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Background: Acute myeloid leukemia (AML) is a hematological malignancy with a dismal
prognosis. For over four decades, AML has primarily been treated by cytarabine
combined with an anthracycline. Although a significant proportion of patients achieve
remission with this regimen, roughly 40% of children and 70% of adults relapse. Over 90%
of patients with resistant or relapsed AML die within 3 years. Thus, relapsed and resistant
disease following treatment with standard therapy are the most common clinical failures
that occur in treating this disease. In this study, we evaluated the relationship between
AML cell line global metabolomes and variation in chemosensitivity.

Methods: We performed global metabolomics on seven AML cell lines with varying
chemosensitivity to cytarabine and the anthracycline doxorubicin (MV4.11, KG-1, HL-60,
Kasumi-1, AML-193, ME1, THP-1) using ultra-high performance liquid chromatography –
mass spectrometry (UHPLC-MS). Univariate and multivariate analyses were performed on
the metabolite peak intensity values from UHPLC-MS using MetaboAnalyst to identify
cellular metabolites associated with drug chemosensitivity.

Results: A total of 1,624 metabolic features were detected across the leukemic cell lines.
Of these, 187 were annotated to known metabolites. With respect to doxorubicin, we
observed significantly greater abundance of a carboxylic acid (1-aminocyclopropane-1-
carboxylate) and several amino acids in resistant cell lines. Pathway analysis found
enrichment of several amino acid biosynthesis and metabolic pathways. For cytarabine
resistance, nine annotated metabolites were significantly different in resistance vs.
sensitive cell lines, including D-raffinose, guanosine, inosine, guanine, aldopentose, two
xenobiotics (allopurinol and 4-hydroxy-L-phenylglycine) and glucosamine/mannosamine.
Pathway analysis associated these metabolites with the purine metabolic pathway.

Conclusion: Overall, our results demonstrate that metabolomics differences contribute
toward drug resistance. In addition, it could potentially identify predictive biomarkers for
chemosensitivity to various anti-leukemic drugs. Our results provide opportunity to further
explore these metabolites in patient samples for association with clinical response.
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INTRODUCTION

Acute myeloid leukemia (AML) is a hematological disease
resulting from proliferation and expansion of malignant myeloid
cells. Successful treatment of AML requires the achievement of
complete remission. Therefore, chemotherapeutic regimens for
treatment of AML are very aggressive. The most commonly used
induction treatment regimen for AML is the 7 + 3 model, named
for the schedule of a 7-day infusion cycle of cytarabine combined
with a 3-day intravenous push of an anthracycline agent, most
often doxorubicin, daunorubicin, or idarubicin (1). The 7 + 3
regimen is widely used today and has changed very little for several
decades. Despite being so well established, the rates of achieving
complete remission with the 7 + 3 regimen are approximately 70%
in patients <60 years old and 50% in patients >60 years old (2–4).
Five-year survival rates are also suboptimal at approximately 60%
for pediatric patients and 24% for adult patients (5). One of the
major causes of these poor treatment outcomes is the development
of resistance to the chemotherapeutic agents used in standard
treatment regimens. Cancer cells that are able to adapt and resist
induction therapy are frequently the cause of relapse, and often
lead to a worse prognosis for patients. Because of the prevalence of
chemotherapeutic resistance and subsequently poorer treatment
outcomes, there is an ongoing effort to understand the molecular
mechanisms that may be contributing to variations in response
to therapy.

Changes to cellular metabolism have been associated with
cancer development and tumor growth for multiple cancer types.
The growing field of metabolomics and its approaches allows full
metabolic profile evaluation in AML patients and leukemic cell
cultures to explore the relationship between metabolism and
resistance. Metabolomics studies of leukemia cell lines have been
targeted to an identify metabolic pathways of resistance in
multiple forms of leukemia (6–8). One study specifically
investigating chemo-sensitivity has further explored the
alterations to glutamine, glucose, fatty acid metabolism, and
oxidative phosphorylation in cells resistant to commonly used
chemotherapy (9). However, global metabolomic evaluation in
this context is virtually unexplored. In this study, we established
the global metabolome for seven commercially available
AML cell lines with varying drug chemo-sensitivity in order to
identify metabolic pathways with potential role in development
of drug resistance. We anticipate that by performing
metabolomic profiling of AML cell lines and comparing these
profiles to previously generated dose response data, then we will
find significant association of metabolite abundance with
dose response.
METHODS

Cell Lines and Cellular Cytotoxicity Assays
Seven AML cell lines were used for metabolomics profiling. AML
cell lines HL-60 (ATCC CCL-240), MV-4-11 (ATCC CRL-9591),
AML-193 (ATCC CRL-9589), Kasumi-1 (ATCC CRL-2724), KG-
1 (ATCC CCL-246), and THP-1 (ATCC TIB-202) were purchased
Frontiers in Oncology | www.frontiersin.org 2
from the American Type Culture Collection (ATCC, Manassas,
VA). ME-1 (ACC-537) cell line was purchased from DSMZ
(Braunschweig, Germany). All cell lines were cultured using
appropriate growth media recommended by the cell line
supplier. Cell cultures were incubated at 37°C with a CO2

concentration of 5%. MTT assay was used to measure
cytotoxicity as described previously (10). Briefly, AML cell lines
were maintained in the media as per the recommendations. Cells
were treated with varying concentrations of cytarabine (ranging
200–0.01 µM) and doxorubicin (10–0.1 µM). Cell viability was
measured using the MTT reagent 48h post-treatment. Absorbance
was measured at 570nm using Synergy plate reader (BioTek,
USA). Area under the curve (AUC) of the cell viability curve
was calculated using the trapezoidal method using GraphPad
Prism software.

Sample Preparation for
Metabolomics Study
Cells (106) were 3x washed with 40 mM ammonium formate
solution followed by addition of 50 mL of a 5 mM ammonium
acetate. Bead Beater (Fastprep 96, MPBio, Santa Ana, CA) was
used to homogenize the cells at 1,800 rpm for 30 s, followed by
incubation at 4°C for 15 min. Homogenization was repeated two
more times with incubation at 4°C for 15 min. Two microliters of
internal standard solution (Creatine-D3, L-Leucine-D10, L-
Tryptophan-D3, Caffeine-D3, L-Tryptophan-2,3,3-D3, Succinic
Acid-D4, and Salicylic Acid-D4) and 1 mL of 80% methanol in
water solution were added to each sample. Samples were mixed
using the Bead Beater at the previous settings and incubated at 4°
C for 10 min. Following centrifuging at 200,000xg for 10 min at
4°C, 1 mL supernatant were collected and dried using nitrogen
gas (N2 Dryer, Organomation Associates Inc.). Samples were
reconstituted using 100 mL reconstitution solution
(Phenylalanine_t-BOC, Tryptophan_t-BOC, Tyrosine_t-BOC
in 0.1% formic acid in water) on ice for 15 min, following
centrifugation, supernatants loaded for ultra-high performance
liquid chromatography–mass spectrometry (UHPLC-MS).

Global Metabolomics
Untargeted metabolomics profiling was performed with a
Thermo Ultimate 3000 UHPLC and Thermo Q-Exactive
Orbitrap mass spectrometer (Thermo, San Jose, CA) with the
assistance of the Southeast Center for Integrated Metabolomics
(SECIM) Core Lab 1 at the University of Florida. All samples
were run in positive and negative ionization through heated
electrospray as separate injections. Mass spectra analysis had a
mass resolution of 35,000 at m/z 200. Separation was achieved on
an ACE 18-pfp 100 × 2.1 mm, 2 mm column. Mobile phase A was
0.1% formic acid in water, and mobile phase B was acetonitrile.
The flow rate was 350 mL/min, and column temperature was set
to 25°C. Two microliters was injected for positive ionization and
4 mL for negative ionization.

Statistical Analysis
Mass spectra output files were converted to mzxml file format
using MS Convert software (ProteoWizard 3.0). MZmine
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(freeware) was used to identify features, deisotope, align features
and perform gap filling to fill in any features that may have been
missed in the first alignment algorithm. All adducts and
complexes were identified and removed from the data set.
Positive and negative ionization datasets were merged to be
used for statistical analyses. Peak intensity values for each cell
line were grouped according to assigned cytarabine and
doxorubicin sensitivity groups (sensitive or resistant) in
separate datasets for categorical analysis. Missing value
estimation was performed by removing metabolites missing
over 30% of values among the samples and replacing the
remaining missing values with a small value (half of the
minimum positive value in the original data). Data processing
included normalization by sum, log transformation, and
Pareto scaling.

Processed and normalized metabolomics data were then
analyzed using categorical and continuous forms of the
chemosensitivity variables, chemosensitivity group assignment,
and cell viability AUC, respectively. Categorical statistical
analysis was performed on the MetaboAnalyst 4.0 web-based
analysis platform (11) using univariate, multivariate, and
clustering methods. Univariate analyses included t-test and
fold change analysis. Significance threshold was set at p-value
<0.05. Multivariate analyses included principal component
analysis (PCA) and partial least square discriminatory analysis
(PLSDA). Clustering analysis included generation of
unsupervised heatmaps. Continuous statistical analysis was
performed on GraphPad Prism software using Pearson
correlation analysis. Significance threshold was set at p-
value <0.05.

Pathway Analysis
Peak intensity values for metabolites with significantly different
abundance AML cell lines were imported into MetaboAnalyst
pathway analysis function, which performed pathway
enrichment and topology analysis. Metabolite identifiers were
converted as necessary according to synonyms listed in the
human metabolome database (HMDB). The pathway impact
measurement represented the sum of importance measures,
generated by topology analysis, of significant metabolites
normalized by importance measures of all metabolites in the
associated pathway. The datasets generated and/or analyzed
during the current study are available from the corresponding
author on request. Additionally, we also cross-referenced the
significant metabolites identified in the study with drug
candidate analysis using Human Metabolome Database
(HMDB) (hmdb.ca) database.
RESULTS

AML Cell Line Chemo-Sensitivity to
Cytarabine and Doxorubicin
Cell lines were categorized as sensitive or resistant to treatment
based on area under the survival cure (AUC) values for
cytarabine and doxorubicin obtained from in vitro cytotoxicity
Frontiers in Oncology | www.frontiersin.org 3
determined using MTT assays. For doxorubicin the HL-60, MV-
4-11, Kasumi-1, and KG-1 (AUC below 1000) were classified as
sensitive and AML-193, ME-1, and THP-1 were classified as
resistant (sensitive vs. resistant cell lines, Figure 1A). With
respect to cytarabine AML-193, Kasumi-1, and THP-1 cell
lines with a cytarabine cytotoxicity AUC value greater than
12,000 were considered resistant to cytarabine, and cell lines
HL-60, MV-4-11, KG-1, and ME-1 with a cytotoxicity AUC
value less than 12,000 were categorized as sensitive to cytarabine
(sensitive vs. resistant cell lines, Figure 3A). Characterization
and cytotoxicity results for these cell lines are listed in Table 1.

Metabolomics Profiling
Global metabolomics profiling of the AML cell lines was
conducted using UHPLC-MS with the assistance of the SECIM
Core Lab at the University of Florida. Global metabolomes were
generated with the application of both positive and negative
ionization settings separately. A total of 1,624 metabolic
features were detected across the leukemic cell lines of which
187 were annotated to known metabolites as per the SECIM
metabolite library.

Metabolites and Pathways Associated
With Doxorubicin Chemosensitivity in
AML Cell Lines
We utilized MetaboAnalyst software (11) to perform categorical
analysis of all 1,624 features to identify metabolome features with
significantly different abundance between AML cell lines based
on doxorubicin sensitivity. This analysis identified 122
metabolites with significantly differential abundance between
the groups (p<0.05) and included 23 annotated metabolites, all
of which demonstrated greater abundance in doxorubicin
resistant cell lines (Table 2). Heatmap of the 122 metabolites
(annotated and unannotated) found to be significantly different
by doxorubicin sensitivity groups is shown in Figure 1C, which
shows clear clustering of metabolites by doxorubicin
chemosensitivity. Supplementary Figure 1 shows the heatmap
of global metabolome of AML cell lines by drug sensitivity.
Multivariate analyses using PLSDA analysis though showed
separation between the cell line global metabolomes
(Figure 1B). We also performed another categorical analysis
focusing on metabolomics data consisting of 187 annotated
features, and identified 11 annotated features significantly
differed by doxorubicin resistance in this analysis (t-test
p <0.05, fold change threshold of 2). Of these, five overlapped
(L-asparagine, alanine/sarcosine, asparagine, aspartate and
threonine/homoserine) with the global analysis and six
additional metabolites (Lipids and fatty acids), all with lower
abundance with doxorubicin resistance, identified included:
palmitoleic acid, LysoPE(18:1), linoleic acid, LysoPC(16:1), PI
(18:0/0:0), LysoPC (16:0). Figure 1D shows the results of the
multivariate analysis using PLSDA for the annotated metabolites.
In addition, we also performed a correlation analysis (Pearson’s
correlation) between AUC levels and annotated metabolite levels
and identified 25 annotated metabolites to be significantly
correlated with AUC values (p<0.05). Among these
June 2021 | Volume 11 | Article 678008
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FIGURE 1 | Metabolome analysis by doxorubicin in vitro chemosensitivity in AML cell lines. (A) Box plot showing differential AUC values between doxorubicin
sensitive and resistant cell lines. (B) Multivariate metabolomics analysis of AML cell line doxorubicin chemosensitivity groups. PLSDA plot of cell samples shows
global separation by doxorubicin chemosensitivity (Sensitive n=4 and Resistant n=3). (C) Clustering metabolomics analysis of AML cell line doxorubicin
chemosensitivity groups. Heatmap shows relative abundance patterns of 122 cell metabolites (annotated and un-annotated) with significantly different abundance
between groups. Clustering within the heatmap shows a clear distinction of several metabolites between the sensitive and resistant groups. (D) Abundance patterns
of top 25 annotated metabolites are shown in this Heatmap. (E) Box plots of selected metabolites showing abundance by drug sensitivity groups. p, positive and n,
negative ionization set.
TABLE 1 | Characterization of acute myeloid leukemia (AML) cell lines based on cytarabine and doxorubicin chemosensitivity.

Cell Line Cytarabine
cytoxicity AUC

Cytarabine Sensitivity
Group

Doxorubicin
cytoxicity AUC

Doxorubicin Sensitivity
Group

Cytogenetic Profile

ME-1 6497 Sensitive 2035 Resistant inv(16)(p13q22), CBFB-MYH11 gene fusion
AML-193 12988 Resistant 1843 Resistant +der(17)t(17;17)(p13.1;q21.3)
THP-1 17170 Resistant 1403 Resistant t(9;11)(p21;q23), RUNX1/AML1-RUNX1T1/ETO

gene fusion; TP53 mutation
HL-60 4597 Sensitive 673.4 Sensitive CDKN2A, NRAS, TP53 mutations
MV-4-11 5011 Sensitive 201.9 Sensitive FLT3-ITD mutation; t(4;11)(q21;q23), MLL-AF4

gene fusion
KG-1 5939 Sensitive 762.5 Sensitive NRAS, P53 mutation; RB1 rearrangement
Kasumi-1 14713 Resistant 390.1 Sensitive t(8;21)(q22;q22), RUNX1/AML1-RUNX1T1/ETO

gene fusion; TP53 mutation
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TABLE 2 | List of metabolites significantly associated with doxorubicin resistance in 7 AML cell lines.

Metabolite Ionization
Set

Classification Associated Pathway p-
value
(t-

test)

Fold
Change

Correlation
(Pearson r)

Correlation
p-value

L-Valine/5-
Aminopentanoate/L-
Norvaline

Positive Amino Acids Pantothenate and CoA biosynthesis; valine, leucine, and
isoleucine biosynthesis and degradation; Lysine degradation

0.0009 2.33 0.957 0.0007

Leucine Positive Amino Acids Aminoacyl-tRNA biosynthesis; valine,
leucine, and isoleucine biosynthesis
and degradation

0.005 2.34 0.827 0.022

Threonine/
Homoserine

Negative Amino Acids Aminoacyl-tRNA biosynthesis; Cysteine and methionine
metabolism

0.0053 2.40 0.912 0.004

1-
Aminocyclopropane-
1-Carboxylate

Positive Amino Acids N/A 0.0042 2.43 0.931 0.002

Phenylalanine Positive Amino Acids Phenylalanine, tyrosine, and tryptophan biosynthesis; Nitrogen
metabolism; Phenylalanine metabolism; Aminoacyl-tRNA
biosynthesis

0.0169 2.49 0.764 0.046

Trigonelline Positive Alkaloids Nicotinate and nicotinamide metabolism 0.0326 2.54 0.735 0.060
Phenylalanine-
HCOOH

Positive Amino Acids N/A 0.0161 2.55 0.758 0.048

L-Isoleucine Positive Amino Acids Aminoacyl-tRNA biosynthesis; valine, leucine, and isoleucine
biosynthesis and degradation

0.0016 2.61 0.929 0.003

L-Tyrosine Negative Amino Acids Phenylalanine, tyrosine, and tryptophan biosynthesis; Tyrosine
metabolism

0.0006 2.61 0.868 0.011

L-Tyrosine Positive Amino Acids Phenylalanine, tyrosine, and tryptophan biosynthesis; Tyrosine
metabolism

0.0021 2.64 0.872 0.011

Tryptophan Positive Amino Acids Tryptophan Metabolism, Nitrogen metabolism, Aminoacyl-tRNA
metabolism

0.003 2.70 0.824 0.023

L-Allothreonine Positive Amino Acids Glycine, serine, and threonine metabolism 0.0095 2.79 0.903 0.005
Tryptophan-NH3 Positive Amino Acids Tryptophan Metabolism, Nitrogen metabolism, Aminoacyl-tRNA

metabolism
0.003 2.81 0.816 0.025

Alanine/Sarcosine Positive Amino Acids Taurine and hypotaurine metabolism; Alanine, aspartate, and
glutamate metabolism; Glycine, serine, and threonine metabolism

0.0028 3.04 0.976 0.000

L-Asparagine Negative Amino Acids Alanine, aspartate and glutamate metabolism; Nitrogen
Metabolism; Cyanoamino acid Metabolism

0.0003 3.14 0.962 0.001

Threonine/
Homoserine

Positive Amino Acids Aminoacyl-tRNA biosynthesis; Cysteine and methionine
metabolism

0.0072 3.29 0.952 0.001

L-Histidine Positive Amino Acids beta-Alanine metabolism, Nitrogen metabolism, Histidine
metabolism

0.0147 3.38 0.730 0.062

L-Proline Positive Amino Acids Arginine and proline metabolism 0.0286 3.44 0.789 0.035
Glucose/Fructose Negative Sugars Starch and sucrose metabolism; Galactose Metabolism; Pentose

Phosphate Pathway; Amino sugar and nucleotide sugar
metabolism

0.0378 3.55 0.626 0.133

L-Asparagine Positive Amino Acids Alanine, aspartate and glutamate metabolism; Nitrogen
Metabolism; Cyanoamino acid Metabolism

0.0004 3.96 0.972 0.000

L-Histidine Negative Amino Acids beta-Alanine metabolism, Nitrogen metabolism, Histidine
metabolism

0.0403 4.53 0.774 0.041

Aspartate Positive Amino Acids Alanine, aspartate and glutamate metabolism; Nitrogen
Metabolism; Cyanoamino acid Metabolism

0.0392 5.37 0.786 0.036

Aspartate Negative Amino Acids Alanine, aspartate and glutamate metabolism; Nitrogen
Metabolism; Cyanoamino acid Metabolism

0.019 5.68 0.819 0.024

Glycine Positive Amino Acids Cyanoamino acid metabolism, Glutathione metabolism, Nitrogen
metabolism, Primary bile acid biosynthesis, Glycine, serine, and
threonine metabolism

0.055 6.902 0.828 0.021

LysoPC(16:1) Positive Lipids Lysophospholipid Metabolism 0.088 0.202 -0.809 0.028
L-Glutamine Negative Amino Acids D-Glutamine and D-glutamate metabolism; Alanine, aspartate,

and glutamate metabolism
0.062 2.524 0.800 0.031

L-Serine Positive Amino Acids Cyanoamino acid metabolism; Sulfur metabolism; Glycine, serine,
and threonine metabolism; Cysteine and methionine metabolism;
Aminoacyl-tRNA biosynthesis

0.085 7.592 0.795 0.033

Glycerol Positive Sugar
Alcohols

Glycerophospholipid metabolism 0.181 1.565 0.764 0.046
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metabolites, 24 were positively correlated and 1 metabolite
[lysophosphatidylcholine 16:1 (LysoPC 16:1)] was negatively
correlated with AUC values. Positively correlated metabolites
included a carboxylic acid (1-aminocyclopropane-1-carboxylate)
and several amino acids (listed in Table 2). Box plots depicting
differential abundance of selected metabolites by the doxorubicin
resistance from analysis described above are shown in Figure 1E.

The pathway analysis used a pathway library in the
MetaboAnalyst platform, which contained 80 known human
metabolic pathways from the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database (12–14). A false discovery rate (FDR)
significance threshold was set at less than 0.05. The pathway analysis
of metabolites associated with doxorubicin chemosensitivity
identified five significant metabolic pathways (Figure 2). These
pathways included a variety of aminocyl-tRNA biosynthesis and
metabolic pathways, for valine, leucine, and isoleucine biosynthesis;
alanine, aspartate, and glutamate metabolism; phenylalanine,
tyrosine, and tryptophan biosynthesis; and glycine, serine, and
threonine metabolism (Supplementary Table 1). Intriguingly,
aspirin decreases the blood levels of five of the metabolites that
we identified as overexpressed in doxorubicin resistant AML cell
lines: glycine, L-asparaginase, L-histidine, L-serine, and L-glutamine
(15) obtained from hmdb.ca).

Metabolites and Pathways Associated
With Cytarabine Chemosensitivity
in AML Cell Lines
For cytarabine chemosensitivity, a correlation analysis was
conducted to test the relationship of the abundance of known
Frontiers in Oncology | www.frontiersin.org 6
metabolites in the AML cell lines with the cytarabine cytotoxicity
AUC data. A total of nine known metabolites were found to be
significant, with all nine metabolites positively associated with
cytotoxicity AUC (p<0.05). These included three nucleosides
(inosine, positive, and negative ion forms of guanine), the
carbohydrate aldopentose, two xenobiotics (allopurinol and 4-
hydroxy-L-phenylglycine), and the amino sugar glucosamine/
mannosamine (Table 3). Categorical analysis of the global
metabolome data using Metaboanalyst found a total of 18
metabolites (annotates and unannotated) to be significantly
different by cytarabine chemosensitivity (p-value < 0.05) and
included only two annotated metabolites, the nucleoside
guanosine and the sugar D-Raffinose. Figure 3C shows a
heatmap of the 18 significantly different metabolites (2 annotated
and 16 unannotated) by cytarabine chemosensitivity group. The
PLSDA multivariate modeling showed separation of two groups
(Figure 3B). Evaluation of only annotated metabolites was also
performed separately; the corresponding heatmap showing
differences in abundance of top 10 annotated metabolites is
shown in Figure 3D (these included UDP, ADP, Lyso-PE,
palmitoleic acid, guanine, aldopentose and 5-hydroxymethyl
furaldehyde in addition to guanosine and D-raffinose). The
global metabolome by AML cell l ines is shown in
Supplementary Figure 1. Box plots for D-raffinose, aldopentose,
guanosine, 5’ hydroxymehtyl-2 furaldehyde, which demonstrated
higher levels in cytarabine resistant cell lines and ADP, UDP,
palmitoleic, and Lyso-PE with higher abundance in the cytarabine
resistant cell lines are shown in Figure 3E. The pathway analysis of
the metabolites significantly associated with cytarabine cell viability
FIGURE 2 | Pathway analysis of metabolites significantly associated with doxorubicin AUC. Metabolic pathways associated with doxorubicin sensitivity showed a
greater variety of amino acid synthesis and metabolism pathways.
June 2021 | Volume 11 | Article 678008
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AUC identified purine metabolism (Figure 4A) as the only
significantly associated pathway. Pentose phosphate metabolism,
pyrimidine metabolism, and galactose metabolism pathways were
also enriched but were not statistically significant. Figure 4B shows
KEGG Purine metabolic pathway with guanosine, guanine, and
Frontiers in Oncology | www.frontiersin.org 7
ADP highlighted. Drugs known to impact these metabolites
include: cocaine which increases guanine and guanosine in blood
(16), aspirin increases guanosine and inosine in blood (17), and
opioid dependence associates with increase guanine and decreased
guanosine in blood (18).
TABLE 3 | List of cellular metabolites significantly associated with cytarabine AUC values by Pearson correlation and categorical analysis in AML cell lines.

Metabolite Ionization Set Classification Associated Pathway Pearson r p-value

Guanosine Negative Nucleosides Purine metabolism 0.885 0.008
Aldopentose Negative Carbohydrates Pentose Phosphate Pathway 0.866 0.012
4-Hydroxy-L- Phenylglycine Positive Xenobiotics N/A 0.851 0.015
Guanine Negative Nucleosides Purine metabolism 0.831 0.021
Guanine Positive Nucleosides Purine metabolism 0.830 0.021
D-Raffinose Negative Sugars Galactose metabolism 0.808 0.028
Glucosamine /Mannosamine Positive Sugars Amino sugar and nucleotide sugar metabolism 0.804 0.029
Inosine Negative Nucleosides Purine metabolism 0.797 0.032
Allopurinol Positive Xenobiotics N/A 0.795 0.033
Metabolite Ionization Set Classification Associated Pathway Fold Change p-value (t-test)
D-Raffinose Negative Sugars Galactose metabolism 3.49 0.03
Guanosine Negative Nucleosides Purine metabolism 2.72 0.04
June
 2021 | Volume 11
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FIGURE 3 | Metabolome analysis by cytarabine in vitro chemosensitivity in AML cell lines. (A) Box plot showing differential AUC values between cytarabine sensitive
and resistant cell lines. (B) Multivariate metabolomics analysis of AML cell line cytarabine chemosensitivity groups. (B) PLSDA plot of cell samples shows global
separation by cytarabine chemosensitivity (Sensitive n=4 and Resistant n=3). (C) Clustering metabolomics analysis of AML cell line cytarabine chemosensitivity
groups. Heatmap shows relative abundance patterns of 18 cell metabolites (annotated and un-annotated) with significantly different abundance between groups.
Clustering within the heatmap shows a clear distinction of several metabolites between the sensitive and resistant groups. (D) Clustering metabolomics analysis of
only annotated metabolites heatmap shows relative abundance patterns of top 10annotated cell metabolites with differential abundance between groups. (E) Box
plots of selected metabolites showing abundance by drug sensitivity groups. p= positive and n=negative ionization set.
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DISCUSSION

In this study, we evaluated the global metabolic profiles of seven
AML cell lines with varying sensitivity to two of the most
commonly used chemotherapeutic agents used for treatment of
AML: cytarabine and doxorubicin. Though the chemosensitivity
grouping according to cytarabine or doxorubicin was not able to
define the global metabolome for the AML cell lines in
unsupervised multivariate analysis, we identified metabolites
and metabolic pathways that showed significant differential
abundance based on differences in chemosensitivity to both
cytarabine and doxorubicin.

With respect to cytarabine chemosensitivity, we identified a
greater abundance of multiple nucleosides in AML cell lines that
are more resistant to cytarabine relative to those that are sensitive.
Pathway analysis further related these nucleosides to a
significantly impacted purine metabolism pathway in the
cytarabine resistant cell lines. An increase in nucleosides may be
related to the pathway of cytarabine activation, and specifically
indicate an established mechanism for cytarabine resistance (19,
20). Cytarabine is administered in the form of cytosine
arabinoside, and functions as an analog to deoxycytidine. Once
cytarabine is transported into the cell, it is rapidly phosphorylated
multiple times to form cytarabine triphosphate, its active
metabolite. However, multiple enzymes can reverse this process
and inactivate cytarabine at different steps. The 5’-nucleotidase
family of enzymes is responsible for dephosphorylation of
nucleotide bases to nucleosides, which includes cytarabine
monophosphate as a substrate. The chemotherapeutic effect of
cytarabine requires phosphorylation to its triphosphate form in
order to be incorporated into the DNA to carry out its function
(21, 22). By reversing the initial step of phosphorylation, the
increased activity of 5’-nucleotidases can cause increased
resistance to cytarabine through inactivation and could explain
the increased abundance of nucleosides in resistant AML cell lines.
Frontiers in Oncology | www.frontiersin.org 8
With respect to doxorubicin, several amino acids showed a
significantly higher intracellular abundance in doxorubicin
resistant cell lines. The importance of amino acids for cancer
cell proliferation and survival is well established (23, 24) with
amino-acid metabolic pathways shown to be rewired in cancer
cells to keep up with the demands for energy production and
protein biosynthesis. In this study, an increased abundance of
valine, isoleucine, tyrosine, alanine/sarcosine, proline, and
phenylalanine was associated with doxorubicin resistance. A
lower abundance of several of these amino acids has
been observed in serum from AML patients as compared to
healthy controls, suggesting amino acid depletion in extracellular
environment potentially due to increased cellular uptake for various
metabolic processes (25, 26). Intriguingly, as mentioned above,
asprin decreases the blood levels of several metabolites when cross
checked with the human metabolome database. Our results are
concordant with multiple reports showing that aspirin can suppress
chemoresistance in various malignancies (27–32). A clinical trial is
currently evaluating the efficacy of aspirin and tamoxifen in
combination with doxorubicin as part of standard AC-T
chemotherapy for treatment of high risk ER+ or ER- breast
cancer (NCT04038489 clinicaltrials.gov).

The increased abundance of asparagine in the doxorubicin
resistant cells seen in our results shows a classic example of altered
amino acid metabolism seen in acute leukemia. Acute
lymphoblastic leukemia (ALL) cells have an increased
dependence on exogenous asparagine as an essential amino acid
due to decreased activity of asparagine synthetase. This results in a
powerful therapeutic opportunity targeted by asparaginase, which
depletes the circulating asparagine and starves the leukemic cells of
the asparagine they require for survival (23). While the depletion
of circulating asparagine is not as common in AML therapy,
there is growing evidence to show that AML cells have a similar
dependence on asparagine and vulnerability to asparaginase (33,
34). Treatment of AML cell lines and primary cells with
A B

FIGURE 4 | (A) Pathway analysis of metabolites significantly associated with cytarabine AUC. (B) The lone significantly associated metabolic pathway was purine
metabolism. Guanine, ADP and guanosine are highlighted by red arrows in the KEGG purine metabolism pathway.
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asparaginase has shown increased sensitivity to the drug in cells
with monosomy 7 compared to those without (35). Our results
suggest that this pattern of asparagine importance may be further
increased in chemoresistant cell lines. However, further
investigation of ASNS activity and asparagine efficacy in these
cell lines is needed to confirm this. A higher intracellular
abundance of glutamine was observed in doxorubicin resistant
cell lines; glutamine serves as a key component for energy
production and redox regulation necessary for sustaining cell
proliferation and survival in cancer cells and AML cell in
particular (33, 36, 37). However, a recent metabolomics study
focused on the rewiring of metabolism that occurs in
chemoresistant leukemic cells showed that resistant cells display
a significantly reduced dependence on glutamine for survival (9).
This suggests that glutamine may not be used primarily for its
contributions to energy production in chemoresistant cells.
Glutamine has an additional role in leukemic cells as a
component of glutathione synthesis, an important factor for
protecting cells against reactive oxygen species (ROS). In fact, in
a recent report by Emadi et al. (2020) in complex karyotype AML,
it was observed that asparaginase mediated glutamine depletion
and subsequent inhibition of 4EBP1 and reduced MCL1
expression are the mostly likely underlying mechanisms for
synergistic effect observed in BCL2 inhibition with venetoclax
and asparaginase combination (38). FLT3 inhibitor quizartinib has
been shown to be a significant inhibitor of glutamine based
generation of glutathione by inhibiting cellular glutamine uptake
(39). The increase in glutamine abundance in resistant AML cells,
despite their reduced dependence on it for survival, may be
explained by its role in glutathione production for ROS
protection. Further study of glutamine metabolism is needed to
fully understand its role in chemoresistant leukemia cells. Beyond
the contributions of glutamine, there are additional amino acids
involved in the metabolic pathway for glutathione biosynthesis.
Our results show that glycine, one of these amino acids, also has
increased abundance in doxorubicin resistant AML cell lines.
Glycine is involved in the final step of glutathione synthesis. The
enzyme glutathione synthase adds glycine to the C-terminal of L-
gamma-glutamyl-L-cysteine to form glutathione (40). Similar to
glutamine, the increased abundance of glycine in chemoresistant
AML cell lines may be explained by its contribution to increased
glutathione synthesis for additional protection from oxidative
stress. To supplement this further, the non-essential amino acid
serine is a generator for glycine through the one carbon donor
pathway (24). Our analysis shows an increase in cellular serine
abundance as well in doxorubicin resistant AML cell lines. A
substantial amount of serine is used for glycine synthesis through
this pathway, and its increased abundance in chemoresistant cell
lines may be contributing to the increase in glycine synthesis and
abundance as well.

Of particular interest were also metabolites with a role in
altered lipid and fatty acid metabolism associated with respect to
doxorubicin chemosensitivity (low levels of LysoPC 16:1 and
high levels of glycerol in doxorubicin resistant AML cell lines).
Alterations to lipid metabolism are a common feature across
multiple cancer types (41–46), and a growing number of studies
have shown its importance for AML as well (7, 47–49). One of
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the key alterations to lipid metabolism in AML is an increased
dependence on lipid catabolism through fatty acid oxidation
(FAO). The reduction in LysoPC abundance and the increase in
glycerol may indicate this increase in lipid and triglyceride
catabolism. FAO is a mechanism for providing acetyl-CoA to
the citric acid cycle. This leads to increased citrate generation,
which can be used as a key component for fatty acid synthesis.
The repetitive breakdown and subsequent re-synthesis of fatty
acids is known as the “futile metabolic cycle” that is a unique
feature of cancer cell metabolism, which can provide cancer cells
with protection against oxidative stress and initiation of
apoptosis (50). Further evidence supporting the importance of
fatty acid oxidation in AML is seen in studies relating to the
enzyme carnitine palmitoyltransferase I (CPT1), which catalyzes
the rate limiting step of the carnitine shuttle component of fatty
acid oxidation (9, 51, 52). Overall, the reduced LysoPC 16:1 and
increased glycerol seen in the doxorubicin resistant AML cell
lines may be indicative of an increased rate of lipid and
triglyceride catabolism contributing to fatty acid oxidation.

Overall, our study demonstrates that significantly different
patterns of metabolite abundance can be found when comparing
AML cell lines based on sensitivity to chemotherapeutic agents
commonly used for AML treatment. These metabolites can be
linked to several metabolic pathways known to be related to AML
disease progression and chemotherapy resistance. AML cell lines
that are resistant to cytarabine therapy show a significant alteration
to purine metabolism, with a higher abundance of nucleosides
related to this pathway. Resistance to doxorubicin in AML cell
lines was found to be related to more widespread changes in
metabolic pathways, including lipid catabolism, increased fatty
acid oxidation, increased amino acid uptake, increased glycine and
serine metabolism, and increased glutathione synthesis.

While the results of cell line metabolomics analysis are
promising, they require a follow-up study on a larger scale.
Ideally, a large patient cohort study integrating metabolomics
data in cell samples with additional patient omics data, such as
genomics, transcriptomics, and proteomics, could clarify the full
picture of what alterations can contribute to the chemoresistant
phenotype in leukemic cells. However, this study helps support
our understanding of what metabolic processes are linked to
resistance to commonly used chemotherapeutic agents.
Expanding our knowledge of this relationship can potentially
improve our systems of selecting initial therapies and may lead to
new targets for improving AML treatment.
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