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Abstract
Human embryonic stem cells (hESCs) are derived from the inner cell mass (ICM) of blasto-

cyst staged embryos. Spare blastocyst staged embryos were obtained by in vitro fertiliza-

tion (IVF) and donated for research purposes. hESCs carrying specific mutations can be

used as a powerful cell system in modeling human genetic disorders. We obtained preim-

plantation genetic diagnosed (PGD) blastocyst staged embryos with genetic mutations that

cause human disorders and derived hESCs from these embryos. We applied laser assisted

micromanipulation to isolate the inner cell mass from the blastocysts and plated the ICM

onto the mouse embryonic fibroblast cells. Two hESC lines with lesions in FOXP3 and NF1
were established. Both lines maintain a typical undifferentiated hESCs phenotype and pres-

ent a normal karyotype. The two lines express a panel of pluripotency markers and have the

potential to differentiate to the three germ layers in vitro and in vivo. The hESC lines with

lesions in FOXP3 and NF1 are available for the scientific community and may serve as an

important resource for research into these disease states.

Introduction
Human embryonic stem cells (hESCs) carrying genetic mutations offer the potential to model
genetic diseases, especially if the affected tissues can be reliably generated by differentiating the
cells in vitro [1]. Models like hESCs are critical to assess the biochemistry of disease and for
pharmaceutical approaches such as screening for drug targets. While genome editing has
become more tractable in hESCs [2] and iPSCs are now widely used to examine disease muta-
tions, derivation of hESCs following preimplantation genetic diagnosis (PGD) allows for yet
another option toward establishment of human genetic models specific for disease phenotypes
[1]. As such, PGD derived hESC lines should be an important aspect of the stem cell repertoire
and affected PGD embryos–otherwise discarded–should be banked for derivation and subse-
quent modeling.
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IPEX (immunodysregulation polyendocrinopathy enteropathy X-linked syndrome) is an X-
linked syndrome characterized by autoimmune-dysfunction, polyendocrinopathy and enterop-
athy [3, 4]. IPEX is caused by mutations in FOXP3, which encodes a forkhead (FKH) family
transcription factor and is located on chromosome Xp11.23 [3–5]. Mutation of FOXP3 was ini-
tially identified as being responsible for an X-linked recessive inflammatory disease in mice
and subsequently for IPEX in humans [5–7]. In humans, IPEX syndrome leads to childhood
mortality.

Neurofibromatosis type 1 is one of the most frequent genetic diseases (1/2500-1/3000) for
which no specific treatment exists [8]. This autosomal dominant disorder affects the nervous
system and causes neurofibromas [8]. Neurofibromatosis type 1 is caused by mutations of the
NF1 gene [9, 10], which encodes neurofibromin, a negative regulator of Ras, and regulates
nerve cell growth and tumorigenesis [11, 12].

In this report, we derive two hESC lines from PGD embryos diagnosed as containing lesions
that cause the monogenic diseases IPEX and neurofibromatosis type 1. We used laser-assisted
micromanipulation to increase efficiency of derivation for these rare embryos to 30% and find
that these hESCs are karyotypically normal, male and contain the identical lesions identified
from the PGD analysis. Further, we show that the FOXP3mutation is caused by a lack of exon
8, demonstrating a splicing mechanism responsible for the mutation. Overall, we suggest that
hESCs derived from PGD embryos are an important and untapped resource for studying
human disease.

Materials and Methods

Human PGD embryos
Human embryos after PGD cycles were donated by couples undergoing IVF treatment. All
PGD embryos were obtained from the RENEW biobank of Stanford University after patient
written consent. The study was approved by the panel of Stem Cell Research Oversight (SCRO)
and the panel of Institutional Review Board (IRB) for Human Subjects Research at Stanford
University. PGD procedures were performed on biopsied blastomeres by Genesis Genetics
Institute (Detroit, MI). The PGD embryos affected with a FOXP3 (IVS8+5G>A) mutation and
the PGD embryos heterozygous for a NF1 (IVS1+1G>C) mutation were used for the deriva-
tion of hESC lines with lesions in FOXP3 and NF1.

Derivation of FOXP3-hESC and NF1-hESC lines
PGD embryos were thawed using a Vitrification Warming Kit (Origio, Inc., Trumbull, CT)
and transferred into Quinns Advantage Blastocyst Medium supplemented with 20% Quinns
Advantage Serum Protein Substitute (Origio, Inc., Trumbull, CT), according to the manufac-
turer’s instructions. PGD embryos were cultured for one day (S1A Fig) and then the ICM were
isolated from expanded blastocysts at day 5 or day 6 post-fertilization by using laser (LYKOS
Clinical Laser System, Hamilton Thorne, Beverly, MA) assisted micromanipulation as previ-
ously described [13, 14]. Generally, the blastocyst was anchored using a holding pipette and a
biopsy micropipette used to remove mural trophectoderm (TE) (S1B Fig). Afterwards, the
ICM with a few polar TE cells attached was gently drawn into the biopsy micropipette and
released (S1C Fig). If the ICM cells were difficult to separate, the TE cells were hit by laser
pulses and aspirated into the holding pipette (S1C Fig).

The isolated ICMs were plated on the Mitomycin-C (Sigma, St Louis, MO) inactivated
mouse embryonic fibroblast (MEF) feeder layer cells, and further cultured at 37°C in 5% CO2,
5% O2 atmosphere (S1D Fig). For the preparation of feeder layer cells, MEF cells were isolated
from 12.5 d.p.c. (day post-coitum) embryos of CF1 pregnant mice and cultured for one passage
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followed by treated with 1 μg/ml Mitomycin-C overnight. The mitotically inactivated MEF
cells were cryopreserved in liquid nitrogen. One day before PGD embryo dissection, feeder
cells were thawed and plated in 10% gelatin coated 4-well tissue culture dishes (Thermo Fisher
Scientific, Inc., Waltham, MA) in DMEMmedium supplemented with 10% FBS. Before the
isolated ICM was plated, the feeder cell culture medium was changed to derivation medium:
half hESC culture medium and half conditional medium (hESC medium conditioned over-
night on primary MEF cells). hESC medium comprised DMEM/F12 medium supplemented
with 20% KnockOut serum replacement, 0.1 mM nonessential amino acids (NEAA), 1 mM
GlutaMAXTM-1, 0.1 mM 2-mercaptoethanol (all from Invitrogen, Carlsbad, CA) and 8 ng/ml
recombinant human FGF2 (Peprotech, Rocky Hill, NJ). For the first several days of derivation,
the medium was changed every other day, and then switched to daily once cells began to
expand.

ICMs attached within the first two days after being plated while appearance of cellular out-
growths was variable and occurred even as far out as 20 days. Large cell clusters were dissected
mechanically under a microscope using pasteur pipettes that have been pulled into fine needles
and blunted over a flame. The dissected cell pieces were transferred using a pasteur pipettes
onto plates with fresh feeder cells. During the first several passages of derivation, we mechani-
cally dissected colonies and passaged to fresh feeder cells. Early passages and later passages of
hESCs with disease lesions were cryopreserved in freezing medium containing 90% Fetal
Bovine Serum (Invitrogen, Carlsbad, CA) and 10% Dimethyl Sulfoxide (Sigma-Aldrich Ltd,
Dorset, UK) and stored in liquid nitrogen.

Characterization of FOXP3-hESC and NF1-hESC lines
Immunofluorescence staining. Cells on cover glasses were fixed with 4% paraformalde-

hyde for 15 min at room temperature. For OCT4 immunostaining, cells were permeabilized
with 1% TritonX-100/PBS for 30 min at room temperature. Subsequently, cells were blocked
with PBS-BT (1× PBS, 3% BSA, and 0.1% Triton X-100) for 30 min at room temperature. Cov-
erslips were then incubated in primary and secondary antibodies diluted in PBS-BT. OCT4
(sc-9081) antibody was purchased from Santa Cruz (Santa Cruz Biotechnology, Inc.). SSEA4
(MAB4304), SSEA3 (MAB4303), and SSEA1 (MAB4301) antibodies were obtained fromMilli-
pore (EMDMillipore Corporation, Billerica, MA). TRA-1-60 (MAB4381) and TRA-1-81
(MAB4381) antibodies were purchased fromMILLIPORE. FOXP3 antibody (ab10563) was
purchased from Abcam (Abcam Inc., Cambridge, MA). Cell nuclei were stained with DAPI
(Sigma-Aldrich Ltd, Dorset, UK). Images were acquired with fluorescence microscope (Leica
DC 500).

Karyotype analysis. hESCs were passaged onto dishes coated with matrigel (BD Biosci-
ences, San Diego, CA) and cultured in hESC conditional medium. Karyotype was examined on
actively divided cells by Cytogenetics Laboratory of Stanford Hospital and Clinics.

Analysis of differentiation of hESC lines in vitro and in vivo. Undifferentiated hESCs
growing on feeder cells were passaged onto dishes coated with matrigel (BD Biosciences, San
Diego, CA) and cultured in hESC conditional medium. Cell differentiation into endoderm,
ectoderm, and mesoderm in vitro and the three germ layer population characterization were
performed according to Human Pluirpotent Stem Cell Functional Identification Kit (R&D Sys-
tems, Inc., Minneapolis, MN). The Endoderm, Ectoderm, or Mesoderm Differentiation Media
was prepared by dilution the Endoderm, Ectoderm, or Mesoderm Differentiation Supplement
stock solution in Differentiation Base Media, respectively. The Differentiation Base Media was
prepared by dilution of 10X Differentiation Base Media Supplement with PPMI and Gluta-
MAX. All the media supplement reagents are provided in the Pluirpotent Stem Cell Functional
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Identification Kit. The differentiation toward endoderm, ectoderm, or mesoderm lineage cells
was induced by replacing hESC conditional medium with Endoderm, Ectoderm, or Mesoderm
Differentiation Media, respectively. After 2–4 days differentiation, the three germ layer lineage
markers were characterized by immunofluorescence staining. For embryoid body (EB) differ-
entiation details, see Supplementary Experimental Procedures in S1 File.

Pluripotency of hESCs in vivo was analyzed by teratoma formation assay in severe com-
bined immunodeficient (SCID) mice (CBySmn.CB17-Prkdcscid/J #1803, Jackson Laboratory,
Bar Harbor, Maine) following approved protocol of Administrative Panel on Laboratory Ani-
mal Care (APLAC) of Stanford University. FOXP3-hESC and NF1-hESC cell colonies were
dissociated by collagenase and 1X106 cells were suspended in and mixed (1:1) with Matrigel
(BD Biosciences) and then injected by using 27GA1/2 needles intramuscularly into the left gas-
trocnemius muscle of 7~9-week-old mice. After 10–12 weeks, the tumors were removed, fixed
in 4% formalin, embedded in paraffin. The histology was analyzed after hematoxylin and eosin
staining.

Genetic testing of FOXP3-hESC and NF1-hESC lines
Genomic DNA was extracted from FOXP3-hESC cells and NF1-hESC cells. Primers for ampli-
fying exon regions of FOXP3 are listed in Table A in S1 File.

Touch down PCR analysis for IVS8+5G>A in FOXP3 was performed: 94°C for 5 min fol-
lowed by 10 cycles consisting of denaturation (95°C, 30 s), annealing (68°C, 45 s), and exten-
sion (72°C, 45 s), and then 25 cycles consisting of denaturation (95°C, 30 s), annealing (58°C,
45 s), and extension (72°C, 45 s), with a final incubation at 72°C for 7 min. The PCR reaction
includes: 50 ng genomic DNA, 0.4 μM forward and reverse primers, 0.2 mM dNTP. The PCR
products were extracted by using MinElute Gel Extraction kit (QIAGEN, Duesseldorf, Ger-
many) followed by DNA sequencing.

Primers for amplifying FOXP3 cDNA containing exon 6-7-8 and exon 6-7-9 are listed in
Table A in S1 File. Primers for amplifying the whole FOXP3 cDNA are listed in Table A in S1
File. First total RNA was extracted by using RNeasy Plus Mini Kit (QIAGEN, Duesseldorf, Ger-
many). The RNA concentration and purity were measured by NanoDrop (Thermo Scientific,
Wilmington, DE) and then used for reverse transcription with random hexamers using Super-
Script III First-Strand cDNA synthesis kit (Invitrogen). PCR was performed: 94°C for 5 min
followed by 35 cycles consisting of denaturation (95°C, 30 s), annealing (58°C, 30 s), and exten-
sion (72°C, 30 s), with a final incubation at 72°C for 10 min. The PCR products were extracted
followed by DNA sequencing. The whole FOXP3 cDNA PCR product was extracted and sub-
cloned to pCDH-EF1-T2A-puro expression vector followed by plasmid sequencing.

Primers for the region surrounding IVS1+1G>C in NF1 gene are listed in Table A in S1
File. Touch down PCR analysis for IVS1+1G>C in NF1 gene was performed: 94°C for 5 min
followed by 10 cycles consisting of denaturation (95°C, 30 s), annealing (65°C, 45 s), and exten-
sion (72°C, 45 s), and then 25 cycles consisting of denaturation (95°C, 30 s), annealing (55°C,
45 s), and extension (72°C, 45 s), with a final incubation at 72°C for 7 min. The PCR reaction
includes: 50 ng genomic DNA, 0.4 μM forward and reverse primers, 0.2 mM dNTP. The PCR
products were extracted followed by DNA sequencing.

Results and Discussion

Derivation of FOXP3-hESC and NF1-hESC lines
To derive hESCs for use as models of IPEX or Neurofibromatosis type 1, we consented patients
to obtain frozen embryos diagnosed with either a lesion in FOXP3 (four embryos) or NF1
(seven embryos) following PGD. All embryos were thawed and cultured for one day to reach
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expanded blastocyst stage at day 5 or day 6 post-fertilization, and transferred to blastocyst
medium [15, 16]. After one day in culture, only two blastocysts carrying the FOXP3mutation
and four blastocysts with the NF1mutation survived. As PGD embryos are challenging to pro-
cess, are limited in quantity, and require freeze-thaw cycle which leads up to 50% lethality, we
optimized the derivation protocol by using surgical microdissection to specifically isolate ICM
from the mural trophectodermal cells (Fig 1A-a and 1B-a) and then plated the cells on MEF
feeder layers (Fig 1A-b).

One ICM from the FOXP3 donations survived with a cellular outgrowth appearing as early
as day 2 post plating (Fig 1A-c) and small colony appearing at day 15 (Fig 1A-e). At day 17, a
colony containing a mixture of undifferentiated hESC-like cells and differentiated cells was dis-
sected into 3–4 pieces and transferred to fresh feeder cells (passage 1; Fig 1A-f). Three days
after passaging, a flat colony formed with the morphological appearance of hESCs (Fig 1A-g).
From passage 2 to 22, robust hESC- like colonies propagated and were easily expanded (Fig
1A-h).

One ICM from the NF1 donation gave rise to robust cell colony which was ready to passage
after 20 days post plating (Fig 1B-b). The colony was dissected into pieces and transferred to
fresh feeder cells (passage 1). After passage 6, robust and compact colonies with distinct bor-
ders formed and were able to be stably propagated (Fig 1B-e).

Both the FOXP3-hESC and NF1-hESC lines are cryopreserved and survived subsequent
thawing and prolonged passaging (Fig 1A-i, thawing of cryopreserved at passage 12 cells; 1B-f,
thawing of cryopreserved at passage 7 cells). Established FOXP3-hESC and NF1-hESC lines
present typical hESC cellular morphology featured compact dome-like colony structure, dis-
tinct colony border and high nucleus to cytoplasm ratio (Fig 1) [17]. Karyotype analysis of
both FOXP3-hESC and NF1-hESC lines showed a normal diploid male (46, XY) (Fig 1C) after
20 passages. As the FOXP3 line is male and the disease is X-linked, these cells should be
affected for the mutation. The NF1 line should also be affected as mutations in NF1 have a
dominant inheritance pattern.

FOXP3-hESC and NF1-hESC lines are pluripotent
To characterize the FOXP3-hESC and NF1-hESC lines, we showed that both cell lines express
the pluripotency markers: OCT4, SSEA3, SSEA4, TRA-1-60- and TRA-1-81 (Fig 2). Con-
versely, we do not detect the expression of SSEA-1, which is consistent with the hESC state
(Fig 2) [18]. Gene expression analyses show that both FOXP3-hESC and NF1-hESC lines
express pluripotency marker OCT4, SOX2 and NANOG at comparable levels as in H9-hESC
line (S2 Fig).

We next tested the ability of FOXP3-hESC and NF1-hESC lines to form all three germ layers
using differentiation in vitro and teratoma formation. To this end, we differentiated both hESC
lines into endoderm, mesoderm or ectoderm and examined these cells for lineage specific

Fig 1. Derivation of FOXP3-hESC and NF1-hESC lines. (A) Representative images of derivation of
FOXP3-hESC line. (a) ICM and polar trophectoderm were separated frommural trophectoderm. (b) Isolated
ICM. (c) ICM attached to feeder layer two days after plating and cell outgrowth appears. (d) Outgrowth 6 days
after plating. (e) Outgrowth 15 days after plating showing small formation of colony. (f) Outgrowth/colony 17
days after plating. (g) 3 days after first passage. (h) Passage 22. (i) Stem cells propagated after thawing and
expanding one vial of cryopreserved at passage 12 cells. (B) Representative images of derivation of
NF1-hESC line. (a) ICM and polar trophectoderm separated frommural trophectoderm. (b) Cell outgrowth/
colony 20 days after plating. (c) 5 days after first passage. (d) 5 days after second passage. (e) Passage 6. (f)
Stem cells propagated after thawing and expanding one vial of cryopreserved at passage 7 cells. Scale bars:
50 μm. (C) A representative chromosome spread of FOXP3-hESC (46, XY) and NF1-hESC (46, XY) lines. A
total 20 metaphase spreads of each line were examined.

doi:10.1371/journal.pone.0151836.g001
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markers by immunostaining (see Methods for details). We found that both lines could express
markers for endoderm (SOX17), mesoderm (BRACHYURY) and ectoderm (OTX2), strongly
suggesting that these lines maintained their developmental potential (Fig 3A). We also differ-
entiated FOXP3-hESC and NF1-hESC lines to embryoid bodies. We show that markers for
multiple lineages, including endoderm (SOX17 and GATA4), mesoderm (BRACHYURY) and
trophectoderm (CDX2 and CGA) are upregulated in both lines (S3 and S4 Figs). Ectoderm
markers PAX6 and NESTIN are upregulated in FOXP3-hESC differentiated embryoid bodies,
however, these two genes are not successfully induced in NF1-hESC lines upon differentiation.
Consistent with protein level, another ectoderm marker OTX2 is upregulated in NF1-hESC dif-
ferentiated embryoid bodies. This result suggests that NF1mutation in NF1-hESC line proba-
bly affects certain ectoderm, for example, neuroectoderm, lineages differentiation. To test
whether these cells could form teratomas containing cells of all three lineages, we next inocu-
lated cell clumps of FOXP3-hESC and NF1-hESC lines to the gastrocnemius muscle of SCID
mice. We found that teratomas formed at 10–12 weeks after inoculation. When we examined
these teratomas histologically, we found evidence of tissues from all three germ layers: glandu-
lar epithelia (endoderm); cartilage (mesoderm); neural rosettes (ectoderm) (Fig 3B). Overall,
this strongly suggests that both the FOXP3-hESC and NF1-hESC lines are capable of differenti-
ating into all three germ layers and thus maintain their pluripotent state.

Genetic testing of FOXP3-hESC and NF1-hESC lines
We next sought to test whether the hESC lines contained the lesion associated with the parental
mutation. As the FOXP3-hESC line was derived from an embryo containing an X-linked
FOXP3 (IVS8+5G>A) mutation and the NF1-hESC line was derived from embryos heterozy-
gous for a NF1 (IVS1+1G>C) mutation, we performed PCR with primers that surround these
loci, followed by sequencing. Sequencing confirmed that these identical lesions exist in the
FOXP3-hESC line (Fig 4A) and the NF1-hESC line (Fig 4B, heterozygous of G (black line) and
C (blue line)), confirming that these are indeed hESCs carrying the same mutations as the orig-
inal PGD embryos. Further, we also sequenced all 12 exons in FOXP3, and no other mutation
was found (data not shown).

FOXP3 (IVS8+5G>A) mutation leads to deletion of a single exon
Most FOXP3mutations known to lead to IPEX syndrome are missense and splice-site muta-
tions, affecting protein coding, mRNA stability or splicing [19–21]. To examine the FOXP3
lesion in more detail, we first tested whether the protein itself was still expressed. Using immu-
nostaining, we find FOXP3 expression in hESCs and no difference in FOXP3 protein expres-
sion between H9 and FOXP3-hESC lines (data not shown). We confirmed this finding by flow
cytometry [22, 23] (S2 Fig). This suggests that the (IVS8+5G>A) lesion does not lead to
absence of protein. We next tested whether the transcript might be altered given the (IVS8
+5G>A) lesion. To this end, we amplified FOXP3 cDNA region from exon 6 to exon 9 and
sequenced. Interestingly, we found that the transcript from the FOXP3-hESC line was signifi-
cantly shorter than that from H9-hESC line (Fig 4C). Sequencing revealed the absence of the
entire exon 8 in the FOXP3-hESCs (Fig 4D). To test whether there were other FOXP3 exon
alterations in the FOXP3-hESCs, we also amplified the whole FOXP3 cDNA from both FOX-
P3-hESC and from H9-hESC lines, subcloned to pCDH-EF1-T2A-puro expression vector and

Fig 2. Expression of pluripotent markers in FOXP3-hESC and NF1-hESC lines.DAPI (left panels) and Immunofluorescence staining (right panels) for
OCT4, SSEA4, SSEA3, TRA-1-60 and TRA-1-81. SSEA-1 was negative in both cell lines. Left side are images for FOXP3-hESCs and right side are images
for NF1-hESC. Scale bars: 50 μm.

doi:10.1371/journal.pone.0151836.g002
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Fig 3. FOXP3-hESC and NF1-hESC lines differentiate into cells of all three germ layers. (A) FOXP3-hESC and NF1-hESC lines were differentiated into
endoderm, mesoderm and ectoderm. Immunofluorescence staining showed expression of SOX17, BRACHYURY and OTX2, representing differentiation
into endoderm, mesoderm and ectoderm, respectively. Scale bars: 50 μm. (B) FOXP3-hESC and NF1-hESC lines were injected into the gastrocnemius
muscle of SCID mice and teratomas developed after 10–12 weeks. Hematoxylin-eosin stained histological sections of the teratoma show glandular epithelia,
cartilage and neural rosettes, representing differentiation into endoderm, mesoderm and ectoderm, respectively. Scale bars: 50 μm.

doi:10.1371/journal.pone.0151836.g003
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sequenced. We confirmed the absence of exon 8 and no other exon alteration in the FOX-
P3-hESCs (data not shown). This strongly suggests that the FOXP3 IVS8+5G>A lesion causes
a splicing defect specifically at this exon, leading to IPEX in these patients. While this is the
first molecular analysis of the (IVS8+5G>A) lesion, another FOXP3 lesion IVS8+4A>G has
been reported to cause exon 8 deletion, leading to severe diarrhea, insulin-dependent diabetes,
severe eczema and childhood mortality [21].

hESCs carrying disease lesions with known disease phenotypes are tremendous models for
drug testing and evaluation of human disorders. This is particularly valuable if the affected cell
type can be readily generated from hESCs. IPEX is caused by mutations of FOXP3, a key regu-
lator of T cell homeostasis [3, 4]. Recently, human induced pluripotent stem cells (hiPSCs)
were used to efficiently produce T lineage cells [24], suggesting that IPEX may be modeled in
these specific cells using the FOXP3-hESC line. Further, it is known that mutations of the NF1
gene affect normal function of neurofibromin, leading to uncontrolled growth of neural crest
cell-derived nerve tissues (e.g., Schwann cells, melanocytes and oligodendrocytes) [8]. Oligo-
dendrocytes have been shown to be efficiently derived from hESC or hiPSC populations [25–
27], again making the NF1-hESC line a potential model for functional and drug screening.

In conclusion, we present here the derivation of hESC lines with lesions in FOXP3 and NF1.
We demonstrate high efficiency of derivation with 2 lines derived from 6 surviving embryos
(50% for FOXP3 and 25% for NF1). Overall, our derivation efficiency from cultured live
embryos was approximately 30%. The two lines will be available to the scientific community
for the future study.

Supporting Information
S1 Fig. Laser assisted isolation of inner cell mass from blastocyst. (A): Day 5 blastocyst from
PGD. (B): Blastocyst being prepared for dissection. (C): The ICM with attached polar trophec-
todermal cells drawn into the biopsy micropipette. (D): The isolated ICM was then plated on
feeder cells.
(TIF)

S2 Fig. qRT-PCR analysis of pluripotency marker. qRT-PCR analysis for OCT4, SOX2 and
NANOG expression in H9-hESC, FOXP3-hESC and NF1-hESC lines. The levels of the tran-
scripts were normalized to GAPDH. Data are presented as the mean ± SEM.
(EPS)

S3 Fig. qRT-PCR analysis of lineage markers. qRT-PCR analysis for markers of multiple line-
ages, including endoderm (SOX17and GATA4), mesoderm (BRACHYURY), ectoderm (NES-
TIN, PAX6) and trophectoderm (CDX2 and CGA) in FOXP3-hESC line differentiated into
embryoid bodies at day 10. The levels of the transcripts were normalized to GAPDH. Data are
presented as the mean ± SEM. �, p<0.05; ��, p<0.01; ���, p<0.005 (two-tailed t test relative to
undifferentiated cells).
(EPS)

S4 Fig. qRT-PCR analysis of lineage markers. qRT-PCR analysis for markers of multiple line-
ages, including endoderm (SOX17and GATA4), mesoderm (BRACHYURY), ectoderm (NES-
TIN, PAX6 and OTX2) and trophectoderm (CDX2 and CGA) in NF1-hESC line differentiated

Fig 4. Genetic testing of FOXP3-hESC and NF1-hESC lines. (A and B) PCR analysis and sequencing confirmed FOXP3 (IVS8+5G>A) mutation in
FOXP3-hESC line andNF1 (IVS1+1G>C, heterozygous of G (black line) and C (blue line)) mutation in NF1-hESC line. H9 hESCs were used as positive
control. (C) PCR analysis of exons 6–9 shows that FOXP3-hESC has smaller transcript (157bp) than H9-hESCs (238bp). (D) Sequencing of the PCR
fragments revealed the absence of exon 8 in FOXP3-hESC line.

doi:10.1371/journal.pone.0151836.g004

Derivation hESC Lines from PGD Embryos

PLOS ONE | DOI:10.1371/journal.pone.0151836 March 18, 2016 11 / 13

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0151836.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0151836.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0151836.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0151836.s004


into embryoid bodies at day 10. The levels of the transcripts were normalized to GAPDH. Data
are presented as the mean ± SEM. �, p<0.05; ��, p<0.01; ���, p<0.005 (two-tailed t test relative
to undifferentiated cells).
(EPS)

S5 Fig. FOXP3 expression in H9-hESCs and FOXP3-hESCs. Flow cytometry analysis of
FOXP3 expression in K562 cells, MCF7 cells, H9-hESCs and FOXP3-hESCs. Rat IgG2a kappa
Isotype Control PE were used as negative control.
(EPS)
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