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Abstract

Soluble proteins must maintain backbone hydrogen bonds (BHBs) water-tight to ensure structural integrity. This protection
is often achieved by burying the BHBs or wrapping them through intermolecular associations. On the other hand, water has
low coordination resilience, with loss of hydrogen-bonding partnerships carrying significant thermodynamic cost. Thus, a
core problem in structural biology is whether natural design actually exploits the water coordination stiffness to seal the
backbone in regions that are exposed to the solvent. This work explores the molecular design features that make this type
of seal operative, focusing on the side-chain arrangements that shield the protein backbone. We show that an efficient
sealing is achieved by adapting the sub-nanoscale surface topography to the stringency of water coordination: an exposed
BHB may be kept dry if the local concave curvature is small enough to impede formation of the coordination shell of a
penetrating water molecule. Examination of an exhaustive database of uncomplexed proteins reveals that exposed BHBs
invariably occur within such sub-nanoscale cavities in native folds, while this level of local ruggedness is absent in other
regions. By contrast, BHB exposure in misfolded proteins occurs with larger local curvature promoting backbone hydration
and consequently, structure disruption. These findings unravel physical constraints fitting a spatially dependent least-action
for water coordination, introduce a molecular design concept, and herald the advent of water-tight peptide-based materials
with sufficient backbone exposure to remain flexible.
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Introduction

The loss of hydrogen-bonded partners implies a significant

thermodynamic cost for a water molecule [1–4]. Here we show

that this low coordination resilience, whereby water tends to

maintain its tetrahedral lattice of hydrogen-bonding partnerships,

is instrumental in providing a seal for soluble proteins. By

stabilizing the unfolded state, backbone hydration may dismantle a

protein fold if the latter over-exposes the backbone [5,6].

However, and this is the point of this work, water tightness may

be achieved even in structured regions with backbone exposure to

the solvent: The backbone-water hydrogen bond may not

materialize if its formation requires that the cavity-penetrating

water molecule relinquish a significant fraction of its coordination

possibilities. In this sense, the low resilience of water coordination

[1,2] imposes physical constraints on the natural design of stable

interfaces for soluble structures, as shown in this work.

To maintain structural integrity, soluble proteins often protect

backbone amide-carbonyl hydrogen bonds (BHBs, Methods) by

‘‘wrapping’’ them with surrounding side-chain nonpolar groups

[4,8]. Here we show that an alternative sealing occurs for under-

wrapped structures through a fine tuning of surface ruggedness.

Ruggedness refers throughout this work to the presence of sub-

nanoscale cavities disrupting surface smoothness. Rugged protein

structures maintain their integrity by promoting dehydration of

exposed backbone groups aptly named dehydrons [4,6]. This

dehydration propensity has been inferred previously from first

principles and validated using structural data [4], but no

molecular-level rationale has been provided linking dehydration

to local surface curvature in monomeric free proteins, as done in

this work.

An exhaustive analysis of uncomplexed proteins reveals that

under-wrapped backbone regions present cavities fine tuned (,1

to 3.5 Å-curvature radius) to exclude water by curtailing its

hydrogen-bonding capabilities. This exclusion may be relaxed if

water is capable of forming more than one hydrogen bond with

the protein, as in water-mediated intramolecular interactions [4].

Since a water molecule cannot accommodate its coordination

domain inside a sub-nanoscale cavity, water effectively distances

itself from exposed BHBs to a larger extent than from well

protected bonds. This level of sub-nanoscale ruggedness is absent,

and in fact unnecessary, in well-wrapped proteins. By contrast, as

shown below, in the paradigmatic example of neurotoxins [9], the

most under-wrapped proteins [4], sub-nanoscale topography

ensures structural integrity. On the other hand, misfolded proteins

or structural decoys [10] do not fulfill the same geometric

PLoS ONE | www.plosone.org 1 September 2010 | Volume 5 | Issue 9 | e12844



constraints and hence are unable to prevent hydration of exposed

BHBs. In contrast with previous studies on protein hydration

[3,11,12], the focus here is the relationship between structural

integrity and de-wetting patterns that exploit the low coordination

resilience of interfacial water.

Results and Discussion

The exposed backbone hydrogen bonds (EBHBs) represent a

class of structural vulnerability whereby the bond is insufficiently

wrapped or shielded from solvent by side-chain nonpolar groups

[4,6]. These singularities may be identified in soluble structures by

determining the number of side-chain nonpolar groups –the so-

called wrappers- contained within the bond local environment

(Methods). These backbone bonds cannot afford hydration as this

would make the structure unsustainable, yet they are de facto

exposed to the solvent. This introduces a conundrum as solvent

exposure can only be reconciled with structural stability if we

assume that water cannot penetrate available interfacial space.

This is indeed the case as shown in Fig. 1, obtained from a

nonredundant exhaustive set of 2661 PDB-reported structures of

monomeric uncomplexed proteins, each equilibrated using

molecular dynamics within an NPT ensemble (Methods). The

computations start with the PDB-reported structure embedded in

a pre-equilibrated cell of water molecules [13,14].

To determine the location of the closest water molecule around

a BHB, we compute the minimum distance between the oxygens

of carbonyl and water. This convention is adopted for computa-

tional simplicity, given the proximity of the water oxygen to the

baricenter of the molecule. The results obtained when adopting

the amide nitrogen in lieu of the carbonyl oxygen are statistically

indistinguishable. Fig. 1 displays the distribution of distances of the

closest water molecules for all BHBs for the exhaustive structural

database discriminating between well wrapped BHBs (grey line)

and EBHBs (black line). Strikingly, water gets closer to a well-wrapped

BHB, with most probable distance ,3Å, than to an exposed bond, where the

distance distribution peaks at ,5Å.

The most probable distance for well-wrapped BHBs is

consistent with the typical arrangement for simple hydrophobic

surfaces like a flat graphene sheet, arranged mainly within a three-

fold HB coordination with other water molecules (lacking a fourth

neighbor in the direction of the hydrophobic surface) with HBs

internal geometries improved with respect to typical bulk values

[15].

The conclusion that transpires from Fig. 1 is at first glance

paradoxical since it states that water distances itself more from the

water-exposed bond than from the well-wrapped bond. The

paradox may be resolved by examining the sub-nanoscale

topographic patterns (curvature radius h,10Å) on the protein

surface, focusing on the h-spectrum of cavities shaped by the

residues paired by the BHBs. To determine interfacial h-values,

the solvent-accessible envelope of the protein surface [16,17] is

covered by a minimal set of water-confining osculating (first-order

contact) spheres whose radius h coincides with the envelope

curvature radius at the point of contact. Thus, at a first-order

contact point, all directional first derivatives of both osculating

sphere and surface envelope coincide. Concave regions on the

protein surface are characterized by h.0, while h,0 defines

convex regions.

Remarkably, as shown in Fig. 2, the range h,2.25Å of the

overall h-distribution is completely dominated by the contribution

from residues paired by EBHBs and completely absent from the h-

spectrum of well-wrapped BHBs. The distribution of h-values for

EBHBs peaks at ,h= 2.25Å and presents a negligibly small

population for h.4Å. Thus, the exposure of backbone hydrogen

bonds in native folds occurs invariably through the formation of

small cavities that, in turn, form exclusively around EBHBs. These

Figure 1. Distances from interfacial water to exposed and buried backbone hydrogen bonds in soluble proteins. Probability
distribution of distances from backbone hydrogen bonds (BHBs, grey line) and exposed backbone hydrogen bonds (EBHBs, black line) to the closest
surrounding water molecule. The distributions were obtained from the equilibrium values of the parameter dmin for 377,116 BHBs and 97,120 EBHBs
for an exhaustive dataset of 2661 free monomeric proteins reported in PDB (Table S1). The inset displays in virtual bond and space filling
representation the EBHB involving residues Asp52-Glu29 of human ubiquitin (PDB.1UBI) with osculating sphere radius h= 1.7Å.
doi:10.1371/journal.pone.0012844.g001
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sub-nanometer voids do not favor water penetration (Fig. 3), thus

providing a geometrical hindrance to an otherwise accessible

BHB. Such water exclusion can be rationalized since a water

molecule can be accommodated at ,3Å distance from an EBHB

inside its typical size cavities, but this could only occur at the cost

of curtailing hydrogen bonding with other water molecules. As

shown in Fig. 3, water only penetrates the cavity if it can do so

together with its coordination domain of hydrogen-bonded

neighbors, so that its water-water coordination number (g,

rigorously defined in Methods) is maintained and hardly ever lies

below g = 3. The penetration of the well-coordinated interfacial

water (g>3) only occurs in the range h$3.5Å whereas the closest

water molecule reaches its hydration-enabling distance dmin = 3Å

to the BHB for curvature range h$4.5Å. Thus, hydration of an

EBHB is practically forbidden since the fraction of EBHBs with

h$4.5Å is less than 1% (Fig. 2). On the other hand, larger

penetration-enabling cavity sizes in the range h$4.5Å are well

represented in the h-spectrum of well-wrapped BHBs (Fig. 2).

However, in this case, water attack on the intramolecular

interaction is intrinsically forbidden by the complete desolvation

shell around the bond, made up of nearby side-chain nonpolar

groups [4,6,18].

The topography-related dryness of EBHBs described in Figs. 1,

2 and 3 appears to be a geometric signature of native folds. The

most extreme illustration of this kind of seal is provided by a

potassium channel neurotoxin with PDB entry 1QUZ [9], where

all 17 BHBs are actually exposed, while the h-spectrum lies within

the penetration-forbidding range h= 2.3661.16Å (Table S1). In

fact, this protein has the lowest average curvature radius of all

PDB-reported proteins.

To properly assess the native-like nature of the topographic seal,

we examined a database of misfolded proteins constructed using

the Holm-Sander threading of PDB-reported proteins onto a

different structure [19] followed by equilibration within the

surrounding water (Methods) [10]. In contrast with native folds,

the EBHBs in misfolded structures present closer water molecules

(most probable distance dmin,3Å) and hence are unlikely to

prevail due to competing backbone hydration (Fig. 4). This picture

is reinforced by the far broader h-spectrum for EBHBs in

misfolded proteins when compared with the native folds (compare

the black curves in Figs. 2 and 5). Thus, about 40% of EBHBs in

misfolded proteins lie in the range h$4.5Å and hence are

susceptible of being attacked by water due to the enabled water

penetration (Fig. 3). Overall, we may say that the relative lack of

sub-nanoscale ruggedness of misfolded structures when compared

with native folds makes the former far more vulnerable to water

attack.

The results from Fig. 3 underscore a spatially dependent least-

action principle operative for water that is not hydrogen bonded to

the protein. Thus, spatially related differences in hydrogen-

bonding coordination are penalized as increments in the action.

In rigorous terms, let A[g] denote the action functional, with g:

R3RR indicating the water-coordination scalar field (rigorously

defined in Methods), so that vector position r for a water molecule

is associated with coordination number g(r). Then, the action A[g]

becomes

Figure 2. Surface ruggedness and backbone exposure in
soluble proteins. Probability distribution of sub-nanoscale curvature
radii of regions on the protein surface in the vicinity of BHBs (grey line),
with the EBHB contribution represented by the black line. A region on
the protein surface is defined as being in the vicinity of a BHB if it is
shaped by solvent-exposed groups contained within a sphere of radius
3Å centered at the baricenter of the BHB. The curvature radius of a
point on the protein water-exposed enveloping surface [16,17] is
defined as the radius of a first-order contact (osculating) sphere.
doi:10.1371/journal.pone.0012844.g002

Figure 3. Surface curvature dependence of minimum distance and coordination index for water molecule closest to BHB. Distance to
BHB of closest water molecule (dmin in angstroms, grey) and HB-coordination of the molecule (dimensionless gmin, black) plotted as a function of the
curvature radius (h) of the protein surface vicinal to the BHB. The parameters dmin, gmin are computed as averages over all BHBs with the same
h-value. The latter are coarse grained to J of an angstrom. The inset describes the extent of water penetration for three illustrative h-values.
doi:10.1371/journal.pone.0012844.g003

Water-Tight Soluble Proteins
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where j, rj indicate an individual water molecule and its respective

position, W is the set of water molecules, n(j) denotes a

neighboring water molecule coordinated to the jth molecule, and

M(j) is the collection of neighboring molecules around the jth

molecule. Thus, A[g] is minimized by a discrete scalar field

g = {gj}jMW that reflects the tendency of interfacial water to retain

its g = 3 coordination (cf. Fig. 3), and the general low resilience of

water to lose more than a single hydrogen bond.

According to eq. 1, any solvent configuration that introduces a

change in coordination number between neighboring molecules

increases the action A[g] and hence becomes energetically

penalized. Thus, the action dictates the near-constancy of gmin

across the entire curvature spectrum (Fig. 3). To achieve this

constancy, backbone solvation becomes only possible if the

curvature of the cavity enables the solvating molecule to penetrate

while retaining the coordination level of the interface (g = 3).

Otherwise, the water molecules do not penetrate the cavity as they

need to maintain their interfacial coordination level g = 3.

This work explores the real possibility of water-tight protein

structures that nevertheless expose the backbone, a paradoxical

situation since structural integrity of soluble proteins requires the

sealing of backbone hydrogen bonds. For proteins with exposed

backbone, the seal is shown to be maintained through a tightly

fine-tuned distribution of sub-nanoscale curvatures of the protein

enveloping surface that befits the low resilience of interfacial water

in regards to retaining its coordination number (g = 3). Thus, the

cavities around exposed backbone hydrogen bonds are too small

to enable penetration of a g = 3 water molecule. The structural seal

thus works by adapting the sub-nanoscale ruggedness of the

protein surface to a spatially dependent least-action of water. This

geometric adaptation tells apart native from misfolded structures,

and hence introduces a physical constraint guiding the design of

loose peptide-based materials that must remain water-tight to

maintain structural integrity. Thus, the design concept introduced

in this work will likely stimulate further endeavors in biomolecular

engineering.

Methods

Identifying exposed backbone hydrogen bonds
A backbone hydrogen bond (BHB) is geometricaly defined

[4,6,7,18] as an interaction between a backbone amide and

carbonyl, with N-O distance ,3.2Å and angle aHB between N-H

and O = C bonds satisfying 120u#aHB#180u. A special kind of

structural deficiency, the exposed backbone hydrogen bond (EBHB)

is identified in soluble proteins with PDB-reported structure

[4,6,18]. Thus, the extent of hydrogen bond protection is

Figure 4. Distances of exposed BHBs to interfacial water for native folds and misfolded proteins. Probability distribution of distances
from EBHBs of native folds (black line) and from EBHBs of misfolded proteins (grey line) to the closest surrounding water molecule. The datapoints on
the grey line were obtained for 25 equilibrated misfolded structures [10,19]. The distributions were obtained from the equilibrium values of the
parameter dmin for 31,072 BHBs and 17,108 EBHBs from a dataset of misfolded structures obtained by threading a PDB-reported protein onto the
structure of another [10].
doi:10.1371/journal.pone.0012844.g004

Figure 5. Surface ruggedness and backbone exposure for
misfolded proteins. Probability distribution of sub-nanoscale curva-
ture radii of regions on the surface of misfolded proteins in the vicinity
of BHBs (grey line), with the EBHB contribution represented by the black
line.
doi:10.1371/journal.pone.0012844.g005
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determined directly from atomic coordinates. This parameter,

denoted r, is given by the number of side-chain carbonaceous

nonpolar groups (CHn, n = 0, 1, 2, 3) contained within a desolvation

domain that represents the hydrogen-bond local environment. This

domain is defined as the reunion of two intersecting spheres of fixed

radius (,thickness of three water layers) centered at the a-carbons

of the residues paired by the hydrogen bond. In structures of PDB-

reported soluble proteins, backbone hydrogen bonds are protected

on average by r= 26.667.5 side-chain nonpolar groups for a

desolvation sphere of radius 6Å. Thus, structural deficiencies lie in

the tail of the protection distribution, i.e. their microenvironment

contains 19 or fewer nonpolar groups, so their r-value is below the

mean ( = 26.6) minus one standard deviation ( = 7.5). While the

statistics on r-values for backbone hydrogen bonds vary with the

radius, the tails of the distribution remain invariant, thus enabling a

robust identification of structural deficiencies [4,18]. Of the 377,116

BHBs examined in a dataset of 2661 PDB-reported uncomplexed

proteins (Table S1), 97,120 were found to be EBHBs, fulfilling

r#19.

Equilibrium parameters of local hydration
The solvent structure was described by the scalar field g = g(r)

that assigns to each position vector r a scalar value indicating the

expected hydrogen-bond coordination of a water molecule

situated within a sphere centered at position r with radius 2.5Å

(the thickness of single water layer). The coordination indicates the

number of hydrogen-bonding neighboring water molecules. The

expected g(r) value was computed as a time average over solvent

configurations determined by molecular dynamics over a 100ns-

period after the initial PDB-reported structure was equilibrated

with the solvent (see below). A water-water hydrogen bond was

defined by the geometric constraints: O-O distance ,3.2Å and O-

H-O angle aHB satisfying 120u#aHB#180u. Local hydration

patterns were described by the equilibrium parameters dmin, gmin,

representing respectively the minimum distance between the

oxygens of backbone carbonyl and solvating water molecule, and

the coordination of the water molecule that realizes dmin. The

equilibrium parameters dmin, gmin were obtained from classical

MD trajectories generated using the GROMACS 3.0 package

[20]. The initial state of the trajectories consisted on the PDB

structure embedded in a pre-equilibrated cell of explicitly

represented water molecules and counterions [13,14]. The PDB

structures for an exhaustive nonredundant set of 2661 monomeric

uncomplexed proteins lacking prosthetic groups or ion coordina-

tion (Table S1, maximum chain length N = 1,290) were used to

generate the statistics reported. Each MD trajectory spanning

300ps was generated adopting an integration time step of 2fs in an

NPT ensemble with box size 203 nm3 and periodic boundary

conditions [20]. The box size was calibrated so that the solvation

shell extended at least 7.5Å (,thickness of three water layers) from

the protein surface at all times. The box size was determined

taking into account the unit-cell dimensions of even the largest

monomeric protein, the Botulinum neurotoxin (PDB.1S0G,

N = 1,290), with maximum cell dimension b = 123.12Å. The

long-range electrostatics were treated using the Particle Mesh

Ewald (PME) summation method [21]. A Nose-Hoover thermostat

[22] was used to maintain the temperature at 300K, and a Tip3P

water model with OPLS (Optimized Potential for Liquid

Simulations) force field was adopted [13,14]. A barostat scheme

was maintained through a dedicated routine with the pressure held

constant at 1 atm. using a weak-coupling algorithm [23]. After

300ns equilibration, the position of the closest water molecule

relative to the carbonyl oxygen within a BHB was determined

together with its g-value, yielding the hydration parameters dmin,

gmin. Across the exhaustive database of monomeric free proteins

with sustainable autonomous structure, the RMSD between the

solvent-equilibrated structure and the starting PDB structure was

found to be ,1.0Å for backbone atoms and ,1.5Å when side

chains are included.

Supporting Information

Table S1 Exhaustive nonredundant dataset of 2661 monomeric

uncomplexed PDB-reported proteins lacking prosthetic groups or

ion coordination.

Found at: doi:10.1371/journal.pone.0012844.s001 (4.10 MB

DOC)
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