color figure can be viewed at wileyonlinelibrary.com]

3https://github.com/OctoMap/octomap

4http://wiki.ros.org/octomap/_mapping

5The code is available inside the Octomap source‐code repository.

PESTANA ET AL. | 739

4.1 | Navigation control

4.1.1 | System identification

The flight behavior of our drone was characterized by performing

speed command step response identification tests. Based on our

experimental data and understanding of the system, the dynamical

behavior from velocity command to the velocity output is assumed to

be described by a transfer function

() ≔
()

()
=

+
−P s

v s
v s

e
V

Ts 1
,sT

c

d (1)

where s is the Laplace variable and ()P s maps the Laplace transform

()v s of ()v t , the actual speed of the drone, to the Laplace transform

()v sc of ()v tc , the speed command. The parameters of our model are:

V , the static gain; Td, a pure delay; and T , the time constant.

A rough controller parameter tuning was calculated based on the

resulting model and later experimentally improved.

4.1.2 | Feedforward control

The mathematical model for the dynamics from velocity command to

real velocity can be used to determine a feedforward control action.

This action takes knowledge about the future development of the

desired velocity into account and would thus, in the absence of errors,

lead to the drone following the desired trajectory exactly. Because all

axes are considered separately, the following section restricts itself to

the x‐axis; all other axes can be handled in the same way.

Assuming that the desired trajectory ()x td is given by a smooth

mathematical function. Then, the value of the desired position xd and

all of its derivatives ̇ ̇= =x v x v, ¨x xd ,d d ,d, and so forth are known at

each time instant t . For our dynamics model of the drone, the

transfer function (1), the feedforward control command is

() = ˙ (+) + (+)v t
T
V

v t T
V

v t T
1

,c,ff d d d d (2)

that is, we need to look “into the future” by Td seconds and have

knowledge about the desired acceleration and velocity. In the

absence of modeling errors and flight disturbances, this command

would lead to the drone following the desired trajectory exactly, that

is, () ≡ ()v t v td .

4.1.3 | Feedback control

The feedforward control law alone does not guarantee that the drone

will actually follow the trajectory in a real setting, even if the initial

position matches the beginning of the trajectory exactly. We utilize a

feedback loop controller, similar to the PID controller architecture,

for the three linear coordinates and the yaw heading and utilizing

both position and speed measurement feedback and references. The

utilized measurement feedbacks are the position, ()x t , and velocity,

˙ ()x t , from the internal GPS + IMU fusion provided by the autopilot

board. An example speed command, vc, for the autopilot over one of

the coordinate axes is

̇ ̇() = [() − ()] + [() − ()]v t K x t x t K x t x t ,c,fb p d d d (3)

where Kp and Kd are the controller tuning parameters and

{ () ˙ () () = ˙ ()}x t x t x t v t, , ¨d d d d is the reference trajectory.

4.1.4 | Overall control

Sections 4.1.2 and 4.1.3 are combined in a single control law,

resulting in the following equation for each of our coordi-

nate axes:

̇

̇ ̇

() = () + () = (+) + (+)

+ [() − ()] + [() − ()]

v t v t v t x t T x t T

K x t x t K x t x t

¨

.

T
V Vc c,ff c,fb d d

1
d d

d d p d

(4)

In our experiments, the measurement feedback utilized by the

controller are the position, ()x t , and velocity, ˙ ()x t , from the

GPS + IMU fusion provided by the autopilot board.

The reference smooth trajectory is calculated in two steps. First,

a trajectory specified through waypoints, and accompanying speed

and acceleration plans are obtained using the speed planner

explained in Section 4.2. And, second, a third‐order spline is fitted

to the set of waypoints, times of passage, speeds, and accelerations.

The resulting spline is the reference smooth trajectory for the

controller, specified in Equation (4) as { () ˙ () ()}x t x t x t, , ¨d d d .

4.2 | Trajectory planning

The purpose of our trajectory planner is to allow fast and safe

navigation along long trajectories in cluttered environments. The

calculated path should, therefore, be smooth and keep clear of

obstacles. Whenever a new goal position is received, a new path is

delivered to the controller. Similar to the approach proposed by

Richter, Bry, and Roy (2013), we use the differential flatness of the

quadrotor dynamics (Mellinger & Kumar, 2011) to plan a smooth

trajectory in 3D position coordinates without directly considering the

system dynamics, and perform the following calculations separately:

obstacle‐free path planning and subsequent generation of a smooth,

continuous, and differentiable trajectory path.

Our method proceeds as follows (Figure 4):

1. Calculate a path using a state‐of‐the‐art trajectory planner that

minimizes a cost function, which penalizes proximity to obstacles,

unnecessary changes in altitude and length.

2. Limiting the increase on the path cost, the raw output path from

the planning algorithm is consecutively shortened into a smooth

trajectory.

3. Taking into account the path curvature and parameters that fix

the maximum values for the velocity and acceleration, feasible

740 | PESTANA ET AL.

time‐of‐passage over the waypoints, speed, and acceleration plans

are calculated.

4. The resulting path, speed, acceleration, and timing information

are used to fit a spline that is then used as trajectory reference

and for the calculation of feedforward control commands by the

navigation controller, see Section 4.1.

In the rest of this section, the intermediary steps of our trajectory

planning approach are explained.

4.2.1 | Obstacle‐free path planning

The search for an obstacle‐free path is performed in 3D space

without considering the attitude of the drone, which is set later by

the acceleration plan based on the differential flatness property of

the quadrotor dynamics (Mellinger & Kumar, 2011). The trajectory

queries are from the current pose estimate, as a starting point, to the

goal position.

A cost function is evaluated over candidate paths, see

Equations (5)–(10), and is utilized to guide the search of the

optimal path using a state‐of‐the‐art trajectory planning method.

We have tested our approach using two different state‐of‐the‐art
trajectory planning algorithms: the Probabilistic RoadMap (PRM;

Kavraki, Svestka, Latombe, & Overmars, 1996) based algorithm

*PRM (PRMStar; Karaman & Frazzoli, 2011) and the Rapidly

exploring Random Tree (RRT; Lavalle, 1998) based algorithm *RRT

(RRTStar; Karaman & Frazzoli, 2011) from the open motion

planning library (OMPL) library (Şucan, Moll, & Kavraki, 2012).

Calculating the distance from multiple points of the trajectory to

obstacles represents a computation bottleneck for any trajectory

planning method. For this reason, we utilize the distance map

library “DynamicEDT3D” proposed by Lau et al. (2013) in our

implementation to accelerate the retrieval of the obstacle clearance,

which is defined as the distance from a point to its closest obstacle,

and for collision checking related calculations.

At this point, the trajectory is defined as a sequence of states,

∈si
3, joined by straight path segments, li . The path cost function,

cpath, is the sum of its corresponding state, ()c sistate , and segment,

()c lisegment , costs. The segment cost is evaluated as the curvilinear

integral of a cost per unit length function evaluated by sampling

points over the segment, ∈x 3. Our cost penalizes length, proximity

to obstacles and changes in the altitude of the trajectory. The path

cost, cpath, is calculated as follows, see Equations (5)–(10):

∑ ∑= () + ()
∈ ∈

c c s c l ,
s S

i
l L

ipath state segment

i i

(5)

() = () =c s c x 0,istate state (6)

∫() = { () + () +

()} ∣ ∣

c l K c K c

K c dl

x x

x ,

i
l

c a

l

segment clearance altitude

length

i

(7)

() = { + (− ()∕)}c K d dx x1 1 ,cclearance 2 clearance max
4 (8)

() = ∣ ()∣c ux x ,zaltitude (9)

() =c x 1,length (10)

where K K K, ,c c a2 , and Kl are tuning constants that set the relative

strength of each cost contribution, dmax is the maximum clearance

distance at which the distance map is saturated, ()d xclearance is

the value of the clearance provided by the distance map at ()ux x, z

is the z component of the unitary vector along the path at x. In this

study, the X and Y world axes are horizontal, and the Z‐axis is

vertical and pointing upward. To prevent the planning algorithm from

providing trajectories that traverse through obstacles, the clearance

term, ()c xclearance , introduces a cost of infinity when inside obstacles,

that is, when ()d xclearance is 0.

The cost tuning constants are selected to achieve the following

behavior. The trajectory is preferred to, in this order: not be

unnecessarily near obstacles, not have unnecessary changes in

altitude, and be as short as possible. The resulting trajectory is,

rather than the global optimum, the feasible path of minimum cost, as

defined by Equations (5)–(10), among those explored by the

trajectory planning routine during a preset amount of time.

4.2.2 | Trajectory shortening and smoothing

The resulting raw path from the prior step usually presents sharp

angles at many waypoints. Therefore, in this step, the path is

modified by performing a sequence of obstacle‐aware shortening and

smoothing operations. The blind application of these operations

would result in a path, which would pass too near obstacles,

corresponding to a numerically high cost for the smoothed path in

comparison to the raw path.

F IGURE 4 Synthetic outdoor Octomap environment of size
50m× 50m× 48m. A 43.61‐m long planned trajectory obtained
with our approach is shown. The path output of a state‐of‐the‐art
planning algorithm (red) is consecutively shortened (green–
blue–orange–white), resulting in the smoothed trajectory shown in
white, which is further used to calculate a speed plan

(semitransparent lines) and fit a spline that is used by the controller
as trajectory reference. From the initial planning through all
consecutive shortening operations, the trajectory optimizes an

obstacle‐clearance metric, resulting in trajectories that provide a
safe distance to nearby obstacles [Color figure can be viewed at
wileyonlinelibrary.com]

PESTANA ET AL. | 741

To avoid this, some increase in the path cost is allowed, but it is

constrained to a fraction of the raw path cost. In this manner, the

above‐mentioned sought qualities of the raw path are kept in the

smoothed path. The shortening and the smoothing are the result of

applying subsequent suboperations iteratively, for which a cost increase

can be calculated individually. Therefore, the performed path simplifica-

tions are all cost‐aware, that is, a shortening or smoothing suboperation

is only accepted when its corresponding cost increase, measured by

means of Equations (5)–(10), is below a threshold.

The performed suboperations are the following (Figure 4):

1. Reduce the number of vertices that are present in the current path:

Interim waypoints are removed if the trajectory is still collision‐free
and until the total cost does not increase more than 10%.

2. Collapse waypoints that are too near each other, an overall

allowed cost increase of 10%.

3. Shortcut the path, an allowed cost increase of 10%: Not only

waypoints are considered for the path length reduction, but also

inner points of the path segments.

4. Smooth the path using the B‐spline algorithm with an allowed cost

increase of 15%: New waypoints are sampled making the path

rounder around sharp corners.

5. New waypoints are sampled in the current trajectory segments,

and others are reduced to achieve segment lengths inside an

acceptable predefined range, an allowed cost increase of 10%.

The resulting smooth path sets the final position coordinates for all

the waypoints. In the next step, only the dynamic information of the

trajectory, for example, speed and times of passage, is calculated.

4.2.3 | Speed, acceleration, and time‐of‐passage
planning

We are interested in being able to explicitly set maximum speed and

acceleration constraints. Our approach achieves this by taking

inspiration in the work of Hoffmann, Waslander, and Tomlin (2008)

and making improvements to it, so as to produce a smoother speed

plan, for example, with more continuous acceleration derivatives.

The main configuration parameters of the algorithm consist of

the maximum upward, downward, and horizontal velocities and

accelerations, { }, , , ,v v v a a a, , , , ,z z z zmax h max up max, ,down max h max, ,up max, ,down .

These parameters define the velocity saturation constraints as the

ellipsoids ((+)/) + (/) =,v v v v v 1x y z z
2 2

max h
2 2

max, ,up
2 and ((+)/v vx y

2 2) +vmax,h
2

(/) =, ,v v 1z z
2

max down
2 . The acceleration constraints are similarly de-

fined. In Algorithms 1 and 2, the maximum values for the speed and

the acceleration provided by the four ellipsoids are retrieved by the

functions Velocity_Max_Direction(d, config) and Acceleration_Max_-

Direction(d, config).

The desired speed for the trajectory is set at every point to the

minimum of the following two values: (a) the maximum configured

velocity, Velocity_Max_Direction(…), and (b) the maximum attainable

velocity as limited by the radius of curvature and the maximum

acceleration, = ⋅v a ri n imax, max, , where =a nmax, Acceleration_

Max_Direction (*)n , configi , with *ni being the estimated normal

vector to the trajectory at waypoint[i]. Then, the desired initial and

the final velocities are set, being usually both set to zero.

The generation of the speed plan entails the following steps:

1. The tangent, normal and binormal vectors are estimated at each

waypoint. Afterward, with this information, the position of the

center and the radius of curvature are calculated by estimating the

circumference that approximates each waypoint[i] and its neighbors.

To perform this calculation, each point[i] and a sampling of its

immediate neighbors along the path are projected into the plane

formed by the current estimate of the normal and tangent vectors;

and a system of equations is solved to determine the parameters of

the said circumference. The radius of curvature at each waypoint

and new estimates for the tangent and normal vectors are retrieved

based on the solution to the system of equations.

2. A first speed plan is calculated that complies with the acceleration

constraints. For this purpose, the algorithm Velocity_Plan_S-

weep_Double_Pass(…) that was originally proposed by Hoffmann

et al. (2008) is used with only minor modifications, see Algorithms

1 and 2. In this algorithm, the equations relating, for every section

of the trajectory, to path segment lengths, velocities, and

accelerations correspond with those of linear uniformly acceler-

ated motion. The modifications to this algorithm are: (a) see line 3

of Algorithm 2, saturating for both normal and tangential

accelerations and (b) allowing the saturation of velocities and

accelerations differently depending on the direction. A compar-

ison between the smoothed and nonsmoothed speed plans is done

in Section 5.2.1.

Algorithm 1 Velocity_Plan_Sweep_Double_Pass ({ *}s r t v, , ,i i desired,

config)

1: =v vplan desired

2: ←v vinit desired,1

3: ←v v Nend desired,

4: { { *} } ∕*s r t v vflip , , , , :i i desired plan the flip function flips, or interchanges,

the elements of each vector, so that they are timewise reversed */

5: = (−)⋅s s1

6: { Δ }=,v a t, ,plan at plan plan Velocity_Plan_Sweep

({ *}) ∕*v s v r t, , , , ,config ;i iend plan see Algorithm 2 */

7: flip{ { *} }s r t v v, , , ,i i desired plan

8: = (−)⋅s s1

9: { Δ }=,v a t, ,plan at plan plan

Velocity_Plan_Sweep ({ *})v s v r t, , , , ,configi iinit plan

10: return{ Δ } ∕*,v a t, , ;plan at plan plan note that the cross‐track

acceleration is = [∕]*∕, v ra i ict plan plan,
2

742 | PESTANA ET AL.

Algorithm 2 Velocity_Plan_Sweep({ *}v s v r t, , , , , configi iinit)

1: ←v v1 init

2: for =i 1 to N do

3: = (*) −a tAcceleration_Max_Direction ,configi
v

rmax
i

i

2

;

4: ← ()
− (̄)

(−)

+

+
a amin ,i

v v

s sat, max 2
i i

i i

2
1

2

1

5: if >a 0iat, then

6: ← − (−)+ +v v a s s2i i i i i1
2

at, 1

7: Δ ←
− + − (−)+

ti
v v a s s

a

2i i i i i

i

2
at, 1

at,

8: else

9: if > ̄+v vi i 1 then

10: ← ̄+ +v vi i1 1

11: ←
−

(−)

+

+
a i

v v

s sat, 2
i i

i i

2
1

2

1

12: Δ ←
− + − (−)+

ti
v v a s s

a

2i i i i i

i

2
at, 1

at,

13: else

14: ←+v vi i1

15: ←a 0iat,

16: Δ ←
(−)+ti
s s

v
i i

i

1

17: end if

18: end if

19: end for

20: return { = Δ },v v a t, ,plan at plan plan ; // note that the cross‐track

acceleration is = [∕], v ra i ict plan plan,
2

3. The output speed plan, vplan, of the Velocity_Plan_Sweep_Dou-

ble_Pass(…) function, Algorithm 1, complies with the configured

velocity and acceleration constraints, considering both normal

and along‐track accelerations. However, it often provides a bang–

bang solution that proposes maximum acceleration values with

opposite signs at certain consecutive waypoints of the path. For

this reason, in the next step and in contrast to Hoffmann et al.

(2008), we propose an iterative speed plan smoothing algorithm

that results in a continuous acceleration plan with a feasible

derivative. The velocity smoothing operation is summarized in

Algorithm 3 and it consists of the following steps:

(a) Using the current velocity plan as a data term, a new velocity

plan is calculated applying a smoothing spline‐type optimization,

see a related chapter of the book (James, Witten, Hastie, &

Tibshirani, 2013). This corresponds to minimizing the following

cost function, see Equations (11) and (12), by using the

Gauss–Newton least‐squares minimization (Triggs et al.,

1999), note that 1 and N are the indexes of the initial and

end velocities:

λ

λ

λ

∫

∫

∑(Δ = Δ) =
⎡

⎣
⎢ (−)

⎤

⎦
⎥

+ ⎡

⎣⎢
() ⎤

⎦⎥

+ ⎡

⎣⎢
() ⎤

⎦⎥

=

= −

f v v

d v
dt

dt

d v
dt

dt

v v t t, ,

,

i

i N

i i

t

t

t

t

old plan 1

2

1

,old
2

2

2

2
2

3

3

3
2

N

N

1

1

(11)

λ

λ

λ ()

∑

∑

∑

⎜

=
⎡

⎣
⎢ (−)

⎤

⎦
⎥

+
⎡

⎣
⎢

⎧

⎨
⎩

⎛

⎝

−

Δ
) Δ

⎫

⎬
⎭

⎤

⎦
⎥

+
⎡

⎣
⎢
⎢

⎧

⎨
⎩

−

Δ
Δ

⎫

⎬
⎭

⎤

⎦
⎥
⎥

Δ

=
Δ + Δ

Δ =
Δ + Δ + Δ

=

= −

=

= −
+

=

= −
+

Δ
Δ

+
Δ

+ +

v v

a a

t
t

T T

t
t

t

t t
t

t t t

,

where

2
and

2

4
.

i

i N

i i

i

i N
i i

T
T

i

i N
i i

T i
T i

T

i i
T i

i i i

1

2

1

,old
2

2

1

2
at, 1 at, 2

3

1

3
at, 1 at,

,

2

,

1
,

2 1

i
i

i

at,
at,

at,

(12)

In these equations,

i. a iat, , along‐track acceleration at waypoint i ,

=
−

Δ
+a

v v
t

,i
i i

i
at,

1 (13)

ii. T iat, , derivative of the along‐track acceleration at waypoint i,

()(
=

−)

Δ
=

−

Δ

+

−

Δ

−

Δ
+ +

+

+

T
a a

t t
.i

i i

T

v v
t

v v
t

T
at,

at, 1 at,

i

i i

i

i i

i

iat,

2 1

1

1

at,

(14)

The similarity of the smoothing cost function to the one minimized by a

smoothing spline is shown in Equation (11), see related chapter of the

book (James et al., 2013). The expression is first developed using

the intermediary variables a iat, and T iat, resulting in Equation (12), and for

the optimization, it is further developed to depend only on the speed plan

using Equations (13) and (14). The data term, the old velocity plan vold,

and the time intervals between waypoints, Δ = Δt tplan, are held constant

during each smoothing spline optimization iteration. The optimization is

performed using the Gauss–Newton least‐squares, where only the

current velocity plan is considered as an optimization variable v. The

initial, v1, and end, vN, velocities are kept constant, and therefore, not

optimized. The parameters λ λ λ{ }, ,1 2 3 are weights adjusting the strength

of each type of optimization residual: λ1 regulates the strength of the

data term, λ2 regulates the strength of the acceleration smoothing terms,

and λ3 regulates the strength of the acceleration derivative smoothing

terms. A set of parameter weights that have provided good results and

that were used to obtain the values shown in the simulation

and experimental tests are the following: λ = 3001 , λ = 1.122 , and

λ = 0.083 . Considering the notation from the SfM review paper (Triggs

et al., 1999), the previously defined cost function, Equation (12), can be

PESTANA ET AL. | 743

rewritten using residuals as follows, see Equations (15)–(20). In these

equations, W is the weight matrix and Δz the residual vector. The

residual vector is subdivided in the three types of cost,Δ Δ Δz z zv a T0 , from

the smoothing cost function, see Equations (11) and (12). Δzv i,0 is defined

for = … −i N2, , 1. Δza i, is defined for = … −i N1, , 2. ΔzT i, is defined

for = … −i N1, , 3.

(Δ = Δ) = Δ Δ⊤f Wv v t t z z, ,
1

2
,old plan (15)

Δ = [Δ Δ Δ]z z z z, , ,v a T0 (16)

λ λ λ= ()− − −W I I Idiag , , ,N N N1 2 2 2 3 3 (17)

Δ = (−)z v v ,v i i i, ,old0 (18)

Δ = Δ =
(−)

Δ
Δ

+z T t
a a

t
t ,a i i T

i i

T
T, at,

at, 1 at,
i

i
iat,

at,
at, (19)

()Δ =
−

Δ
Δ

+

Δ
Δz

T T

t
t .T i

i i

T i
T i,

at, 1 at,

,
, (20)

Using this notation, the increment to the speed plan, Δvc, at each

iteration is calculated from the following set of equations

()Δ = − Δ⊺ ⊺J WJ J Wv zc , where J is the Jacobian matrix of Δz.

(b) After every iteration of the smoothing spline optimization, the

resulting speed plan is not self‐consistent. This means that the

values { Δ },v a t, ,plan at plan plan do not verify the equations of a

uniformly accelerated motion for all segments of the trajectory.

In fact, the smoothing spline optimization does not enforce

these constraints. For this reason, after every iteration of the

smoothing spline optimization, a new pass of Velocity_Plan_S-

weep_Double_Pass(…) is performed, so that a new set of self‐
consistent values for { Δ },v a t, ,plan at plan plan is obtained. This

amounts to the following function call [Δ] =,v a t, ,plan at plan plan

Velocity_Plan_Sweep_ ({ *})s r t vDouble_Pass , , , , configi i new max ,

where vnew max is defined for every component as the minimum

of + Δv vcplan and vdesired, that is, =vnew max

{ = (+ Δ)}v v v vmin ,i i c i inew max, plan, , desired, (see Algorithm 3). The

iterative Gauss–Newton least‐squares optimization that en-

codes the velocity smoothing algorithm, Algorithm 3 lines 4–11,

is stopped when: (a) the norm of the Jacobian of the cost

function, Equations (11) and (12), increased in the last iteration

or (b) a preset number of iterations are reached.

(c) Rerunning the smoothing spline optimization exchanging the data

term by the last smoothed velocity plan, Algorithm 3 lines 1–12,

allows the algorithm to gradually forget the strong initial bang–

bang velocity plan provided by Algorithm 1. For a given set of the

smoothing strength parameters λ λ λ{ }, ,1 2 3 , increasing the

number of reruns of the smoothing spline optimization results

in smoother speed plans, with lower maximum values for the

acceleration derivative. This effect is demonstrated in Section 5.

This fact allows the calculation of a speed plan with an

acceleration derivative bounded by a specific value. In practice,

to obtain efficient computation times, the smoothing spline

optimization is repeated a fixed number of times.

Algorithm 3 Velocity_Smoothing({ *} Δs r t v t r, , , , ,i i plan plan)

1: for =i 1 to num_passes do

2: =v vold plan

3: for =j 1 to max_iterations_per_pass do

4: {Δ ∣ ∣ }=v ,c
df
d jv

velocity_smoothing_iteration(Δ)v v t r, , ,plan old plan

5: if ((= =) (∣ ∣ < ∣ ∣))−j or1 df
d j

df
d jv v 1

6: = (+ Δ)

= { = (+ Δ)}v v v v

v v v vmin ,

min ,

n c

i i c i i

newmax pla desired

newmax, plan, , desired,

7: [Δ]

=

({ *})

v a t

s r t v

, ,

Velocity_Plan_Sweep_Double_Pass

, , , ,configi i

plan at,plan plan

newmax

8: else

9: break

10: end if

11: end for; ∕* j */

12: end for; ∕* i */

13: return { Δ } ∕*,v a t, , ;plan at plan plan note that the cross‐track

acceleration is = [∕]*∕v ra i ict,plan plan,
2

4. To calculate the trajectory reference for the navigation controller,

a third‐order spline is fitted to the set of waypoints, times of

passage, speeds, and accelerations, see Section 4.1. The spline

representation allows the navigation controller to calculate the

trajectory references at any instant in time.

F IGURE 5 Synthetic obstacle map of size × ×50 50 48 m used to
benchmark the capabilities of our trajectory planner. The map features
a fair amount of clutter and small passages with a width of 5.25m
[Color figure can be viewed at wileyonlinelibrary.com]

744 | PESTANA ET AL.

(a) (b)

F IGURE 6 Example trajectory 1—Comparison of speed and acceleration plans with and without velocity smoothing. (top)
Visualization of the planned trajectory. Regarding the rest of the plots: (top‐left) trajectory path in 3D, (top‐right) path color‐coded
with the radius of curvature, (middle, bottom‐left) smoothed and (middle, bottom‐right) nonsmoothed speed, and acceleration plans

(a) with smoothing and (b) no smoothing [Color figure can be viewed at wileyonlinelibrary.com]

PESTANA ET AL. | 745

(a) (b)

F IGURE 7 Example trajectory 2—Comparison of speed and acceleration plans with and without velocity smoothing. (top) Visualization of the
planned trajectory. Regarding the rest of the plots: (top‐left) trajectory path in 3D, (top‐right) path color‐coded with the radius of curvature,
(middle, bottom‐left) smoothed and (middle, bottom‐right) nonsmoothed speed, and acceleration plans (a) with smoothing and (b) no smoothing

[Color figure can be viewed at wileyonlinelibrary.com]

746 | PESTANA ET AL.

4.3 | Geometric speed planner

In Section 4.2, we have described a planning approach, which

divides the trajectory generation in separate three subproblems:

obstacle‐free path planning, trajectory shortening, and smooth-

ing; and speed, acceleration, and time‐of‐passage planning. The

presented speed planning approach can also be used when the

drone flies in obstacle‐free areas over paths specified by

(a) (b)

(c) (d)

F IGURE 8 Example trajectory 2, see Figure 7—Comparison of speed and acceleration plans with a varying number of velocity smoothing
passes. Each pair of plots shows the corresponding plans for a different number of passes, resulting in the following [number of passes,
maximum acceleration derivative]: (upper left) [/]1; 19 m s3 , (upper right) [/]5; 15 m s3 , (down left) [/]10; 11 m s3 , and (down right) [/]20; 9 m s3 .

The result of not applying any smoothing passes is shown in Figure 7 (middle, bottom‐right). (a) 1 smoothing pass, (b) 5 smoothing passes, (c)
10 smoothing passes, and (d) 20 smoothing passes [Color figure can be viewed at wileyonlinelibrary.com]

PESTANA ET AL. | 747

manually defined waypoints. For this purpose, the “Geometric

Speed Planner” module was developed, which implements only

the following two subproblems: (a) trajectory smoothing that

produces a path following the specified sequence of waypoints

but that generates curves at the intermediary waypoints; and (b)

the calculation of the speed, acceleration, and time‐of‐passage
plans.

5 | EXPERIMENTAL RESULTS

We have performed three types of experiments for the evalua-

tion of our solution, the combination of the mapping procedure,

see Sections 3.1 and 3.2, and our navigation approach, see

Sections 4.1 and 4.2. In Section 5.2, the runtime and the

characteristics of the trajectories generated by our planning

approach have been benchmarked in a synthetic industrial

environment. In Section 5.3, we showcase the quality of the

generated overview maps in three different scenes and analyze

quantitatively the accuracy of the onboard generated overview

obstacle maps against an offboard state‐of‐the‐art dense‐recon-
struction photogrammetry method. And in Section 5.4, the usage

of overview obstacle maps for navigation is demonstrated on an

autonomous flight experiment.

5.1 | Experimental platform

The drone shown in Figure 2 was used in our experiments. It is

equipped with a powerful onboard computer and several sensors. Its

main equipment is:

• DJI M100 drone (SZ DJI Technology Co., Ltd. (DJI), Shenzhen,

Guangdong, China), which, with a TB47D battery and equipped as

described, features a takeoff weight of 3.5 kg and achieves a flight

time of approximately 12min.

• Nvidia Jetson TK1 (DJI Manifold, Nvidia Corporation (Nvidia), Santa

Clara, CA) onboard computer that features a quad‐core processor,

2GB of RAM and a CUDA‐enabled Tegra chip.

• Zenmuse X3 Gimbal camera: 1,280× 720 pixels at 30Hz.

• DJI Guidance visual‐sensing system with five stereo‐heads
simultaneously provides images from all five directions and

point‐clouds from two directions at 320× 240 pixels at 10 Hz.

5.2 | Evaluation of the trajectory planning
approach

The evaluation of the trajectory planner is performed in a synthetic

obstacle map (Figure 5) that represents an industrial environment of

size × ×50 50 48 m, which is distributed as part of the GitHub

repository of the RotorS simulation framework (Burri, 2015; Furrer,

Burri, Achtelik, & Siegwart, 2016). Using this environment, we

showcase the capabilities of our trajectory planner to generate

smooth trajectories around and away from obstacles.

The configuration of the trajectory planner in this section is as

follows. The PRM* and the RRT* planners are configured with the

default parameters from the OMPL library, except for the maximum

distance limit of a new vertex to the current tree in the RRT* algorithm,

which is deactivated. The obstacle‐free trajectory calculation was

configured with a maximum distance dmax of 6m for the distance map

and a maximum planning time of 1 s. This particular choice for the

maximum planning time is based on the fact that the overview obstacle

map contains abundant free space above ground. In most cases, the

F IGURE 9 Example trajectories from the evaluation of the planner
described in Section 5.2, color coding of the trajectories as explained in
Figure 4 [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Trajectory and speed planning performance benchmark using the RRT* for the obstacle‐free path calculation

Length (m) Clearance (m) Velocity (m/s)
Planned
traversal time (s) (/)m sda

dt
3at

#Traj.
Direct
path Mean± σ3

Mean
of min.

Min.
of min.

Mean of

mean± σ3

Mean of

mean± σ3
Mean
of max.

Max.
of max.

Ours
mean

Incr.
mean (%)

Mean
of max.

Max.
of max.

1 30.25 40.84± 3.51 3.00 2.24 4.70± 0.45 4.83± 0.29 9.05 9.68 8.47 4.36 10.98 19.66

2 21.63 24.89± 1.64 2.99 2.24 4.07± 0.31 4.36± 0.34 6.47 7.69 5.72 3.92 8.78 12.17

3 18.71 24.62± 2.24 3.04 2.97 4.23± 0.33 3.86± 0.40 5.76 6.38 6.38 5.62 5.71 9.05

4 25.24 37.85± 1.61 3.09 2.85 5.10± 0.22 4.50± 0.32 8.43 8.97 8.42 5.56 10.52 17.28

5 28.41 59.48± 3.05 3.43 2.69 4.91± 0.27 5.04± 0.38 9.01 10.00 11.81 4.29 12.04 21.07

6 16.14 27.78± 48.36 1.68 1.35 2.88± 1.50 3.98± 1.78 6.15 9.76 6.65 3.84 7.10 17.25

7 14.00 58.74± 2.40 2.23 2.00 3.70± 0.31 5.48± 0.39 9.37 9.85 10.71 2.81 12.29 23.57

8 31.55 52.28± 19.49 2.25 2.25 4.08± 0.65 5.23± 0.86 8.22 9.80 9.98 3.57 10.99 23.55

9 18.17 27.26± 6.29 2.50 2.50 4.07± 0.42 3.95± 0.36 5.96 6.52 6.90 4.09 6.47 9.86

Note. RRT: Rapidly exploring Random Tree.

748 | PESTANA ET AL.

TABLE 2 Trajectory and speed planning performance benchmark using the PRM* for the obstacle‐free path calculation

Length (m) Clearance (m) Velocity (m/s)
Planned
traversal time (s) (/)m sda

dt
3at

#Traj.
Direct
path mean± σ3

Mean
of min.

Min.
of min.

Mean of

mean± σ3

Mean of

mean± σ3
Mean
of max.

Max.
of max.

Ours
mean

Incr.
mean (%)

Mean
of max.

Max.
of max.

1 30.25 40.53± 3.29 3.02 2.55 4.66± 0.47 4.81± 0.34 9.11 9.65 8.43 4.43 11.56 24.79

2 21.63 24.76± 0.90 2.93 2.30 4.02± 0.41 4.31± 0.32 6.44 6.89 5.74 4.11 8.82 11.41

3 18.71 24.68± 2.68 3.04 2.89 4.26± 0.33 3.84± 0.46 5.73 6.35 6.43 5.77 5.91 9.82

4 25.24 38.04± 1.68 3.09 2.85 5.11± 0.21 4.47± 0.33 8.53 9.13 8.51 5.57 10.52 16.09

5 28.41 59.33± 2.87 3.51 2.95 4.89± 0.21 5.03± 0.41 8.99 9.74 11.80 4.37 11.62 27.19

6 16.14 19.36± 17.88 1.52 1.35 2.65± 0.63 3.73± 0.70 5.41 8.67 5.17 3.29 5.49 16.37

7 14.00 58.08± 3.73 2.21 1.75 3.57 ± 0.42 5.46± 0.37 9.33 10.11 10.65 2.95 12.08 22.19

8 31.55 49.70± 12.61 2.25 2.00 4.03± 0.50 5.15± 0.94 7.86 9.35 9.64 3.64 10.59 21.62

9 18.17 27.07± 5.78 2.50 2.50 4.08± 0.34 3.91± 0.44 6.00 6.55 6.92 4.33 6.28 9.55

Note. PRM: Probabilistic RoadMap.

TABLE 3 Execution time of the different steps of our trajectory generation approach, using the RRT* obstacle‐free path planner

Execution times (s)

Speed planning

#Traj. Avg.N Planning obs.‐free Path smoothing Ours Alg. (Hoffmann et al., 2008) Overall ± σ3

1 57 1.0086 0.0988 0.1663 0.0006 1.3132± 0.1414

2 35 1.0108 0.0447 0.0369 0.0003 1.1305± 0.0693

3 35 1.0103 0.0598 0.0352 0.0003 1.1429± 0.0624

4 53 1.0103 0.1019 0.1283 0.0004 1.2790± 0.1119

5 85 1.0110 0.1846 0.5512 0.0007 1.7862± 0.4205

6 39 1.0405 0.0718 0.1207 0.0003 1.2711± 0.9011

7 83 1.0105 0.1761 0.5110 0.0007 1.7369± 0.3989

8 74 1.0106 0.1503 0.3836 0.0006 1.5836± 0.6583

9 38 1.0116 0.0620 0.0487 0.0003 1.1605± 0.1085

Note. RRT: Rapidly exploring Random Tree.

TABLE 4 Execution time of the different steps of our trajectory generation approach, using the PRM* obstacle‐free path planner

Execution times (s)

Speed planning

#Traj. Avg.N Planning obs.‐free Path smoothing Ours Alg. (Hoffmann et al., 2008) Overall ±3σ

1 57 1.0558 0.0928 0.1527 0.0005 1.3371± 0.1536

2 35 1.0477 0.0432 0.0366 0.0003 1.1646± 0.0854

3 35 1.1189 0.0564 0.0336 0.0003 1.2461± 0.1146

4 53 1.0298 0.0997 0.1220 0.0004 1.2869± 0.0977

5 83 1.0624 0.1809 0.4936 0.0006 1.7765± 0.3199

6 27 1.2131 0.0419 0.0264 0.0002 1.3179± 0.3177

7 82 1.0433 0.1515 0.4654 0.0006 1.6982± 0.3267

8 71 1.1049 0.1391 0.3063 0.0006 1.5887± 0.3288

9 38 1.2492 0.0591 0.0466 0.0003 1.3903± 0.2201

Note. PRM: Probabilistic RoadMap.

PESTANA ET AL. | 749

target point is reachable and the trajectory planning algorithm is able

find at least one valid solution on the allotted time. Therefore, the

resulting trajectory is the best solution that was found in 1 s. The utilized

Octomap resolution is 0.25m. The trajectory planner was set up with a

maximum speed of 20.0m/s, and maximum horizontal, upward, and

downward accelerations of = ∕ = ∕g g0.5 4.91 m s , 0.45 4.41 m s2 2 and

= ∕g0.4 3.92 m s2, respectively.

5.2.1 | Comparison of speed and acceleration plans
with and without velocity smoothing

In this section, we compare our speed planning method, see Section

4.2.3, to the one proposed by Hoffmann et al. (2008), from which our

method was inspired. The result of running both methods in two

trajectories is shown in Figures 6 and 7.

The following information is shown in these figures: (top)

visualization of the planned trajectory with the Octomap displayed

color‐coded for altitude from low (pink) to high (blue, green, and red).

The (red) raw path planned by the state‐of‐the‐art trajectory planner

is shown along with the consecutive path shortening and smoothing

steps resulting in the (white) smoothed path. The semitransparent

lines show the velocity and acceleration plans. The next two plots,

inspecting the figure from top to bottom, show the trajectory path in

3D: at the (left), the waypoints are shown in green, along with the

speed and the acceleration plans in blue and red, respectively; at the

(right), the trajectory path is displayed color‐coded for the radius of

curvature, where black color denotes parts of the trajectory

estimated to be straight. The remaining four plots are grouped in

vertical pairs, where the (top) plot shows the final along‐track speed

plan in red, with the maximum desired velocity in green; and the

(bottom) plot shows the along‐track, the cross‐track and total

accelerations in red, blue, and magenta, respectively, along with the

derivative of the acceleration in green. The maximum velocity

constraint is a combination of the maximum velocity and the

maximum acceleration constraints through the calculated radius of

curvature and the required centripetal acceleration.

F IGURE 10 Scene1—Obstacle map of size 105m× 75m generated onboard in ≈2.75 min from 56 images, from left to right: “Google Earth
©2015” image with red contour around the effectively mapped area, the SfM sparse model, the surface model, and the Octomap obstacle map
with 1m resolution. SfM: Structure from Motion [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 11 Scene2—Obstacle map of size 103m× 75m generated onboard in ≈2.75 min from 35 images, from left to right: “Google Earth

©2015” image with red contour around the effectively mapped area, the SfM sparse model, the surface model, and the Octomap obstacle map
with 1m resolution. SfM: Structure from Motion [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 12 Scene3—Obstacle map of size 106m× 75m generated onboard in ≈ 2.75 min from 52 images, from left to right: image with red
contour around the effectively mapped area, the SfM sparse model, the surface model, and the Octomap obstacle map with 1m resolution. SfM:

Structure from Motion [Color figure can be viewed at wileyonlinelibrary.com]

750 | PESTANA ET AL.

In the context of the speed and acceleration plans, on the (left), the

result of applying the velocity smoothing optimization, and on the

(right), the result of applying only the velocity_plan_sweep_double_pass,

our implementation of the algorithm by Hoffmann et al. (2008), are

presented. When compared with the method proposed by Hoffmann

et al. (2008), our velocity smoothing approach results in a slightly higher

trajectory traversal time with similar values for the maximum velocity

but with much more feasible velocity and acceleration plans and with

bounded and more continuous values for the acceleration derivative.

In Figure 8, a comparison of the resulting speed and acceleration

plans when applying a varying number of velocity smoothing passes

is shown. The plots have the same meaning as each pair of vertical

plots in the lower part of Figures 6 and 7. As shown, for a given set of

the smoothing strength parameters λ λ λ{ }, ,1 2 3 , increasing the number

of reruns of the smoothing spline optimization results in smoother

speed plans, with lower maximum values for the acceleration

derivative.

The discussed results, see Figures 6–8, showcase the importance

of utilizing our velocity smoothing approach and that by applying an

increasing number of smoothing passes, the derivative of the

acceleration becomes more continuous and achieves consecutively

lower absolute values. Based on these results, in the rest of the

evaluation and experiments, we use 10 passes for the speed plan

smoothing.

F IGURE 13 Detail of smaller elements that are well reconstructed and included into the georeferenced overview obstacle map: four cars
from scene1; a pylon with solar panels and a structure from scene2; and the hut, debris, and a car from scene3 [Color figure can be viewed at
wileyonlinelibrary.com]

PESTANA ET AL. | 751

F IGURE 14 Quantitative accuracy evaluation of our mapping method against dense point‐clouds obtained using Pix4D. The top image
corresponds to scene1, the middle to scene2, and the bottom to scene3. The reconstruction error is calculated as the distance between each

dense point and the onboard calculated mesh model. The dense point‐clouds are color‐coded according to the reconstruction error, where the
color‐to‐distance correspondence** is shown in the histograms. The reconstruction error distribution is shown graphically by the histograms in
the figure and numerically in Table 5 [Color figure can be viewed at wileyonlinelibrary.com]

752 | PESTANA ET AL.

5.2.2 | Performance benchmarking of the trajectory
planner

The capabilities of our trajectory planning approach are evaluated by

testing it on nine different queries repeatedly on the synthetic

obstacle map, as shown in Figure 9. Each query corresponds to a

given initial and target point. This evaluation was executed directly

on the drone’s onboard computer, a Nvidia Jetson TK1 development

board. In order for the repeated evaluation not to be dependent on

the internal state of the planner, which is relevant when using the

PRM* algorithm, the planner is reinitialized after querying the

planner for the nine trajectories. This process was repeated 100

times using the PRM* and the RRT* algorithms, resulting on the

performance statistics shown in Tables 1–4.

The calculated performance parameters for the trajectories and

speed plans are shown in Tables 1 and 2, and for the execution times

in Tables 3 and 4. Each row of the tables shows the following

performance statistics for the corresponding trajectory query:

regarding the path length, the direct distance from initial to target

point and the average trajectory length with its corresponding σ3

uncertainty; regarding the path clearance, the mean of the minimum

clearance, the minimum overall clearance for this query, and the

resulting mean path clearance with its corresponding σ3 uncertainty;

regarding the planned velocity, the mean traversal velocity with its

corresponding σ3 uncertainty, the mean maximum velocity, and the

maximum overall velocity for this query; regarding the traversal time,

its mean for each query and the relative increase of the traversal

time required by the speed plan smoothing, which effectively

compares our speed plan with that resulting from the approach by

Hoffmann et al. (2008); and regarding the acceleration derivative, the

mean of its maximum value and its overall maximum value for each

query are shown. The execution times for each main subpart of our

trajectory planning approach are shown in Tables 3 and 4, where the

speed plan calculation time for the algorithm by Hoffmann et al.

(2008) is also shown, along with the resulting average number of

waypoints for each query.

The results, see Tables 1 and 2, show that for queries outside

buildings, with enough free space for the path, both obstacle‐free
planning algorithms, PRM* and RRT*, provide similar performance

and result also in comparable metrics for the speed plan. The

biggest differences are to be expected in trajectory queries that

require navigation through narrow spaces, such as 6, 7, and 8, see

Figure 9, and they effectively occur in Queries 6 and 8. In these

two queries, the PRM* algorithm provides on average shorter

trajectories with a smaller standard deviation in length, and

therefore, resulting also in faster traversal times. In these cases,

the clearance of the trajectory is also better with the PRM* as

shown by the lower values of its standard deviation. The overall

mean velocity of the traversal of the planned trajectories ranges

between 4 and 5.5 m/s, with maximum speed values of up to 10 m/

s. In all the trajectory queries, we only incur an increased path

traversal time of 3–6% when comparing our speed plan smoothing

result with the corresponding result from the Hoffmann et al.

(2008) algorithm. The only trajectory queries that show low values

for clearance are 6, 7, and 8, which require the drone to fly inside

an area with a width of 5.25 m, with a maximum achievable

clearance in these regions of 2.62 m. Regarding the clearance of

Query 9, the initial point of this trajectory has a clearance of 2.5 m.

TABLE 5 Quantitative accuracy evaluation of our mapping method

Percentage (%) of points with a reconstruction error  d (m)

d (m) 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

scene1 69.49 85.21 90.59 93.69 95.73 97.05 97.97 98.55

scene2 84.60 93.19 96.46 97.98 98.76 99.30 99.59 99.73

scene3 82.31 88.68 91.83 94.11 95.78 96.91 97.80 98.52

Note. This data corresponds to the histograms from Figure 14. The reconstruction error is calculated as the distance between the dense points from the

Pix4D reconstructions, displayed in Figure 14, to the onboard calculated meshes, see Figures 10–12.

F IGURE 15 Overview obstacle map environment used by the trajectory planner in our autonomous navigation experimental flight. The

map of size 55 m× 170 m× 40 m was generated from 195 images with a higher than onboard resolution of 4,912 × 3,264 pixels using our
method, see Section 3.1, with the same parameter configuration used for onboard real‐time execution. Displayed voxel‐grid resolution:
0.50 m [Color figure can be viewed at wileyonlinelibrary.com]

PESTANA ET AL. | 753

Overall, the planner always provided a feasible trajectory for all

the executed queries and, except for the cases explained, the paths

showcase a very good clearance and are reasonably distant from

obstacles.

Regarding the execution times on the drone’s onboard compu-

ter, see Tables 3 and 4, the overall planning takes on average 1.5 s,

from which 1.0 s is reserved to the obstacle‐free path planning and

the rest is dedicated to the path smoothing and the speed plan

smoothing. The execution time of the speed plan smoothing

depends on the trajectory length, as it is required to repeatedly

solve a linear equations system, the size of which depends on the

number of waypoints of the trajectory. For comparison, the shorter

trajectory lengths result from Queries 2, 3, 6, and 9 and require only

F IGURE 16 Trajectories flown by the drone in the experimental
evaluation of our autonomous navigation architecture [Color figure

can be viewed at wileyonlinelibrary.com]

F IGURE 17 Experimental flight trajectory 1—(top) Visualization of the planned trajectory, (middle‐left) trajectory path in 3D, (bottom‐left)
path color‐coded with the radius of curvature, (middle‐right) speed, and (bottom‐right) acceleration plans [Color figure can be viewed at
wileyonlinelibrary.com]

754 | PESTANA ET AL.

25–50 ms for the computation of the speed plan. Although the

algorithm by Hoffmann et al. (2008) is significantly faster, it results,

as discussed in Section 5.2.1, in speed plans that are unfeasible for

high velocities. We favor, therefore, the use of our approach,

because overall, these execution times are good for our target

application in this research study.

5.3 | Evaluation of the overview obstacle map

In this section, we evaluate quantitatively the quality of the overview

obstacle maps obtained using our method, described in Section 3.1,

when executed during flight onboard the drone. To acquire these

maps, the drone flew autonomously a regular survey flight trajectory.

The drone navigates through the survey trajectory by using the

algorithms described in Sections 4.1 and 4.2, and images are

processed on‐the‐fly to generate the overview obstacle map using

the algorithm explained in Section 3.

The regular survey flight trajectory is generated based on two

configuration parameters, the desired map generation time and the GPS

corners of the area of interest. The number of images that can be

acquired is calculated through the approximate processing time per

image required by the onboard computer. The image acquisition

positions for the creation of the overview map are distributed along a

horizontal grid at a constant height and spaced to result in an equal

image overlap in both directions of the grid. In this situation, for a given

camera (with calibrated focal length and intrinsic parameters), the

F IGURE 18 Experimental flight trajectory 2—(top) Visualization of the planned trajectory, (middle‐left) trajectory path in 3D, (bottom‐left)
path color‐coded with the radius of curvature, (middle‐right) speed, and (bottom‐right) acceleration plans [Color figure can be viewed at

wileyonlinelibrary.com]

PESTANA ET AL. | 755

resulting image overlap depends on the height and the number of

images. Therefore, the height of the grid is calculated from the desired

image overlap. Additionally, a minimum height of 34m and a maximum

height of 100m for the survey flight are enforced as a safety measure.

The evaluation is performed on three maps generated in different

areas: scene1 (Fiure 10), scene2 (Figure 11) and scene3 (Figure 12).

Each of these figures shows an overview image of the area with a red

contour around the effectively mapped area, and the corresponding

SfM sparse model, the surface model, and the resulting Octomap

obstacle map at 1m resolution. The sparse model consists of the

camera positions, shown with camera frustums, and the triangulated

points and lines.

The mapping operations took overall onboard and during a flight

around 2.75 min. In all, 35–56 grayscale images with a resolution of

1,280× 720 pixels and 85% vertical and 72% horizontal overlaps

were acquired and processed to generate the georeferenced map

models, resulting in maps with an approximate size of 105m× 75m.

In the context of the qualities of the three reconstructions, the

following elements are usually well represented in the map:

• Some example elements are shown zoomed in Figure 13.

• Scene1—Figure 10: big buildings, cars, man‐made objects with

visually distinguishable lines, road edges, and, to a certain extent,

grass and part of the trees.

• Scene2—Figure 11: a building, man‐made structures with visually

distinguishable lines, road edges, and grass.

• Scene3—Figure 12: woodland area, human‐made debris, cars, and,

to a certain extent, grass, and part of the trees.

F IGURE 19 Experimental flight trajectory 3—(top) Visualization of the planned trajectory, (middle‐left) trajectory path in 3D, (bottom‐left)
path color‐coded with the radius of curvature, (middle‐right) speed, and (bottom‐right) acceleration plans [Color figure can be viewed at
wileyonlinelibrary.com]

756 | PESTANA ET AL.

We assess the accuracy of our onboard mesh models against a

dense point‐cloud reconstruction that was obtained using the

photogrammetry software Pix4D6. To perform the accuracy assess-

ment calculation, the point‐cloud was first registered to the mesh

model using the Iterative Closes Point (ICP) algorithm, second

cropped along the borders, because the area of interest is in the

middle of the model, and third the distance of each dense point to the

mesh was calculated, which is used as estimate of the reconstruction

error. In this calculation, the error was saturated to 2m so that its

distribution, shown in the histograms, can be better appreciated. The

registration of the dense point‐cloud to the mesh model is performed

to extract the slight differences in the georeferenciation results,

which would otherwise affect our accuracy assessment. The

reconstruction error between these high‐quality point‐clouds and

their corresponding onboard calculated mesh models is shown

graphically in Figure 14 and numerically in Table 5. The number**

of dense points that for each model have an error of 0.5m or less are:

85.2% for scene1, 93.2% for scene2, and 88.7% for scene3.

From the accuracy evaluation, we can assess that there are some

areas, which tend to be not well mapped by our onboard overview

mapping solution, due to the fact that our mesh is derived from a sparse

3D model. Some examples of challenging regions of the scene are:

• Textureless surfaces or with too fine a texture for the current

image resolution and acquisition height, causing problems for the

F IGURE 20 Experimental flight trajectory 4—(top) Visualization of the planned trajectory, (middle‐left) trajectory path in 3D, (bottom‐left)
path color‐coded with the radius of curvature, (middle‐right) speed, and (bottom‐right) acceleration plans [Color figure can be viewed at
wileyonlinelibrary.com]

6https://pix4d.com/

PESTANA ET AL. | 757

point‐feature matching. For example, asphalt at 34m with our

drone’s camera is problematic.

• Vegetation, branches, and foliage. For example, in particular trees.

• Dark and untextured areas, for example, asphalt or façades in

shadows, are not reconstructed properly when using point‐
based SfM. The subsequent Delaunay triangulation (Labatut

et al., 2007), therefore, tends to close these nonreconstructed

areas with big triangles, for example, see the building near the

border in scene2.

For the purpose of navigation, our current solution to this issue,

discussed in Section 3.2, is to update the Octomap obstacle map on‐
the‐fly by fusing the depth maps from the stereo‐heads.

5.4 | Evaluation of autonomous navigation

For the experimental evaluation of our navigation architecture,

described in Sections 4.1 and 4.2, the drone is set up to perform

autonomous obstacle‐free navigation on an area, for which we have

previously acquired an obstacle map. For this purpose, we acquired

the obstacle map of the test area of size 55m× 170m× 40m, shown

in Figure 15.

The Octomap resolution used by the planner on this map is 1 m. A

long trajectory on this area can easily reach a length of 100m, allowing

us to test the capabilities of our navigation architecture. The trajectory

planner was set to use the PRM* algorithm for the generation of raw

obstacle‐free paths, and it was configured with a maximum speed and

acceleration of 4.0m/s and = /g0.15 1.47 m s2, respectively. Otherwise,

the planner is configured as described in Section 5.2.

We utilize the drone equipped as explained in Section 5.1. All

the algorithms are run onboard the drone, except for a user

interface that runs on a laptop that allows a user to teleoperate

the drone by using what we term a point‐and‐click interface. By

clicking on a point of the obstacle map, the drone is commanded to

navigate to a waypoint of 1.5 m over the clicked point. Therefore,

the user is able to teleoperate the drone from a laptop, connected

through WiFi, and issue the following commands: takeoff, point‐
and‐click navigation, stop, and land. The onboard computer is

configured appropriately, so that all the onboard ROS modules are

able to continue to intercommunicate in the case of an eventual

WiFi disconnection.

During the flight, the drone was first commanded to take off.

Then, the point‐and‐click interface was used to designate the next

waypoint, so that the drone planned an obstacle‐free trajectory to

it, which was immediately executed autonomously. After reaching

the end of the trajectory, the user then issued, by clicking on

the user interface, the next waypoint. The drone was able to

navigate in this manner to all four commanded waypoints by

following the trajectories shown in Figures 16 20. The information

in these figures is displayed following the same convention as for

Figures 6 and 7. A video of the experiment is available online7.

A side benefit of georeferencing the obstacle maps is that we are

able to perform geofencing and to set no‐fly areas specifying only

their GPS corner points, so that the trajectory planner regards them

as obstacles. This feature was evaluated by marking a parking area as

a no‐fly zone, see Figure 16.

Our navigation results are summarized by the performance

parameters shown in Table 6. The drone navigated safely in the

mapped area reaching maximum speeds of 4.0 m/s and navigated at

an average speed of 2.98m/s while traversing trajectories with an

average length of 61.6 m.

This experiment demonstrates the capability of our trajectory

planner to generate trajectories to navigate safely utilizing maps

obtained by means of our onboard real‐time capable photogramme-

try method. The planner provided feasible speed, acceleration, and

time‐of‐passage plans constrained by maximum speed and accelera-

tion configuration parameters. The drone successfully performed

obstacle‐free navigation and respected the velocity and acceleration

constraints set in the configuration of the trajectory planner.

6 | CONCLUSIONS

In this study, we proposed a vision‐based method for a drone to

generate onboard on‐the‐fly an overview obstacle map that is

immediately available for navigation tasks. Flying at the overview

altitude the drone is able on its own to map a GPS‐defined region of

interest in a short period of time. In this process, the reconstruction

of man‐made objects and infrastructure is enhanced by exploiting 3D

lines. The actual size and level of detail of the acquired map depends

on the utilized camera, lens, and flight altitude. Based on the

TABLE 6 Trajectory planning and control performance in our
autonomous navigation experiment

Execution time (s) Speed (m/s)

#Traj.

Path length

(m) UI + plan Navigation Avg. Max.

1 77.24 2.52 26.6/25.5 2.90 4.00

2 43.53 1.66 15.7/14.9 2.77 4.00

3 44.96 2.09 15.6/14.9 2.88 4.00

4 80.52 2.88 24.7/23.8 3.26 4.00

Avg. 61.6 2.29 20.6/19.8 2.98 4.00

Note. All the values shown in the table are derived from a data log of the

flight shown in Figures 16–20, considering the times at which ROS

messages were published. The UI + plan time corresponds to the whole

trajectory generation onboard plus the delay interval between clicking on

the next target point on the User Interface (ROS Rviz) and receiving the

goal point in the drone through WiFi. The traversal time denotes the

[(real)/(planned)] time it took the controller to perform the commanded

trajectory, where the left column shows the (real) traversal time and the

right column the expected or (planned) traversal time. The last two

columns show the average and maximum navigation speeds during each

trajectory. The last row reports the average value for each column.

ROS: Robot Operating System; UI: user interface.

7Video of the experimental flight: https://youtu.be/9DXzIGKKqbU.

758 | PESTANA ET AL.

constrained onboard computational power of our drone, a map of

size 105m× 75m is acquired in ≈2.75 min. In the experiments, we

quantitatively evaluated the accuracy of the acquired maps. We

demonstrated the usability of the generated obstacle map in an

autonomous flight experiment. The georeferenciation of the map is

performed using only GPS measurements, which offers a general

solution for search and rescue scenarios. The performed georefer-

enciation provides an absolute accuracy up to the positioning

precision of the onboard GPS sensor.

Our experiments demonstrate the capabilities for an autonomous

drone to acquire the obstacle map of a moderately sized area using a

vision‐based method and, by using the acquired map, to immediately

perform near‐ground obstacle‐free navigation in that area. The over-

view obstacle map is up‐to‐date and through it we can generate paths

away from obstacles. In contrast to pure reactive obstacle avoidance or

to trajectory planning with an outdated potentially invalid map, the up‐
to‐date overview map should enable an overall increased mission

execution efficiency. The reason for this is that the availability of the

overview map during an autonomous mission allows the robot to focus

on direct task objectives rather than on exploration. Although onboard

mapping approaches will continue to be improved, our proposed vision‐
based approach represents a step forward in the fast deployment of

autonomous drones in unknown outdoor environments.

7 | FUTURE WORK

There are still regions of the scene, which are challenging to

reconstruct using point‐based SfM. A possible approach to deal with

them is to densify the point‐cloud, for example, by using patch-based

multi-view stereo (PMVS) (Furukawa & Ponce, 2010), SURE

(Rothermel, Wenzel, Fritsch, & Haala, 2012), PlaneSweepLib (PSL;

(Häne, Heng, Lee, Sizov, & Pollefeys 2014), or the work by

Shekhovtsov, Reinbacher, Graber, and Pock (2016). Often times,

the usage of these algorithms requires more computation power than

available on current onboard computers of drones, which motivates

the development of faster algorithms for the map densification.

Another approach is the utilization of view‐planning methods

(Roberts et al., 2017; Schmid et al., 2012), for instance, the approach

(Mostegel, Rumpler, Fraundorfer, & Bischof, 2016) results in a set of

images adapted to the challenging elements present in the scene, for

example, by providing short baseline images for vegetation.

In our approach, the drone is localized in the overview obstacle map

by using GPS + IMU fusion. This poses a problem for collision avoidance

because a typical GPS + IMU state estimate can drift a few meters,

particularly for longer flight times and during navigation close to the

ground and among buildings. The localization precision against the

overview map can be further improved by additionally fusing vision‐
based localization methods. However, feature‐based matching between

images acquired at a large and a close distance is challenging and thus

provides options for future research. An enhanced relocalization

capability would also provide improvements for collaborative mapping,

map reuse, and map sharing between different robots and devices.

Next to our method, maps are also generated using SLAM

approaches that combine a VO or VIO front‐end with a bundle

adjustment back‐end (e.g., Forster, Lynen, Kneip, & Scaramuzza,

2013, 2017; Schmuck & Chli, 2017; T. Schneider et al., 2018). In the

context of overview obstacle maps, a detailed benchmark comparison

of the mapping accuracy and processing time requirements of our

SfM‐based method against those algorithms would be of interest.

The experimental focus on this study was performed to support

the main contribution in the mapping task. The further benchmarking

of the trajectory planner in experiments and simulation, for instance,

based on the benchmarks (Mettler, Kong, Goerzen, & Whalley, 2010;

Nous, Meertens, Wagter, & de Croon, 2016), is left as future work.

ACKNOWLEDGMENTS

This study has been supported by the Austrian Science Fund (FWF)

project V‐MAV (I‐1537), the Austrian Research Promotion Agency

(FFG) project FreeLine (Bridge1/843450), and OMICRON electronics

GmbH. The authors would like to thank the hardware donation from

DJI, granted as a part of the Graz Griffins team participation in the

2016 DJI Developer Challenge.

ORCID

Jesús Pestana http://orcid.org/0000-0002-0093-3092

REFERENCES

Agarwal, S., Mierle, K., & others (2012). Ceres solver. Retrieved from http://

ceres‐solver.org
AUVSI Association (2018). International Aerial Robotics Competition (IARC)—Past

missions—Website. Retrieved from http://www.aerialroboticscompetition.

org/pastmissions.php Last checked: 29.11.2018; original: 2018.

Bachrach, A., He, R., & Roy, N. (2009). Autonomous flight in

unstructured and unknown indoor environments. 2009 European

Micro Air Vehicle Conference and Flight Competition, Delft, The

Netherlands, pp. 21–28.

Bachrach, A., Prentice, S., He, R., & Roy, N. (2011). RANGE‐Robust
autonomous navigation in GPS‐denied environments. Journal of Field

Robotics (JFR), 28(5), 644–666.

Bloesch, M., Omari, S., Hutter, M., & Siegwart, R. (2015). Robust visual inertial

odometry using a direct EKF‐based approach. 2015 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pp. 298–304.

Burri, M. (2015). RotorS’ synthetic industrial environment Octomap.

Retrieved from https://github.com/ethz‐asl/rotors_simulator/blob/

master/rotors_gazebo/resource/power_plant.bt Last checked:

25.09.2017; original: 27.03.2015.

Burri, M., Oleynikova, H., Achtelik, M. W., & Siegwart, R. (2015). Real‐time

visual‐inertial mapping, re‐localization and planning onboard MAVs in

unknown environments. 2015 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pp. 1872–1878.

Chen, J., Liu, T., & Shen, S. (2016). Online generation of collision‐free
trajectories for quadrotor flight in unknown cluttered environments.

2016 IEEE International Conference on Robotics and Automation (ICRA),

pp. 1476–1483.

Concha, A., & Civera, J. (2015). DPPTAM: Dense piecewise planar

tracking and mapping from a monocular sequence. 2015 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS),

pp. 5686–5693.

PESTANA ET AL. | 759

http://orcid.org/0000-0002-0093-3092
http://ceres-solver.org
http://ceres-solver.org
http://www.aerialroboticscompetition.org/pastmissions.php
http://www.aerialroboticscompetition.org/pastmissions.php
https://github.com/ethz-asl/rotors_simulator/blob/master/rotors_gazebo/resource/power_plant.bt
https://github.com/ethz-asl/rotors_simulator/blob/master/rotors_gazebo/resource/power_plant.bt

Daftry, S., Maurer, M., Wendel, A., & Bischof, H. (2013). Flexible and user‐
centric camera calibration using planar fiducial markers. 2013 British

Machine Vision Conference (BMVC).

Delmerico, J., Giusti, A., Mueggler, E., Gambardella, L. M., & Scaramuzza,

D. (2016). “On‐the‐Spot Training” for terrain classification in

autonomous air‐ground collaborative teams. 2016 International

Symposium on Experimental Robotics (ISER), pp. 574–585. Piscataway,

NJ: IEEE. https://doi.org/10.1109/LRA.2017.2651163

Delmerico, J., Mueggler, E., Nitsch, J., & Scaramuzza, D. (2017). Active

autonomous aerial exploration for ground robot path planning. IEEE

Robotics and Automation Letters (RA‐L), 2(2), 664–671.
Engel, J., Koltun, V., & Cremers, D. (2018). Direct sparse odometry. IEEE

Transactions on Pattern Analysis and Machine Intelligence (T‐PAMI),

40(3), 611–625.

Engel, J., Schöps, T., & Cremers, D. (2014). LSD‐SLAM: Large‐scale direct

monocular SLAM. 2014 European Conference on Computer Vision

(ECCV), pp. 834–849.

Faessler, M., Fontana, F., Forster, C., Mueggler, E., Pizzoli, M., &

Scaramuzza, D. (2016). Autonomous, vision‐based flight and live

dense 3D mapping with a quadrotor micro aerial vehicle. Journal of

Field Robotics (JFR), 33(4), 431–450.

Fankhauser, P., Bloesch, M., Gehring, C., Hutter, M., & Siegwart, R. (2014).

Robot‐centric elevation mapping with uncertainty estimates. 2014

International Conference on Climbing and Walking Robots (CLAWAR), pp.

433–440.

Forster, C., Faessler, M., Fontana, F., Werlberger, M., & Scaramuzza, D.

(2015). Continuous on‐board monocular‐vision‐based elevation map-

ping applied to autonomous landing of micro aerial vehicles. 2015

IEEE International Conference on Robotics and Automation (ICRA),

pp. 111–118.

Forster, C., Lynen, S., Kneip, L., & Scaramuzza, D. (2013). Collaborative

monocular SLAM with multiple micro aerial vehicles. 2013 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS),

pp. 3962–3970.

Forster, C., Pizzoli, M., & Scaramuzza, D. (2014). SVO: Fast semi‐direct
monocular visual odometry. 2014 IEEE International Conference on

Robotics and Automation (ICRA).

Forster, C., Zhang, Z., Gassner, M., Werlberger, M., & Scaramuzza,

D. (2017). SVO: Semidirect visual odometry for monocular and

multicamera systems. IEEE Transactions on Robotics (T‐RO), 33(2),

249–265.

Furgale, P., Rehder, J., & Siegwart, R. (2013). Unified temporal and spatial

calibration for multi‐sensor systems. 2013 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS).

Furrer, F., Burri, M., Achtelik, M., & Siegwart, R. (2016). RotorS—A

modular Gazebo MAV simulator framework, In Koubaa, A. (Ed.) Robot

Operating System (ROS): The Complete Reference (1, pp. 595–625).

Cham, Switzerland: Springer International Publishing.

Furukawa, Y., & Ponce, J. (2010). Accurate, dense, and robust multiview

stereopsis. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence (T‐PAMI), 32(8), 1362–1376.

Geyer, M. S., & Johnson, E. N. (2006). 3D obstacle avoidance in adversarial

environments for unmanned aerial vehicles. 2006 AIAA Guidance,

Navigation, and Control Conference and Exhibit (AIAA GN&C).

Greer, D., McKerrow, P., & Abrantes, J. (2002). Robots in urban search

and rescue operations. 2002 Australasian Conference on Robotics and

Automation (ACRA), pp. 27–29.

Häne, C., Heng, L., Lee, G. H., Sizov, A., & Pollefeys, M. (2014). Real‐
time direct dense matching on fisheye images using plane‐
sweeping stereo. 2014 International Conference on 3D Vision

(3DV), Vol. 1, pp. 57–64.

Heng, L., Lee, G. H., Fraundorfer, F., & Pollefeys, M. (2011). Real‐time

photo‐realistic 3D mapping for micro aerial vehicles. 2011 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS),

pp. 4012–4019.

Hofer, M., Maurer, M., & Bischof, H. (2017). Efficient 3D scene abstraction

using line segments. Computer Vision and Image Understanding (CVIU),

157, 167–178.

Hoffmann, G. M., Waslander, S. L., & Tomlin, C. J. (2008). Quadrotor

helicopter trajectory tracking control. 2008 AIAA Guidance, Navigation

and Control Conference and Exhibit (AIAA GN&C).

Hoppe, C., Klopschitz, M., Donoser, M., & Bischof, H. (2013). Incremental

surface extraction from sparse structure‐from‐motion point clouds.

2013 British Machine Vision Conference (BMVC), Vol. 94‐1.
Hoppe, C., Klopschitz, M., Rumpler, M., Wendel, A., Kluckner, S.,

Bischof, H., & Reitmayr, G. (2012). Online feedback for structure‐
from‐motion image acquisition. 2012 British Machine Vision Con-

ference (BMVC), 2, 6.

Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C., & Burgard, W.

(2013). Octomap: An efficient probabilistic 3D mapping framework

based on octrees. Autonomous Robots, 34(3), 189–206.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to

statistical learning: With applications in R. London: Springer Publishing

Company Incorporated.

Johnson, E., Mooney, J., & Christophersen, H. (2013). Fourteen years of

autonomous rotorcraft research at the Georgia Institute of Technol-

ogy. 2013 2nd Asian/Australian Rotorcraft Forum and the 4th Interna-

tional Basic Research Conference on Rotorcraft Technology, pp. 229–238.

Karaman, S., & Frazzoli, E. (2011). Sampling‐based algorithms for optimal

motion planning. International Journal of Robotics Research (IJRR), 30(7),

846–894.

Karrer, M., Kamel, M., Siegwart, R., & Chli, M. (2016). Real‐time dense

surface reconstruction for aerial manipulation. 2016 IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems (IROS),

pp. 1601–1608.

Käslin, R., Fankhauser, P., Stumm, E., Taylor, Z., Mueggler, E., Delmerico, J.,

… Hutter, M. (2016). Collaborative localization of aerial and ground

robots through elevation maps. 2016 IEEE International Symposium on

Safety, Security, and Rescue Robotics (SSRR), pp. 284–290.

Kavraki, L. E., Svestka, P., Latombe, J.‐C., & Overmars, M. H. (1996).

Probabilistic roadmaps for path planning in high‐dimensional config-

uration spaces. IEEE Transactions on Robotics and Automation (T‐RA),
12(4), 566–580.

Klein, G., & Murray, D. (2009). Parallel tracking and mapping on a camera

phone. 2009 8th IEEE International Symposium on Mixed and Augmented

Reality (ISMAR), pp. 83–86.

Kneip, L., Scaramuzza, D., & Siegwart, R. (2011). A novel parametrization

of the perspective‐three‐point problem for a direct computation of

absolute camera position and orientation. 2011 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR).

Kondak, K., & Remuß, V.(2007). Multi‐purpose aerial robot vehicles with

intelligent navigation (MARVIN)—TU Berlin—Website. Retrieved from

http://pdv.cs.tu‐berlin.de/MARVIN/index.html Last checked:

29.11.2018; original: 23.10.2007.

Labatut, P., Pons, J.‐P., & Keriven, R. (2007). Efficient multi‐view
reconstruction of large‐scale scenes using interest points, delaunay

triangulation and graph cuts. 2007 IEEE 11th International Conference

on Computer Vision (ICCV), pp. 1–8.

Lau, B., Sprunk, C., & Burgard, W. (2013). Efficient grid‐based spatial

representations for robot navigation in dynamic environments.

Robotics and Autonomous Systems (RAS), 61(10), 1116–1130.

Lavalle, S. M. (1998, October). Rapidly‐exploring random trees: A new tool for

path planning. (Technical Report TR 98‐11). Computer Science

Department, Iowa State University.

Leberl, F., Irschara, A., Pock, T., Meixner, P., Gruber, M., Scholz, S., &

Scholz, S. (2010). Point clouds: LIDAR versus 3D vision. Photogram-

metric Engineering & Remote Sensing, 76(10), 1123–1134.

Leutenegger, S., Furgale, P. T., Rabaud, V., Chli, M., Konolige, K., &

Siegwart, R. (2013). Keyframe‐based visual‐inertial SLAM using

nonlinear optimization. 2013 Robotics: Science and Systems (RSS).

760 | PESTANA ET AL.

https://doi.org/10.1109/LRA.2017.2651163
http://pdv.cs.tu-berlin.de/MARVIN/index.html

Leutenegger, S., Lynen, S., Bosse, M., Siegwart, R., & Furgale, P. (2015).

Keyframe‐based visual‐inertial odometry using nonlinear optimiza-

tion. International Journal of Robotics Research (IJRR), 34(3), 314–334.

Lowe, D. G. (2004). Distinctive image features from scale‐invariant
keypoints. International Journal of Computer Vision, 60(2), 91–110.

Lynen, S., Sattler, T., Bosse, M., Hesch, J. A., Pollefeys, M., & Siegwart, R.

(2015). Get out of my lab: Large‐scale, real‐time visual‐inertial
localization. 2015 Robotics: Science and Systems (RSS).

Mellinger, D., & Kumar, V. (2011). Minimum snap trajectory generation

and control for quadrotors. 2011 IEEE International Conference on

Robotics and Automation (ICRA), pp. 2520–2525.

Mettler, B., Kong, Z., Goerzen, C., & Whalley, M. (2010). Benchmarking of

obstacle field navigation algorithms for autonomous helicopters. 2010

66th Forum of the American Helicopter Society (AHS): “Rising to New

Heights in Vertical Lift Technology.”

Mostegel, C., Rumpler, M., Fraundorfer, F., & Bischof, H. (2016). UAV‐
based autonomous image acquisition with multi‐view stereo quality

assurance by confidence prediction. 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 1–10.

Mourikis, A. I., Trawny, N., Roumeliotis, S. I., Johnson, A. E., Ansar, A., &

Matthies, L. (2009). Vision‐aided inertial navigation for spacecraft

entry, descent, and landing. IEEE Transactions on Robotics (T‐RO), 25(2),
264–280.

Mur‐Artal, R., Montiel, J. M. M., & Tardós, J. D. (2015). ORB‐SLAM: A

versatile and accurate monocular SLAM system. IEEE Transactions on

Robotics (T‐RO), 31(5), 1147–1163.
Mur‐Artal, R., & Tardós, J. D. (2015). Probabilistic semi‐dense mapping

from highly accurate feature‐based monocular SLAM. 2015 Robotics:

Science and Systems (RSS).

Mur‐Artal, R., & Tardós, J. D. (2017). ORB‐SLAM2: An open‐source SLAM

system for monocular, stereo, and RGB‐D cameras. IEEE Transactions

on Robotics (T‐RO), 33(5), 1255–1262.
Musial, M., Brandenburg, U. W., & Hommel, G. (2000). Cooperative

autonomous mission planning and execution for the flying robot

MARVIN. 2000 Sixth International Conference on Intelligent Autonomous

Systems (IAS‐6), pp. 636–643.
Newcombe, R. A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A.

J., … Fitzgibbon, A. (2011). KinectFusion: Real‐time dense surface

mapping and tracking. 2011 10th IEEE International Symposium on

Mixed and Augmented Reality (ISMAR), pp. 127–136.

Newcombe, R. A., Lovegrove, S. J., & Davison, A. J. (2011). DTAM: Dense

tracking and mapping in real‐time. 2011 IEEE International Conference

on Computer Vision (ICCV), pp. 2320–2327.

Nieuwenhuisen, M., & Behnke, S. (2016). Local multiresolution trajectory

optimization for micro aerial vehicles employing continuous curvature

transitions. 2016 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pp. 3219–3224.

Nistér, D. (2004). An efficient solution to the five‐point relative pose

problem. IEEE Transactions on Pattern Analysis and Machine Intelligence

(T‐PAMI), 26(6), 756–770.

Nous, C., Meertens, R., Wagter, C. D., & de Croon, G. (2016). Performance

evaluation in obstacle avoidance. 2016 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS), pp. 3614–3619.

Oleynikova, H., Burri, M., Lynen, S., & Siegwart, R. (2015). Real‐time visual‐
inertial localization for aerial and ground robots. 2015 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS),

pp. 3079–3085.

Oleynikova, H., Burri, M., Taylor, Z., Nieto, J., Siegwart, R., & Galceran, E.

(2016). Continuous‐time trajectory optimization for online UAV

replanning. 2016 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pp. 5332–5339.

Oleynikova, H., Taylor, Z., Fehr, M., Siegwart, R., & Nieto, J. (2017).

Voxblox: Incremental 3D Euclidean signed distance fields for

on‐board MAV planning. 2017 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pp. 1366–1373.

Pizzoli, M., Forster, C., & Scaramuzza, D. (2014). REMODE: Probabilistic,

monocular dense reconstruction in real time. 2014 IEEE International

Conference on Robotics and Automation (ICRA), pp. 2609–2616.

Pradeep, V., Rhemann, C., Izadi, S., Zach, C., Bleyer, M., & Bathiche, S.

(2013). Monofusion: Real‐time 3D reconstruction of small scenes with

a single web camera. 2013 IEEE International Symposium on Mixed and

Augmented Reality (ISMAR), pp. 83–88.

Qiu, K., Liu, T., & Shen, S. (2017). Model‐based global localization for aerial

robots using edge alignment. IEEE Robotics and Automation Letters

(RA‐L), 2(3), 1256–1263.
Richter, C., Bry, A., & Roy, N. (2013). Polynomial trajectory planning for

quadrotor flight. 2013 IEEE International Conference on Robotics and

Automation (ICRA).

Roberts, M., Dey, D., Truong, A., Sinha, S., Shah, S., Kapoor, A., … Joshi, N.

(2017). Submodular trajectory optimization for aerial 3D scanning.

2017 International Conference on Computer Vision (ICCV).

Rooz, N., Johnson, E. N., Wu, A., Christmann, C., Ha, J.‐C., Chowdhary, G.,

… Proctor, A. (2009). Experience with highly automated unmanned

aircraft performing complex missions. 2009 AIAA Guidance, Navigation,

and Control Conference (AIAA GN&C).

Rothermel, M., Wenzel, K., Fritsch, D., & Haala, N. (2012). SURE:

Photogrammetric surface reconstruction from imagery. 2012 Proceed-

ings LC3D Workshop.

Rumpler, M., Daftry, S., Tscharf, A., Prettenthaler, R., Hoppe, C., Mayer, G.,

& Bischof, H. (2014). Automated end‐to‐end workflow for precise and

geo‐accurate reconstructions using fiducial markers. Photogram-

metric Computer Vision at 2014 European Conference on Computer

Vision (ECCV). ISPRS Annals of Photogrammetry, Remote Sensing and

Spatial Information Sciences.

Rumpler, M., Tscharf, A., Mostegel, C., Daftry, S., Hoppe, C., Prettenthaler,

R., & Bischof, H. (2016). Evaluations on multi‐scale camera networks

for precise and geo‐accurate reconstructions from aerial and

terrestrial images with user guidance. Computer Vision and Image

Understanding (CVIU), 157, 255–273.

Scaramuzza, D., Achtelik, M. C., Doitsidis, L., Fraundorfer, F., Kosmato-

poulos, E., Martinelli, A., & Meier, L. (2014). Vision‐controlled micro

flying robots. IEEE Robotics & Automation Magazine (RAM), 21(3),

26–40. https://doi.org/10.1109/MRA.2014.2322295

Schenk, F., & Fraundorfer, F. (2017). Combining edge images and depth

maps for robust visual odometry. 2017 British Machine Vision

Conference (BMVC).

Schmid, K., Hirschmüller, H., Dömel, A., Grixa, I., Suppa, M., & Hirzinger, G.

(2012). View planning for multi‐view stereo 3D reconstruction using

an autonomous multicopter. Journal of Intelligent & Robotic Systems,

65(1), 309–323.

Schmuck, P., & Chli, M. (2017). Multi‐UAV collaborative monocular SLAM.

2017 IEEE International Conference on Robotics and Automation (ICRA),

pp. 3863–3870.

Schneider, J., Eling, C., Klingbeil, L., Kuhlmann, H., Förstner, W., &

Stachniss, C. (2016). Fast and effective online pose estimation and

mapping for UAVs. 2016 IEEE International Conference on Robotics and

Automation (ICRA), pp. 4784–4791.

Schneider, T., Dymczyk, M., Fehr, M., Egger, K., Lynen, S., Gilitschenski, I.,

& Siegwart, R. (2018). maplab: An open framework for research in

visual‐inertial mapping and localization. IEEE Robotics and Automation

Letters (RA‐L), 3(3), 1418–1425.
Shekhovtsov, A., Reinbacher, C., Graber, G., & Pock, T. (2016). Solving

dense image matching in real‐time using discrete‐continuous optimi-

zation. 2016 21st Computer Vision Winter Workshop (CVWW).

Stühmer, J., Gumhold, S., & Cremers, D. (2010). Real‐time dense geometry

from a handheld camera. In M, Goesele, Roth, S., Kuijper, A., Schiele,

B., & Schindler, K. (Eds.), 2010 Joint Pattern Recognition Symposium

(DAGM) (pp. 11–20). Berlin, Heidelberg: Springer.

Şucan, I. A., Moll, M., & Kavraki, L. E. (2012). The open motion planning

library. IEEE Robotics & Automation Magazine (RAM), 19(4), 72–82.

PESTANA ET AL. | 761

https://doi.org/10.1109/MRA.2014.2322295

Surber, J., Teixeira, L., & Chli, M. (2017). Robust visual‐inertial localization
with weak GPS priors for repetitive UAV flights. 2017 IEEE International

Conference on Robotics and Automation (ICRA), pp. 6300–6306.

Teixeira, L., & Chli, M. (2016). Real‐time mesh‐based scene estimation for

aerial inspection. 2016 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pp. 4863–4869.

Teixeira, L., & Chli, M. (2017) Real-time local 3D reconstruction for aerial

inspection using superpixel expansion. 2017 IEEE InternationalCon-

ference on Robotics and Automation (ICRA).

Triggs, B., McLauchlan, P. F., Hartley, R. I., & Fitzgibbon, A. W. (1999).

Bundle adjustment—A modern synthesis, 1999 International Workshop

on Vision Algorithms pp. (298–372). Berlin, Heidelberg: Springer.

Usenko, V., vonStumberg, L., Pangercic, A., & Cremers, D. (2017). Real‐
time trajectory replanning for MAVs using uniform b‐splines and a 3D

circular buffer. 2017 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pp. 215–222.

Vogiatzis, G., & Hernández, C. (2011). Video‐based, real‐time multi view

stereo. Image and Vision Computing (IVC), 29(7), 434–441.

Weiss, S., Achtelik, M., Kneip, L., Scaramuzza, D., & Siegwart, R.

(2011). Intuitive 3D maps for MAV terrain exploration and

obstacle avoidance. Journal of Intelligent & Robotic Systems, 61(1),

473–493.

Weiss, S., Achtelik, M. W., Lynen, S., Chli, M., & Siegwart, R. (2012).Real-

time onboard visual-inertial state estimation and self-calibration of

MAVs in unknown environments. 2012 IEEE International Conference

on Robotics and Automation (ICRA), pp. 957–964.

Wendel, A., Maurer, M., Graber, G., Pock, T., & Bischof, H. (2012). Dense

reconstruction on-the-fly. IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pp. 1450–1457.

Whelan, T., Leutenegger, S., Salas‐Moreno, R., Glocker, B., & Davison, A.

(2015). ElasticFusion: Dense SLAM without a pose graph. 2015

Robotics: Science and Systems (RSS).

Whelan, T., Salas‐Moreno, R. F., Glocker, B., Davison, A. J., & Leutenegger,

S. (2016). ElasticFusion: Real‐time dense SLAM and light source

estimation. International Journal of Robotics Research (IJRR),

35(14), 1697–1716. Retrieved from https://github.com/mp3guy/

ElasticFusion Last checked: 04.11.2017; original: 30.10.2015

Wu, C. (2007). SiftGPU: A GPU implementation of scale invariant feature

transform (SIFT). http://www.cs.unc.edu/~ccwu/siftgpu

How to cite this article: Pestana J, Maurer M, Muschick D,

Hofer M, Fraundorfer F. Overview obstacle maps for obstacle‐
aware navigation of autonomous drones. J Field Robotics.

2019;36:734–762. https://doi.org/10.1002/rob.21863

762 | PESTANA ET AL.

https://github.com/mp3guy/ElasticFusion
https://github.com/mp3guy/ElasticFusion
http://www.cs.unc.edu/~ccwu/siftgpu
https://doi.org/10.1002/rob.21863

