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In coronavirus disease 2019 (COVID-19), higher morbidity and mortality

are associated with age, male gender, and comorbidities, such as chronic lung

diseases, cardiovascular pathologies, hypertension, kidney diseases, diabetes

mellitus, and obesity. All of the above conditions are characterized by

increased sympathetic discharge, which may exert significant detrimental

effects on COVID-19 patients, through actions on the lungs, heart, blood

vessels, kidneys, metabolism, and/or immune system. Furthermore, COVID-

19 may also increase sympathetic discharge, through changes in blood gases

(chronic intermittent hypoxia, hyperpnea), angiotensin-converting enzyme

(ACE)1/ACE2 imbalance, immune/inflammatory factors, or emotional dis-

tress. Nevertheless, the potential role of the sympathetic nervous system has

not yet been considered in the pathophysiology of COVID-19. In our opin-

ion, sympathetic overactivation could represent a so-far undervalued mecha-

nism for a vicious circle between COVID-19 and comorbidities.

Introduction

In coronavirus disease 2019 (COVID-19), higher mor-

bidity and mortality are associated with comorbidities,

such as chronic lung disease, cardiovascular patholo-

gies, hypertension, kidney diseases, diabetes mellitus,

and obesity [1–3]. Conversely, COVID-19 deaths are

frequently caused by a final homeostasis dysregulation

caused not only by pulmonary damage but also by

cardiac, circulatory, renal, and/or metabolic effects.

Attention has been focused on the mechanisms

involved in the comorbidity-induced increase in mor-

bidity/mortality but the potential role of the sympa-

thetic nervous system has not yet been considered,

despite sympathetic activation represents one of the

specific characteristics of most above comorbidities

and it could play a detrimental effect on COVID-19

patients.

All comorbidities associated with
increased morbidity/mortality in
COVID-19 are characterized by
sympathetic overactivation

It is widely known that increased sympathetic dis-

charge is associated with chronic obstructive pul-

monary disease, obstructive sleep apnea syndrome,

cardiovascular diseases (hypertension, heart failure),

renal pathologies, and metabolic disturbances (dia-

betes, obesity, metabolic syndrome). Increase in
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peripheral hypoxic chemosensitivity is a common

mechanism stimulating sympathetic activation in the

above conditions [4–9], but other stimulatory mecha-

nisms are present.

Chronic obstructive pulmonary disease and obstruc-

tive sleep apnea syndrome increase sympathetic activa-

tion mainly through chronic intermittent hypoxia,

which acts by increasing the peripheral chemosensory

response [10,11].

In heart failure, the increased sympathetic outflow cor-

relates with disease progression and poor prognosis

[12,13]. It has been ascribed to decreased arterial/car-

diopulmonary baroreflex, increased chemosensitivity,

increased metabolic reflexes, or progression of correlated

renal insufficiency or sleep apnea syndrome [14–16].
Renal damage (for instance, experimental models of

renal ischemia–reperfusion) is also associated with

sympathetic activation, due to the activation of the

renal afferents and brain renin–angiotensin system.

Conversely, in a positive feedback loop, sympathetic

overactivity stimulates tubular Na+/H2O reabsorption,

decreases renal blood flow, and stimulates renin–an-
giotensin system. It also aggravates ischemia/reperfu-

sion-induced renal damage through pro-inflammatory

mechanisms (reviewed in Ref. [17]).

In obesity, diabetes, and metabolic syndrome, sym-

pathetic overactivity has been ascribed to high levels

of circulating insulin and leptin, which stimulate the

sympathetic outflow both centrally and peripherally,

and/or to chronic intermittent hypoxia due to obstruc-

tive sleep apnea [18,19]. Sympathetic overactivation in

turn increases insulin resistance, maintaining a positive

feedback loop [20].

The effects of smoking on COVID-19 are still highly

controversial, and conflicting data are present in the

literature. Epidemiological studies and meta-analyses

report unexpectedly low prevalence of smoking among

COVID-19 hospitalized patients [21]. Conversely, other

authors observed significant associations of smoking

with clinical progression and mortality of hospitalized

COVID-19 patients, consistently with the well-known

detrimental effects of smoking on lung function

[22,23]. The potential role of autonomic effects could

also warrant an evaluation, as cigarette smoking

results in increased sympathetic discharge and

decreased baroreflex activity [24–28].

Sympathetic overactivity may exert
significant detrimental effects on
COVID-19 patients

In COVID-19, the comorbidity-induced increase in

sympathetic activity may show negative effects on

pulmonary, cardiovascular, renal, metabolic, and

immune/inflammatory homeostasis.

In COVID-19, cardiovascular complications fre-

quently occur, including arrhythmias, myocarditis,

heart failure, and myocardial infarction [29]. All these

conditions are negatively affected by sympathetic over-

activation and could represent a way through which

comorbidity-induced sympathoactivation may increase

COVID-19 morbidity/mortality. In some reports,

myocardial injury has been reported in 20–40% of

hospitalized cases [30–33]. Cases of Takotsubo syn-

drome have also been reported in COVID-19 [34–37].
In this kind of stress-related cardiomyopathy, myocar-

dial injury is probably mediated by catecholamine-in-

duced vascular spasm and/or direct catecholamine

action on myocytes. In particular, catecholamine

release in response to cytokine storm, or metabolic

and emotional distress has been proposed to play a

role in COVID-19-related Takotsubo syndromes [34–
37], consistently with our hypothesis.

Acute kidney injury has been reported in > 20% of

severe or deceased COVID-19 patients, and chronic kid-

ney diseases are also significantly associated with severe

COVID-19 [2]. Moreover, the above mechanisms

involved in the vicious cycle between sympathetic overac-

tivity and renal function also show detrimental effects on

the cardiocirculatory [38,39] and lung [40] functions.

Thus, it appears reasonable that sympathetic activation

in comorbidities may exert negative homeostasis effects

in COVID-19 also through renal effects. Moreover, liver

injuries have also been reported in COVID-19 patients

[41] and sympathetic activation may also be detrimental

for liver function [42].

The autonomic system also exerts a modulatory role

on the immune system, and its potential role in the

complex immunological situation of COVID-19 is all

to be studied. Sympathetic nerve fibers innervate most

lymphoid organs, including bone marrow [43] and

adrenergic receptors are present in many different

immune cell types [44]. The effects of sympathetic sys-

tem on immune system are quite complex and depend

on the differentiation state of the immune cells. How-

ever, the evidence is available about a pro-inflamma-

tory effect at least in some tissues and experimental or

pathological conditions. For instance, in a mouse

model of angiotensin (Ang)II-mediated hypertension,

sympathetic stimulation produces noradrenaline-medi-

ated T-cell activation and vascular inflammation [45].

Bilateral ablation of renal sympathetic nerves prevents

immune activation and renal inflammation in a murine

model of AngII-induced hypertension [46]. Catheter-

based renal denervation has been demonstrated to

reduce monocyte activation and inflammation markers
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in hypertensive patients [47]. In an experimental mouse

model of chronic stress, hematopoietic stem cell prolif-

eration and increased output of neutrophils and

inflammatory monocytes have been reported, in

response to noradrenaline release by sympathetic nerve

fibers [48]. Increased sympathetic discharge through

the splenic nerve has also been reported to increase

cytokine release by splenocytes [49]. Conversely, the

vagal nerve has an inhibitory effect on tumor necrosis

factor-a (TNF-a) release by macrophages [50,51]. The

anti-inflammatory effects of the parasympathetic vagal

system have been observed also with reference to

intestinal diseases [52–54] and arthritis [55]. These

potential immune/inflammatory effects of a sympa-

thetic/parasympathetic imbalance seem particularly

intriguing in the pathophysiology of COVID-19, which

led to homeostasis derangement also through a ‘cy-

tokine storm’.

Apart from the above effects on systemic homeosta-

sis, increased sympathetic activity may have specific

detrimental effects on the respiratory system. Sympa-

thetic overactivation and the correlated renin–an-
giotensin system overflow play a pivotal role in

progression of pulmonary hypertension [56–58]. It has
been pointed out that angiotensin-converting enzyme

(ACE)1/ACE2 imbalance may contribute to progres-

sion to acute respiratory distress syndrome (ARDS) in

COVID-19 patients through pulmonary vasoconstric-

tion, inflammation, and oxidative and fibrotic damage

[29]. Sympathetic innervation is known to increase pul-

monary capillary leakage and favor ARDS [59–62].
Restrictive lung function has been associated with

increased sympathetic nerve activity in heart failure,

possibly due to interstitial pulmonary edema or

changes in alveolar capillary units [63].

Aging and male gender are also
associated with sympathoactivation

Risks of severe COVID-19 and related mortality

increase with advancing age and male gender, as also

sympathetic activation. In fact, muscle sympathetic

nerve activity (MSNA) has been reported to increase

with age in nonobese normotensive men and women,

the latter showing lower values for age < 50 years [64].

Conversely, children are known to be protect by severe

disease; various mechanisms are probably involved

(developmental changes in immunity, lower prevalence

of comorbidities, higher lung regenerative potential),

but a possible role of the quite complex maturation of

the sympathetic/parasympathetic balance may not be

excluded. For instance, plasma norepinephrine, which

is mainly derived from sympathetic nerve endings,

increases with advancing puberty in males [65]. Rele-

vant gender differences are present in obesity-induced

increase in sympathetic activity. For instance, resting

MSNA is positively correlated with body mass index

in men but not in women [66,67]. This gender-based

difference is partly explained by correlation of sympa-

thetic overactivation with abdominal fat, more than

subcutaneous one [68]. Thus, increased sympathetic

activation could (at least partially) contribute to the

pathophysiologic association of aging and male gender

with COVID-19 morbidity/mortality.

COVID-19 may furtherly increase
sympathetic output in a vicious circle

The sympathetic nervous system is activated by the

hypoxic and hypercapnic stimuli which characterize

respiratory dysfunctions. In particular, a large amount

of studies has stressed that chronic intermittent

hypoxia increases sympathetic output through

increased carotid body sensitivity. Thus, COVID-19-in-

duced alterations of the respiratory function may fur-

therly aggravate sympathetic overactivity (Fig. 1).

Fig. 1. Vicious circle between COVID-19 and comorbidities. Aging

and comorbidities (lung, cardiovascular, kidney, and metabolic

diseases) are characterized by sympathetic overactivity, which may

exert detrimental effects on lungs, heart, vessels, kidney,

metabolism, and/or immune system of COVID-19 patients. COVID-

19 may furtherly increase sympathetic discharge, through hypoxia,

ACE1/ACE2 imbalance, immune/inflammatory factors, and

emotional distress.
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COVID-19 may also activate the sympathetic

system through increased production and release

of AngII. The cellular receptor for severe acute

respiratory syndrome–coronavirus (SARS-CoV) and

SARS-CoV-2 is ACE2, a usually membrane-bound

homologue of angiotensin-converting enzyme. ACE2

is widely expressed not only in lungs but also in

other organs, such as heart, brain, kidney, and intes-

tine. ACE1 and ACE2 have different enzymatic func-

tions and produce different effects: ACE1 converts

AngI in AngII; ACE2 converts AngI in Ang(1–9),
which is then converted in Ang(1–7), and may also

convert AngII in Ang(1–7). Thus, in the different tis-

sues, a balance between the two pathways [ACE1/

AngII/angiotensin II type 1 receptor (AT1-R) and

ACE2/Ang(1–7)/Mas receptor (MasR)] is present,

which can be affected in various clinical conditions.

As a consequence, ACE2 decreases the production of

AngII in favor of Ang(1–7). AngII mediates vasocon-

striction, fibrosis, hypertrophy, and inflammation

through AT1-R binding; Ang(1–7) mediates vasodila-

tion, antifibrosis, antigrowth, and anti-inflammation

through MasR binding [4]. Apart from the above

effects, AngII mediates sympathoexcitation, whereas

Ang(1–7) mediates sympathoinhibition. Internalization

of SARS-CoV-2 causes inhibition of ACE2 activity

and progressive depletion of membrane-bound ACE2

[69–73], with ACE1/ACE2 imbalance and increase in

AngII.

Circulating AngII may increase the sympathetic out-

put both centrally, at the level of the circumventricular

organs (area postrema and subfornical organ) [58],

and peripherally, by acting on the carotid body

[58,74]. Thus, COVID-19-induced increase in AngII

(proportional to the viral load) [75] may represent an

additional way to furtherly worsen sympathoactivation

in comorbidities.

Moreover, the brainstem, and particularly the soli-

tary tract nucleus, is directly invaded by different types

of coronaviruses, so that neuroinvasion by SARS-

CoV-2 has also been hypothesized [76]. ACE2 is also

expressed in the solitary tract nucleus and carotid

body so that sympathetic activation may be furtherly

increased by local ACE1/ACE2 imbalance and AngII

stimulation.

In the COVID-19 severe patients, the occurrence of

a ‘cytokine storm’ [interleukin (IL)-6, IL-10, and

TNF-a] has been reported [77]. AngII may also acti-

vate macrophages and other immune cells to produce

inflammatory cytokines, such as IL-6, TNF-a, and

others [78–80]. Circulating cytokines mainly activate

the parasympathetic system, through the so-called

inflammatory reflex pathway, but in certain conditions

stimulation of the sympathetic output has also been

reported [81].

In the discussion of cardiovascular implications of

COVID-19, Guzik et al. [82] have recently recalled

that the activation of the sympathetic nervous system

is associated with viral infections themselves and even

with social isolation [83,84].

Conclusions

In conclusion, all comorbidities associated with

increased morbidity/mortality in COVID-19 are char-

acterized by sympathetic overactivation, similarly to

aging and male gender. Sympathetic overactivity may

exert significant detrimental effect on COVID-19

patients through its actions on lungs, heart, vessels,

kidney, metabolism, and/or immune system. In turn,

COVID-19 may also furtherly increase sympathetic

discharge through change in blood gases (chronic

intermittent hypoxia, hyperpnea), ACE1/ACE2 imbal-

ance, or cytokine release. Thus, sympathetic overacti-

vation could represent a so-far undervalued

mechanism at the basis of the vicious circle between

COVID-19 and comorbidities. Finally, it must be kept

in mind that the clinical course of COVID-19 is char-

acterized by different evolutionary phases and hetero-

geneous individual responses, so that the potential role

of the sympathetic nervous system will have to be

investigated consistently with this pathophysiological

and clinical complexity.
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