
| INVESTIGATION

Statistical Methods for Latent Class Quantitative Trait
Loci Mapping

Shuyun Ye,* Rhonda Bacher,* Mark P. Keller,† Alan D. Attie,† and Christina Kendziorski‡,1

*Department of Statistics, †Department of Biochemistry, and ‡Department of Biostatistics and Medical Informatics, University of
Wisconsin, Madison, Wisconsin 53706

ABSTRACT Identifying the genetic basis of complex traits is an important problem with the potential to impact a broad range of
biological endeavors. A number of effective statistical methods are available for quantitative trait loci (QTL) mapping that allow for the
efficient identification of multiple, potentially interacting, loci under a variety of experimental conditions. Although proven useful in
hundreds of studies, the majority of these methods assumes a single model common to each subject, which may reduce power and
accuracy when genetically distinct subclasses exist. To address this, we have developed an approach to enable latent class QTL
mapping. The approach combines latent class regression with stepwise variable selection and traditional QTL mapping to estimate the
number of subclasses in a population, and to identify the genetic model that best describes each subclass. Simulations demonstrate
good performance of the method when latent classes are present as well as when they are not, with accurate estimation of QTL.
Application of the method to case studies of obesity and diabetes in mouse gives insight into the genetic basis of related complex traits.
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IDENTIFYING the genetic loci underlying a complex trait is
a challenging problem that has received considerable at-

tention, with robust statistical methods and software now
available for identifying multiple, potentially interacting
quantitative trait loci (QTL). Broman (2001) and Mackay
et al. (2009) provide comprehensive reviews. Although useful,
traditional methods assume a single genetic model common to
all subjects. This assumption is often violated in practice, for
example, when subpopulations having traits governed by dis-
tinct genetic models are present. When the assumption of a
single model common to all subjects is violated, methods that
rely on it may fail to identify important loci.

The idea of subpopulations governed by distinct genetic
models is a common one, and, in the simplest of cases,
standard methods apply. For example, a phenotype governed
by two geneticmodels, one formales and one for females (i.e.,
sex defines the subpopulation), can be well represented by a

linear model with an interaction term. A similar example
applies to subpopulations governed by genotype at a marker.
For example, suppose, in a backcross, quantitative trait y
follows the model y ¼ mþ a1x1 þ a2x2 þ bx1x2 þ e; where
x1 and x2 represent genotypes at two markers (homozygotes
and heterozygotes with levels 0 and 1, respectively), and e is
the Gaussian error term. The model can be rewritten as:

y ¼ mþ a1x1 þ e1; x2 ¼ 0
y ¼ ðmþ a2Þ þ ða1 þ bÞx1 þ e2; x2 ¼ 1

�

Here, for subpopulations defined by different levels of x2; x1
has a different effect on y, as the coefficients of x1 in the two
models differ from each other.

This work concerns the case where subpopulations, re-
ferred to hereinafter as classes, are not defined by a known
covariate (such as sex, age, marker genotype, etc.), but rather
by factors that are unknown a priori. Specifically, we devel-
oped a model-based approach to facilitate QTL mapping in
experimental crosses, allowing for the possibility that there
may be two latent classes of subjects within a cross, each with
its own genetic model affecting a trait. The approach allows a
user to estimate the likelihood that two classes of subjects are
present, and to estimate the genetic model within each class.
Simulations suggest improvements in power when multiple
classes are present, with a modest decline in operating
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characteristics relative to standard approaches when they are
not. Further advantages are demonstrated in case studies of
obesity and diabetes in mouse.

Materials and Methods details the so-called latent class
QTL mapping method (lcQTL), which combines traditional
QTL mapping methods with latent class regression. Simula-
tion studies to evaluate the operating characteristics of lcQTL
compared to traditional QTL mapping approaches are given
in the sections Simulated data and Evaluation of operating
characteristics. An application of lcQTL to two obesity and
diabetes case studies shows that many obesity and diabetes
related clinical traits have two QTL classes, with novel QTL
discovered in some cases. An analysis of genome-wide ex-
pression data from the same subjects provides insights into
class separation (Results).

Methods

Latent class regression

Latent class regression (LCR) methods have been developed
to estimate a regression model in the presence of subclasses
when predictors are known but subclasses are not. Whereas
traditional regression assumes that the relationship between
predictors and a response can be described using one model,
LCR accommodates the situation in which the relationship
changes across latent classes. Specifically, the LCR model
(Wedel and DeSarbo 1995), with a fixed number of K com-
ponents, assumes K different classes in the data defined by
the relationship between a response y and p predictor(s) xi;
i ¼ 1; . . . ; p: Within each class, the relationship between y
and xi is described by a linear model with a Gaussian error
term. In different classes, the x9i s have different effects on y,
and thus the coefficients (bik; i ¼ 1; . . . ; p; k ¼ 1; . . . ;K) are
different between different classes. For fixed K, the coeffi-
cients of the linear model and error term variance are esti-
mated via the expectation-maximization (EM) algorithm
(Dempster et al. 1977). Once the parameters are obtained,
the optimal number of classes is estimated using an informa-
tion criterion such as the Bayesian information criterion
(BIC) (Schwarz 1978). Fiara and Soromenho (2010) provide
further details, and a literature review of LCR.

Stepwise latent class QTL mapping (lcQTL)

lcQTL mapping: To enable lcQTL mapping, we combine
traditional QTL mapping methods with LCR and stepwise

regression. In short, given a quantitative trait y and genotype
data on an experimental cross, candidate markers are se-
lected. Stepwise regression is then performed for a one-class
model and two-class model separately. To compare the fitted
models, an information criterion specific to lcQTL mapping is
developed. Details of each step follow.

Candidate marker selection: We define a generalized LOD
(gLOD) score for a k class QTL model gk as follows:

gLODðgkÞ ¼ log10
P  ðdatajgkÞ

P  ðdatajnull modelÞ
� �

where gk represents a k-class LCR model, and the null model
contains no QTL. For the one-class model, a standard LOD
score profile is calculated via simple marker regression; for
the two-class model, a gLOD profile is calculated for K ¼ 2
using LCR one marker at a time. Candidate markers in the
one (two) class model are selected as those having high LOD
(gLOD) scores, using the marker selection method described
in Wang et al. (2011).

Model estimation: For the one-class model, forward regres-
sion is conducted using the candidatemarkers identified until
the number of QTL reaches a user-defined maximum; back-
ward elimination is then conducted. In both forward and
backward elimination, markers are added or deleted based
on the BIC; and relevant covariates (age, sex, etc.) are in-
cluded. The user-definedmaximum is variedwithin a range to
generate a number of candidate models. A penalized gLOD
score, p-gLOD, is developed to select a model from the
candidate models. As with the penalized LOD score (pLOD)
developed by Manichaikul et al. (2009), p-gLOD penalizes
the number of QTL in the model, but p-gLOD also penalizes
each QTL by significance level, which improves power and
FDR. Specifically, p-gLOD is defined as:

p2 gLODa   ðgÞ  ¼ gLOD  ðgÞ  2 l*
XS
j¼1

 
�
Ta2Tdiff

a; j

�

where j indexes markers in the model; Ta is a genome-wide
gLOD score significance threshold; Tdiff

a; j is the difference be-
tween the gLOD score of the jth marker and Ta; and l is a
coefficient that determines the penalty strength. Ta is chosen
as the 1–a quantile of the genome-wide maximum gLOD
scores under the null hypothesis of no QTL, derived from
permutations; and l is estimated via simulations. The pro-
cedure is repeated for two-class model estimation.

Table 1 Simulation set up

Simulation # Classes
Range of % Variance
Explained in Class 1

Range of % Variance
Explained in Class 2

Range of % Variance Explained
Assuming One Class Model

Ia 2 (30, 50) (30, 50) (10, 20)
Ib 2 (30, 50) (30, 50) (10, 20)
Ic 2 (30, 50) (30, 50) (10, 20)
II 1 — — (10, 20)
III 1 — — 0

In each simulation, the percentage of variance explained in each class and overall is controlled within the range indicated.

1310 S. Ye et al.



Evaluation of evidence for multiple classes: In standard LCR,
BIC is the most common criteria used to determined the
number of classes in the population (Magidson and Vermunt
2004). However, in complex trait mapping, the percentage
of variance explained by QTL is relatively low, in which
case the BIC lacks power for detecting the existence of
latent classes (Tofighi and Enders 2008; Tueller and Lubke
2010). To address this, we use AICc (Hurvich and Tsai 1989)
for evaluating evidence of multiple classes. For a model
with n observations and p free parameters, AICc is defined
as follows:

AICc ¼ AICþ 2pð pþ 1Þ
n2 p2 1

where AIC is 22 * LLþ 2 p; with LL indicating the log likeli-
hood of the model. AICc d denotes the difference between the
one- and two-classmodels. Here, AICc d = 2 and AICc d = 6 are
considered as moderate and strong evidence of model
differences, as in Kass and Raftery (1995).

Detecting factors associated with classes: As noted above,
relevant covariates are adjusted for when estimating the best
one- or two-class models. If, after adjusting for obvious cova-
riates, there is strong evidence in favor of a two-classmodel, it
maybeof interest to identify additional factors associatedwith
the classes. Interactions amongmarkers not considered in the
initial model, as well as other covariates such as expression
probes or clinical variables, are all possible factors that may
be at least in part driving differences between the classes. To
evaluate possible factors, we conduct association tests. A
subject is assigned into the class having highest posterior
probability estimated through the EM algorithm. For factor
variables, x2 test statistics are calculated, while, for numeri-
cal variables, Student’s t-test statistics are used. Each test
requires assignment of subjects into classes, and a number
of methods could be used. Here, we assign a subject into the
class having highest posterior probability as is common in
LCR (Fraley and Raftery 2002; Leisch 2004). The top N factors
(thosewith strongest associations) are considered candidates in

a forward-backward regression, with each candidate factor
evaluated using AICcd: The factors included in the model
after this stepwise regression are considered factors asso-
ciated with the classification if, when factors are included
in the model, there is strong evidence of the one-class over
the two-class model as assessed via AICc. The idea is that,
once the main factors driving class separation are all in-
cluded in the model, the one-class model should be
sufficient.

Software implementation

All analyses were carried out using R version 3.2.2. For
comparisons, we considered scanone (Broman 2003) and
stepwiseqtl (Manichaikul et al. 2009) in R/qtl version 1.37–
11, and Wang’s multiple-QTL mapping method version
1.1.3.3 Wang et al. (2011) in R. Each approach was applied
using default settings as described in the respective vi-
gnettes. Briefly, for scanone, we assume the normal model,
and use the EM algorithm to estimate the parameters. For
stepwiseqtl, we assume the normal model, and use multiple
imputation as described in Sen and Churchill (2001). For
Wang’s multiple-QTL mapping methods, we use BIC(2) as
the penalty function. In each step of the stepwise regression
detailed in Model estimation, we use the EM algorithm
implemented in the R flexmix package (Leisch 2004) version
2.3.13 for parameter estimation. The EM in flexmix is ini-
tialized using a random assignment of observations to mix-
ture components (Grun and Leisch 2007), and we used this
default setting in our application. The hard assignment
method in flexmix; also known as maximizing the classifica-
tion likelihood (Fraley and Raftery 2002), was used for
membership assignment. This approach assigns a subject
into the class with highest posterior probability. Running
lcQTL on a clinical trait with sample size of 500 and
2000 markers takes �30–45 min on an Intel Xeon E5645
with 2.40 GHz and 128 GB of RAM, depending on EM
convergence time. Note that this does not include the
computation time for permutations to determine Ta; the
genome-wide gLOD score significance threshold.

Figure 1 The left barplot shows the average percentage of correct calls by lcQTL for identifying the number of classes in each simulation setting. The
middle and right barplots show the average power and FPR of QTL discovery by lcQTL and three QTL mapping methods. Averages are calculated over
1000 simulations. SE (data not shown) were ,0:006 for power and , 1:41031025 for FPR.
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Evaluation

Whenevaluating results,weused7.5 cMwindows (67.5 cM
on each side of the true QTL position) to determine whether
each detected QTL is a true or false positive. These and other
operating characteristics were defined as follows. True Posi-
tive: a detected QTL is within the 15 cM window. False Pos-
itive: a detected QTL is not within the 15 cM window. False
Negative: a true (simulated) QTL is not detected. Power:
(# of True Positive QTL)/(# of true QTL). FPR: (# of False
Positive QTL)/(# of QTL being considered – # of true
QTL). Percentage of variance explained: 12 ðSSresÞ=ðSStotÞ;
where: SSres ¼

Pn
i¼1ð yi2byiÞ2 and SStot ¼

Pn
i¼1ð yi2�yÞ2;

where i ¼ 1; 2; . . . ; n indexes n subjects, and yi indexes phe-
notype for the ith subject. �y is the mean value of
yi; i ¼ 1; . . . ; n; and ŷi is the fitted value of yi: For traditional
QTL mapping methods, and for lcQTL when there is only one
class estimated, ŷi is the fitted value calculated from the es-
timated QTL model. For lcQTL when there are two classes
estimated, ŷi is calculated as ŷi ¼

P2
k¼1Tik ŷik; where k is the

index of classes, Tik is the posterior probability of subject i
belonging to class k from EM algorithm, and ŷik is the fitted
value of y for the ith subject assuming the QTL model of
class k.

Data

Simulated data: Three different sets of simulations were
generated to evaluate the performance of the lcQTL mapping
method. The number of classes in the data (one or two), as
well as the extent of overlap among QTL in the two-class
models, were varied across simulations as described below.
In each simulation, the genotype data were taken from an
F2 intercross between C57BL/6 (B6) and BTBR mice with
519 mice genotyped at 2057 markers (described in detail in
Case studydata); 500of the519mice, and3of the2057markers
(denoted as x1; x2; and x3) were chosen at random (chromo-
some 1, 33.82 cM; chromosome 3, 69.63 cM; and chromo-
some 5, 57.05 cM). For each set of simulations, parameters,
error terms, and effect sizes were chosen to match features
observed in the F2 intercross (see Supplemental Material, File
S1 for details).

We simulate data in two classes (Simulation I), one class
(Simulation II), and noise only (Simulation III) to mimic
real data. In each simulation, the parameters (effect size
and variance of error term) are chosen so that the percentage
of variance explained in each class (when there are two clas-
ses), and in the whole dataset matches real data. See Table 1
for details. In Simulation I, the two classes are unbalanced in

size (200 samples in class 1, 300 samples in class 2) as un-
balanced class size is common in applications. Simulation Ia,
Ib, and Ic have different extents of overlapping QTL. In Sim-
ulation Ia and Ib, for the overlapping QTL of the two classes,
their effect size in one of the classes is.2 times the effect size
in the other class to distinguish the class difference. Specifics
on effect sizes (reported as percentage of variance explained)
are given in Table 1. In each simulation, the percentage of
variance explained in each class and overall is controlled
within the range indicated.

In the simulations Ia, Ib, and Ic, the first class has
200 subjects, and the second has 300 subjects. In simula-
tion Ia (full overlap), all three QTL, x1; x2; and x3 are pre-
sent in each class, with different effect sizes between classes
(the effect size for each marker is more than twice as big in
one class than the other). In Simulation Ib (partial over-
lap), the first class has QTL x1 and x2; and the second class
has QTL x2 and x3: Simulation Ic has no overlap among
QTL. Specifically, the first class has QTL x1 and x2; and the
second class has QTL x3: Simulation II consists of a one-
class model with 500 subjects and three QTL; Simulation
III is noise only.

Case study data

We consider two case studies. The first is a backcross from a
study of obesity (Reifsnyder et al. 2000) containing 204 male
mice each genotyped at 85 markers. The mice are generated
by crossing the obese, diabetes-prone NZO strain to the rel-
atively lean NON strain, and then backcrossing the obese F1
mice to the NON strain. This study measured 24 phenotypes
closely related to obesity including body weight, glucose, and
insulin level for multiple weeks, and fat pad weights. The
second dataset considered is an F2 intercross (C57BL/6
(B6) 3 BTBR) from a study of diabetes in mouse (Wang
et al. 2011; Tu et al. 2012) with 519 mice (244 females and
275 males). Each mouse is genotyped at 2057 markers and
phenotyped for 128 diabetes-related clinical phenotypes in-
cluding body weight, insulin level, urinary sodium, and
monocyte chemoattractant protein-1 (MCP-1). In addition,
mRNA expression traits are available for 40,572 transcripts
profiled in islet.

Data availability

The authors state that all data necessary for confirming the
conclusions presented in the article are represented fully
within the article.

Table 2 Interactions detected by Reifsnyder et al. (2000) for
plasma glucose at 20 weeks

Variable 1 Variable 2 Variable 3

Two-way interaction D17Mit61 Pedigree —

D2Mit182 D15Mit26 —

Three-way interaction D1Mit123 D12Mit150 Pedigree
D1Mit76 D17Mit61 Pedigree

Table 3 Interactions associated with classes identified by lcQTL for
plasma glucose at 20 weeks in the mouse backcross of Reifsnyder
et al. (2000)

Variable 1 Variable 2 Variable 3 Overlap

Two-way interaction D1Mit213 Pedigree — Partial
D6Mit58 Pedigree — New

Three-way Interaction D5Mit7 D17Mit61 Pedigree Partial

Note that D1Mit213 is 4 cM away from D1Mit123, and so we consider it a partial
overlap with the interactions discovered by Reifsnyder et al. (2000).
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Results

Evaluation of operating characteristics

Simulation studies were conducted to investigate the operat-
ingcharacteristics of lcQTL,and toassesshowlcQTLcompares
with competing approaches. Specifically, we considered
lcQTL, traditional QTL mapping as implemented in scanone
(Broman 2003) in R/qtl, stepwiseqtl (Manichaikul et al. 2009)
in R/qtl, and Wang’s multiple-QTL mapping method Wang
et al. (2011). Details on each version and settings are given in
Supplemental Section 1. Figure 1 shows the percentage of
times the correct number of classes was identified by lcQTL,
power, and false positive rates averaged over each set of
simulations. Additional rates are provided in Table S1 in
File S1.

Figure 1 demonstrates that lcQTL is able to detect the
correct number of classes when latent classes are present
(simulations Ia, Ib, and Ic) as well as when they are not
(simulations II and III). Also, when latent classes are pre-
sent, lcQTL has higher power and reduced false identifica-
tions relative to traditional QTL mapping methods. The
biggest advantage is observed when there are two classes
that do not share all QTL, as in simulations Ib and Ic. In
addition, when latent classes are not present, the power
and FPR of lcQTL is comparable to traditional methods.

In addition to simulation studies, to evaluate the perfor-
mance of lcQTL we consider the phenotype urinary protein
from the F2 mouse study, described in Case study data, since
this phenotype is known to have a strong sex effect. As
detailed in Methods (lcQTL mapping), the lcQTL approach

assumes that standard covariates such as sex are adjusted
for in the model, and so any latent classes identified should
not be due to differences in these standard covariates. The
lcQTL approach did not identify urinary protein as having
latent classes. However, as a test of lcQTL, we fit the model
without including sex. If lcQTL is effective, it should identify
two classes for urinary protein when sex is not included in the
original model. We found this to be the case, with lcQTL
finding strong evidence of two classes (AICcd ¼ 101:663).

To test the procedure described in lcQTL mapping for
identifying factors associated with class membership, we
evaluated associations for sex, 40,572 expression probes,
and two-way interactions between markers and sex as can-
didate factors. The top N ¼ 50 associations were used in sub-
sequent stepwise regressions. Of these, sex, interactions
between sex and two markers (Chr1.33 and Chr13.24 cM),
and the expression probe associated with Kdm6a (a gene on
chromosome X), were the factors that were identified as driv-
ing the two classes. This proof-of-principle test demonstrates
that lcQTL is effective at identifying meaningful subclasses,
and in detecting factors associated with distinctions between
the classes.

As a second proof-of-principle evaluation, we consider the
phenotype plasma glucose at 20 weeks from Reifsnyder et al.
(2000). Clearly, with real data, the true underlyingmodel can
only be estimated, not known. However, plasma glucose at
20 weeks was analyzed extensively by Reifsnyder et al.
(2000) using both statistical and visual analyses, and so we
consider the model derived in that work as a standard to
which we compare results from lcQTL. The model identified

Figure 2 Percentage of variance explained for the 12 clinical traits iden-
tified as having two classes via lcQTL in the mouse backcross of Reifsnyder
et al. (2000).

Figure 3 Percentage of variance explained for the 12 clinical traits iden-
tified as having one class via lcQTL in the mouse backcross of Reifsnyder
et al. (2000).
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by Reifsnyder et al. (2000) contained a number of interacting
markers. As described in the Introduction, like sex, the geno-
type groups at interacting markers define subclasses of sub-
jects, and, consequently, if lcQTL mapping is effective, it
should identify two classes for plasma glucose at 20 weeks
when interacting markers are not included in the original
model. As with the prior example, we found this to be the
case, with lcQTL finding strong evidence of two classes
(AICcd ¼ 107:907). Furthermore, an investigation of the
classes as described in lcQTL mapping should reveal an asso-
ciation between class and interacting markers for at least
some of the interactions identified in Reifsnyder et al.
(2000). To test this, we considered two-way and three-way
marker interactions as possible candidates for driving factors.
The top N ¼ 50 associations were used in subsequent step-
wise regressions. Table 2 lists the interactions identified by
Reifsnyder et al. (2000); Table 3 lists the interactions found
by our procedure, with the right column indicating the over-
lap with the interactions detected by the original paper.

As shown, a number of the interactions identified by
Reifsnyder et al. (2000) are similar to those identified using
lcQTL. Specifically, Table 2 lists the four interactions detected
by Reifsnyder et al. (2000), with two significant two-way
interactions and two significant three-way interactions. Table
3 indicates that our procedure detects three interactions that

are associated with the classes. There are one two-way and
one thee-way interactions that partially overlap with interac-
tions previously identified in Reifsnyder et al. (2000). Clearly,
in practice, there is no substitute for a comprehensive analy-
sis that involves weighing multiple lines of evidence (as was
done in Reifsnyder et al. 2000). However, the similarity of
interactions between Reifsnyder et al. (2000) and lcQTL sug-
gests that lcQTLmappingmay be useful for identifyingmean-
ingful classes, and also that the automated procedure
outlined for identifying factors associated with each class
may prove useful in practice, especially when multiple phe-
notypes are of interest (and a comprehensive analysis for
each one is not possible), and/or when factors driving the
existence of multiple classes are not measured or easy to
identify a priori.

Case studies

To illustrate how lcQTL may be used in practice, we applied
the approach to the two case studies described in Case study
data. Two classes were identified for 12 of the 24 phenotypes
in the mouse backcross of Reifsnyder et al. (2000), including
body weight at 20 weeks, plasma glucose at 20 weeks, and
insulin at 20 weeks. Table S2 in File S1 lists the 12 traits;
and Figure 2 shows the percentage of variance explained
by lcQTL, compared to several traditional QTL mapping

Figure 4 LOD score profiles for body weight at 20 weeks (upper) and plasma glucose at 20 weeks (lower) in the mouse backcross of Reifsnyder et al.
(2000). The first column shows the LOD score profiles calculated from all of the data. The second and third columns are LOD score profiles in each of the
classes detected by lcQTL. The red horizontal line is the LOD score threshold obtained by permutations (significance at 5%). The last column is a barplot
of coefficients estimated within each of the classes.
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methods. For each trait, the percentage of variance explained
by lcQTL is substantially higher compared to traditional meth-
ods that assume a single class, suggesting that the model iden-
tified by lcQTL better describes the phenotypes in these cases.
For comparison, Figure 3 shows a similar plot, but for pheno-
types where lcQTL finds only a single class. In these cases, the
increase in percentage of variance explained is not observed,
as expected, suggesting that overfitting by lcQTL is not respon-
sible for the increase in percentage of variance explained.

Figure 4 provides more detailed information on the two
classes identified for body weight at 20 weeks and plasma

glucose at 20 weeks [similar plots for the other phenotypes
from studies by Reifsnyder et al. (2000) and Keller et al.
(2008) are provided in Figure S1 and Figure S2]. For body
weight at 20 weeks, the classes identified have distinct QTL,
one of which would not have been identified using traditional
approaches. The first class has one QTL on chromosome 1,
while the second class has two QTL on chromosomes 1 and
12. For plasma glucose at 20 weeks, classes 1 and 2 have
QTL on chromosomes 1 and 15, respectively.

We also applied lcQTL to the 128 diabetes-related clinical
traits, adjusting for sex; 8 of the 128were identified as having

Figure 5 LOD score profiles and coefficient plots for four clinical traits identified as having two classes in the mouse F2 intercross of Wang et al. (2011)
and Tu et al. (2012). Each row represents a trait. The first column shows the LOD score profiles calculated from all the data; the second and third
columns are LOD profiles calculated within each class. The red horizontal lines represent the LOD score thresholds obtained by permutations (signif-
icance at 5%). New QTL discoveries are marked in the figure. The last column is a barplot of coefficients estimated within each of the classes.
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two classes. As in the previous case study, the percentage of
varianceexplainedby lcQTL isgreatly increasedover standard
methods when two classes are identified for all of the traits
(see Table S3 in File S1). Figure 5 shows the LOD score profiles
when considering all the data together as well as within each
class for four clinical traits: insulin at 10 weeks, weight at
10 weeks, urinary sodium, and MCP-1. For each of the traits,
there is a distinct mapping structure within each class relative
to the full dataset. For some of the phenotypes, novel QTL are
identified. For example, weight at 10 weeks and urinary so-
dium shownovelQTL on chromosome 12. In both cases, there
was some evidence of this QTL in the full dataset, just not
enough to reach significance. For other phenotypes, the same
QTL are present, but their effects are distinct among classes.
The coefficient plot for insulin at 10 weeks shows that theQTL
on chromosome 2 has a stronger effect in class 2; similarly for
MCP-1, the QTL on chromosome 13 is stronger in class 1.

To investigate the factors potentially driving class separa-
tion for each of the four phenotypes shown in Figure 5, we
evaluated associations for 40,572 expression probes, and
two-way interactions between markers as described in lcQTL
mapping. The top N ¼ 50 associations were considered in the
stepwise regression. Table 4 lists the factors associated with
classification found by our procedure for each of the four
clinical traits.

Some of the genes associated with the classification of the
clinical traits are known to be related to diabetes. Pyy, for
example, associated with the classification of insulin and
glucose at 10 weeks, is known to be an early indicator of
Type II diabetes (Viardot et al. 2008). Pitnner et al. (2004)
have also shown that Pyy administration reduces body
weight gain and glycemic indices in diverse rodent models

of metabolic disease, and thus may be used as a therapeutic
target of obesity (De Silva and Bloom 2012). Karra et al.
(2009) showed that low circulating Pyy concentrations pre-
dispose mice and humans to the development and/or main-
tenance of obesity. Another factor, Gp5, is known to be
involved in fasting blood glucose in patients with Type II
diabetes (Aleil et al. 2008).

Discussion

With advances in technologies for genotyping and phenotyp-
ing, QTLmapping studies involving thousands ofmarkers and
traits are becoming increasingly common. Such studies pro-
vide an unprecedented opportunity to identify more refined
genetic models, but, to do so, advances in QTL mapping
techniques are required. This work addresses the situation
in which a population of interest is not well described by a
single genetic model, due to the presence of genetically
distinct subpopulations (whichwehave referred toas classes).
As we discuss in the Introduction, standard QTL mapping
methods accommodate such situations when the subclasses
are well defined by known covariates (e.g., age and sex). On
the other hand, when the presence and/or nature of sub-
classes are unknown, the lcQTL mapping method developed
here is expected to prove useful.

Specifically, the simulation and case studies presented
suggest that lcQTL mapping is effective at identifying the
correct number of subclasses within a population when two
subclasses are present, and does not hinder efficiency if
applied to data with one common class. Accurate estimation
of the genetic model in the case of one or two classes is also
achieved. While lcQTL could, in theory, be applied to identify
three or more classes, sample sizes such as those considered
here are a limiting factor, and we did not evaluate the per-
formance of lcQTL in this setting. In cases where two classes
are identified, it will be of interest to determine potential
factors affecting the genetic differences between classes; to-
ward this end, a number of methods may prove useful. We
have detailed one straightforward approach that amounts to
testing for association between candidate factors and class
membership. Once candidate factors are identified, stepwise
regression is used to determine which factors, if any, suffi-
ciently explain class differences. While this approach per-
formed well in proof-of-principle experiments (where sex
was known to separate the class, for example), other ap-
proaches that consider groups of traits simultaneously may
further improve the sensitivity with which factors may be
identified.Automatedmethods fordetermining thenumberof
candidates considered should also prove useful, and exten-
sions to accommodate multiple trait distributions would
broaden the applicability of lcQTL mapping.

As presented, lcQTL mapping assumes that, perhaps fol-
lowing appropriate transformation, phenotypes are normally
distributed conditionally on genotype. It would be relatively
straightforward to accommodate responses that follow other
distributions, such as Bernoulli or other distributions from the

Table 4 Factors associated with classes identified by lcQTL for
insulin at 10 weeks, weight at 10 weeks, urinary sodium, and
MCP-1 in the mouse F2 intercross of Wang et al. (2011) and Tu
et al. (2012)

Clinical Trait Factors Associated with Class Separation

Insulin 10 wk Mtfp1
Ppy

Vash2
Weight 10 wk Gp5

Ppy
Trank1

Chr1.100 3 Chr2.19 cM
Urinary sodium Kcnd3os

Zhx3
Chr8.35 3 Chr10.14 cM

MCP-1 Igsf11
Trmt1l
Adgrg7

10003836252 (probe)
10002919295 (probe)

Wdr64
Meox2
Rftn2

1700017H01Rik
Gm9817
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exponential family (GrunandLeisch2008). Amore important
but related consideration is identifiability. While it is well
known that mixtures of univariate normal and exponential
distributions are identifiable (Leisch 2004), mixtures of dis-
crete or continuous uniform distributions are not. Although
we assume conditional normality of the data, andwe perform
transformations if necessary prior to analysis, this assumption
should be checked (via qq-plots or normality tests, such as
Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-
Darling tests (Razali and Wah 2011)) since extreme viola-
tions could result in two-classes being falsely identified.

In summary, lcQTL mapping is expected to prove useful in
numerous QTL mapping studies where latent subclasses of
subjects defined by distinct genetic models exist. It gives
insight into the genetic structures underlying the classes
discovered,andimproves thepercentageofvarianceexplained
by the full genetic model. Future work on improving the
sensitivity of factors associated with class discovery, and on
extending lcQTL to multiple trait distributions, is underway.
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