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Motivation: Gene-expression data obtained from high throughput technologies are

subject to various sources of noise and accordingly the raw data are pre-processed

before formally analyzed. Normalization of the data is a key pre-processing step, since it

removes systematic variations across arrays. There are numerous normalization methods

available in the literature. Based on our experience, in the context of oscillatory systems,

such as cell-cycle, circadian clock, etc., the choice of the normalization method may

substantially impact the determination of a gene to be rhythmic. Thus rhythmicity

of a gene can purely be an artifact of how the data were normalized. Since the

determination of rhythmic genes is an important component of modern toxicological and

pharmacological studies, it is important to determine truly rhythmic genes that are robust

to the choice of a normalization method.

Results: In this paper we introduce a rhythmicity measure and a bootstrap methodology

to detect rhythmic genes in an oscillatory system. Although the proposed methodology

can be used for any high-throughput gene expression data, in this paper we illustrate

the proposed methodology using several publicly available circadian clock microarray

gene-expression datasets. We demonstrate that the choice of normalization method has

very little effect on the proposed methodology. Specifically, for any pair of normalization

methods considered in this paper, the resulting values of the rhythmicity measure are

highly correlated. Thus it suggests that the proposed measure is robust to the choice

of a normalization method. Consequently, the rhythmicity of a gene is potentially not a

mere artifact of the normalization method used. Lastly, as demonstrated in the paper,

the proposed bootstrap methodology can also be used for simulating data for genes

participating in an oscillatory system using a reference dataset.

Availability: A user friendly code implemented in R language can be downloaded from

http://www.eio.uva.es/~miguel/robustdetectionprocedure.html
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1. INTRODUCTION

One of the major difficulties dealing with high-throughput gene-
expression experiments is the noisy nature of the data (Tu
et al., 2002; Klebanov and Yakovlev, 2007) that is intrinsic to
each array. Thus an important component of gene-expression
analysis is pre-processing the data to remove (or reduce) sources
of variation of non-biological origin among arrays (Bolstad
et al., 2003; Irizarry et al., 2003a). A variety of pre-processing
methods are available in literature, such as the Model-based
Expression Index (MBEI) (Li and Wong, 2001), MAS 5.0
(Hubbell et al., 2002; Liu et al., 2003), and Robust Multi-array
Average (RMA) (Irizarry et al., 2003b). They usually involve three
distinct steps, namely, Background correction, Normalization,
and Summarization (Wu, 2009). Normalization is an important
component of pre-processing (Bolstad et al., 2003; Cheng et al.,
2016), since it removes technical (i.e., non-biological) variations
from the expression data. There are numerous methods available
in the literature to normalize gene expression data and in this
paper we consider the following popular normalization methods:
Quantile (Bolstad et al., 2003), (Cyclic) Loess (Bolstad et al.,
2003), Contrast (Astrand, 2003), Constant (Bolstad et al., 2003),
Invariant Set (Li and Wong, 2001), Qspline (Workman et al.,
2002), and Variance Stabilization Normalization (VSN) (Huber
et al., 2002). Each normalization strategy is based on certain
model and assumptions. Consequently, the resulting normalized
expression data, and the downstream analyses, are expected to
depend upon the normalization method used. It is well-known
that many biological processes, such as metabolic cycle (Slavov
et al., 2012), cell-cycle (Rustici et al., 2004; Oliva et al., 2005; Peng
et al., 2005; Barragán et al., 2015) or the circadian clock (Hughes
et al., 2009) are governed by oscillatory systems consisting
of numerous components that exhibit rhythmic or periodic
patterns over time. There are several algorithms available in
the literature to determine whether a gene is rhythmic or not.
Some recent examples include JTK_Cycle (from now on JTK)
(Hughes et al., 2010), RAIN (Thaben and Westermark, 2014),
and ORIOS (Larriba et al., 2016). The performance of such
algorithms potentially depends upon, among other factors, the
normalization methods used. For example, Rustici et al. (2004);
Oliva et al. (2005); Peng et al. (2005) conducted long-series
time-course cell-cycle microarray study on Schizosaccharomyces
pombe to identify rhythmic genes. The number of such genes
identified by the three studies vary. Oliva et al. (2005) discovered
750 genes to be rhythmic, Peng et al. (2005) found about 747
rhythmic genes, whereas Rustici et al. (2004) discovered only
407 rhythmic genes. What is more interesting is that only 150
genes were identified to be periodic by all three studies. For more
details, one may refer to Caretta-Cartozo et al. (2007).

There has not been a systematic evaluation of the impact
of normalization methods on identifying rhythmic genes in
studies involving oscillatory systems. Yet, researchers are
interested in identifying rhythmic genes. A goal of this paper
is to introduce a bootstrap based rhythmicity measure that
is highly correlated across various normalization methods.
As a consequence, a gene declared to be rhythmic under
one normalization scheme is likely to be rhythmic under a

different one. A by-product of our methodology is that the
bootstrap procedure introduced in this paper can be used
for simulating potentially realistic time-course circadian gene-
expression data. Although several authors have developed
algorithms for simulating time-course gene-expression data
(cf. Freudenberg et al., 2004; Nykter et al., 2006; Parrish
et al., 2009; Dembélé, 2013), each of them was specific to the
experiment discussed in the paper and not broadly applicable.
However, our proposed algorithm is very generic. It not
only helps to identify rhythmic genes, but it also provides a
tool to simulate potentially realistic circadian gene-expression
data.

2. METHODS

We begin this section by considering time-course data on two
genes, namely, Serpina3k andMaml1 frommouse liver tissue (see
Hughes et al., 2009) as the motivating examples. We normalized
the data using, Quantile, Constant, (Cyclic) Loess, and Invariant
Set normalization methods. For illustration purposes, in the top
panel of Figure 1 we report the time-course plots of the gene
Serpina3k using Quantile (left panel) and Constant (right panel)
normalization procedures. In the bottom panel of Figure 1 we
provide the time-course plots of the geneMaml1 using Loess (left
panel) and Invariant Set (right panel) normalization procedures.
As one can see, the time-course profiles of these genes
are markedly different, depending upon which normalization
procedure was used. Furthermore, if rhythmicity detection
algorithm ORIOS is used then Serpina3k and Maml1 are
rhythmic genes if Quantile and Loess normalizations are used,
respectively. But they cease to be rhythmic genes if Constant
and Invariant Set normalization procedures are used. Similar
conclusions are drawn if other rhythmicity detection algorithms,
such as JTK and RAIN are used on these data. Such results in
a genome-wide analysis can be very confusing and difficult to
interpret.

Given a normalization method n and a rhythmicity detection
algorithm a, the identification of rhythmic genes is based on the
Benjamini-Hochberg adjusted p-values [p-valueg(n, a), for g =

1, . . . ,G]. For each gene g = 1, . . . ,G we define the standard
measure of gene rhythmicity associated to gene g, as follows:

Mg(n, a) = 1− p-valueg(n, a). (1)

In a vector notation we writeM(n, a) = [M1(n, a), . . . ,MG(n, a)],
whose components take values between 0 and 1. Closer 0
indicates potentially non-rhythmic gene and closer 1 indicates
potentially rhythmic gene.

For the plots in Figure 1 we have
MSerpina3k(Quantile,ORIOS) = 0.996,MSerpina3k

(Constant,ORIOS) = 0.639, MMaml1(Loess,ORIOS) = 0.992,
and MMaml1(InvariantSet, ORIOS) = 0.668. Thus implying
Serpina3k is potentially rhythmic under Quantile normalization
but not under Constant and similarly, Maml1 potentially
rhythmic under Loess normalization but not likely under
Invariant Set. This observation that normalization method n
may impact the rhythmicity of a gene is not limited to the above
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FIGURE 1 | Time-course gene-expression for genes Serpina3k (top) and Maml1 (bottom). Serpina3k and Maml1 are identified as rhythmic by ORIOS according to

Quantile and Loess normalizations, respectively. But they are identify as non-rhythmic by ORIOS for Constant and Invariant Set normalizations, respectively.

TABLE 1 | Number of genes in mouse liver (Hughes et al., 2009) detected as

rhythmic by ORIOS, JTK, and RAIN according to the different normalization

strategies and Mg(n, a) ≥ 0.99 for g = 1, . . . , 45,101.

Normalization strategy ORIOS JTK RAIN

0 Unnormalized 6,432 923 4,196

1 Quantile 9,259 4,998 12,381

2 Loess 8,812 3,932 10,571

3 Contrast 8,435 4,181 10,273

4 Constant 6,657 2,726 9,357

5 Invariant set 9,604 5,062 13,385

6 Qspline 9,163 4,546 11,828

7 VSN 8,397 3,608 10,700

genes but is rather a common feature of long-series time-course
data as noted in Table 1. Of course, as seen in Table 1, the
rhythmicity algorithm a may also impact on determining if
a gene is rhythmic or not. In modern pharmacological and
toxicological studies (Zhang et al., 2014), there is a need
for objective determination of rhythmic genes using high-
throughput time-course gene-expression data. Motivated by this,
we now introduceMRobust(n, a), a modification ofM(n, a) which
is more robust with respect to n, the normalization method, than
M(n, a) is. The proposed bootstrap methodology also provides
us a tool to simulate time-course expression data for genes
participating in oscillatory systems such as the circadian clock
using a reference dataset.

2.1. Bootstrap Methodology
LetR denote the tri-dimensional array of raw intensities obtained
from a reference high-throughput data of an oscillatory system,
such as the circadian clock. Data inR are expressed at probe level,
where R

g
pt states the raw intensity value for gene g on probe p at

time point (array) t, where g = 1, . . . ,G, p = 1, . . . , P, and t =
1, . . . ,T. Let X be the tri-dimensional array derived from R after
background correction. After normalization and summarization
steps, a matrix of gene-expression values is finally obtained as the
output of the pre-processing (see Figure S1 in the Supplementary
Material for details). The bootstrap approach proposed in this
work is based on a linear model from corrected intensities X

of a reference dataset as follows. Let b = 1, . . . ,B, denote
bootstrap replications. Simulated gene-expression datasets X(b)∗

are generated according to parametric bootstrap, see Efron and
Tibshirani (1994), as:

log2(X
(b)g∗
pt ) = α̂

g
p + β̂

g
t + ǫ

(b)g∗
pt , (2)

where g = 1, . . . ,G, p = 1, . . . , P, t = 1, . . . ,T, b = 1, . . . ,B,
and {α̂

g
p}

G
g=1 and {β̂

g
t }

G
g=1 denote original estimates of probe

and array effects obtained from corrected (and unnormalized)
intensities X. Following the methodology described in Irizarry
et al. (2003b), the median polish algorithm is used to estimate
model parameters (Emerson and Hoaglin, 1983). This algorithm
is similar to a two-way ANOVA based estimation procedure
except that it employs medians instead of means to ensure
robustness to outliers. Additionally as explained in Irizarry et al.
(2003b), it allows taking into account probe and array effects.
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ǫ
(b)g∗
pt are identically and independently distributed according

to a normal distribution N(0, σ̂ 2g), where σ̂ 2g is the usual
MSE under the original two-way model. From Equation (2)
it is important to recognize that we are bootstrapping the
residuals while centering the bootstrap data (log2(X)) at the
true observed signal. Thus the mean signal over the bootstrap
samples retains the original expression and hence there is no
loss of information in the mean signal through bootstrapping.
If the expression data are count data, as in the case of RNA-
seq, the observed counts may be transformed using a suitable
variance stabilization transformation before appealing to the
above model. It is common to model RNA-seq data either using
standard Poisson or Poisson with extra-variability in the Poisson
parameter by using a gamma prior which leads to modeling the
RNA-seq data using a negative binomial distribution. In both
cases the variance stabilizing transformation is known from the
literature, which are either square transformation (for Poisson) or
arc sinh square transformation (for negative binomial), see Guan
(2009).

Using the time-course gene-expression data on Copg and
Bgee (top and bottom left panels in Figure 2, respectively), we
demonstrate how well our bootstrap based simulated data (the
two right panels in Figure 2) resembles the pattern of expression
of the real data. Thus it suggests that, in addition to detecting
rhythmic genes robustly, our bootstrap methodology may also be
useful for simulating reasonably realistic time-course expression
patterns.

2.2. Robust Measure of Gene Rhythmicity
For a rhythmicity detection algorithm a and a normalization
strategy n, and a random realization of data, consider the
rhythmicity statistic M(n, a). Let θ(n, a) = E(M(n, a)) be the
parameter of interest and θ̂(n, a) = M(n, a) be its estimator. For
the bth bootstrap sample using Equation (2), b = 1, 2, . . . ,B, let

θ̂
(b)∗

(n, a) = (θ̂1(b)∗(n, a), . . . , θ̂G(b)∗(n, a)), denote the bootstrap

estimate of θ(n, a). Let Ê(θ̂(n, a)) = 1
B

∑B
b=1(θ̂

(b)∗
(n, a)) and

R̂MSE(θ̂(n, a)) =

√
1

B−1

∑B
b=1(θ̂

(b)∗
(n, a)− θ̂(n, a))2. Then we

define

MRobust(n, a) = Ê(θ̂(n, a))− R̂MSE(θ̂(n, a)), (3)

as measure of gene rhythmicity. We call it a “robust” measure
of gene rhythmicity because, as demonstrated later in this paper,
by correcting for sample to sample variation in the rhythmicity
measure (i.e., RMSE), it reduces the effect of the normalization
method used.

3. RESULTS

We re-analyzed three publicly available datasets (http://www.
ncbi.nlm.nih.gov/geo/) of Hughes et al. (2009), the mouse liver
(GSE11923) and mouse pituitary data and the NIH3T3 mouse
cell line data (GSE11922). Due to space limitations, and since
similar results were obtained in the three cases, we only report
the results for the mouse liver data in the main paper and defer

the rest of the results to the Supplementary Material document.
The mouse liver data consisted of 45,101 probe sets (genes) at 48
time points representing two periods. Taking Mg(n, a) ≥ 0.99 as
the criterion to declare a gene to be rhythmic (the choice of this
criterion is motivated by the findings of Larriba et al., 2016), in
Table 1 we summarize the results of three rhythmicity detection
algorithms, namely ORIOS, JTK, and RAIN using unnormalized
data and seven normalization methods (0.-Unnormalized, 1.-
Quantile, 2.-(Cyclic) Loess, 3.-Contrast, 4.-Constant, 5.-Invariant
Set, 6.-Qspline, 7.-VSN). The number of rhythmic genes identified
varies vastly among the normalization methods within each
rhythmicity detection algorithm (Table 1). Thus it suggests that
normalization methods have a large influence on whether a gene
is classified as rhythmic or not.

To better illustrate this fact, a multiple correspondence
analysis (MCA) was performed. MCA is an extension of
correspondence analysis which allows one to analyze the pattern
of relationships among several categorical variables (Benzécri,
1979; Greenacre, 1984). Since we consider three rhythmicity
identification algorithms and eight normalization strategies
consisting of unnormalized data and 7 normalization methods,
each probe set can be described by 24 binary variables consisting
of 1′s and 0′s depending on whether an algorithm a and a
normalization strategy n declare a gene to be rhythmic or not.
Thus resulting in a matrix of 45,101 rows and 24 columns.

MCA is a dimension reduction procedure that can be used
to represent distances among high dimensional vectors in a low-
dimensional space, such as 2-dimensional plane. Using the MCA
plots, one typically tries to interpret what each axis represents and
evaluates relationships among the categories of different variables
based on the distance among their representations on the graph.
The MCA plot based on the first two dimensions, which explain
∼54% of the total variation in the data, is provided in Figure 3.
Elements of the plot are as follows. For a rhythmicity algorithm a,
a normalization method n and a rhythmicity category r (r = 1 if
genes are declared as rhythmic and r = 0 if genes are declared as
non-rhythmic), we plotted 3×8×2 categories denoted by a_n_r.
Then, we averaged the expression values of those genes that are
declared as rhythmic (or non-rhythmic) under all normalizations
strategies, i.e., those with r = 1 (or r = 0) for all strategies under
a given algorithm, and overlaid these averaged profiles on the
plot. For algorithm a, the averaged profile of rhythmic genes is
denoted by a_Av_1 and the averaged profile of non-rhythmic one
is denoted by a_Av_0. Furthermore, we also overlaid on this plot
six figures G1,G2, . . . ,G6 (as defined in inset table in Figure 3)
representing patterns of those probe sets that are unanimously
declared as either rhythmic or non-rhythmic by all normalization
methods within a given algorithm. For example, G1 (Cyclic) is
a pattern of all probe sets that are declared as rhythmic by all
normalization methods and all three algorithms. On the other
hand, G2 (Quasi Cyclic) is a pattern of all probe sets that are
declared as rhythmic by all normalization methods using ORIOS
but not rhythmic under all normalizations methods when using
JTK or RAIN. Since genes declared as rhythmic by JTK algorithm
are also declared as rhythmic by RAIN algorithm, therefore we
are describing only six patterns G1,G2, . . . ,G6 and not eight
patterns as one might expect.
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FIGURE 2 | Original vs. Simulated gene-expression for genes Copg (top) and Bgee (bottom) showing the effect of bootstrapping. (Left) Corrected (and

unnormalized) gene-expression from the reference dataset (mouse liver tissue). (Right) Simulated gene-expression attained after bootstrapping.

In Figure 3, we interpret horizontal axis (Dim1) as the
axis describing rhythmicity because all a_n_1 appear on the
right hand side and almost all a_n_0 appear on the left hand
side of the graph. Using G1,G2, . . . ,G6, we see that Dim1
separates rhythmicity (Cyclic-shaped patterns) against non-
rhythmicity (Flat-shaped patterns). Furthermore, it is interesting
to note that rhythmic-shaped patterns (Cyclic, Quasi Cyclic,
and Asymmetric) identified by ORIOS are located in the upper
portion of the first quadrant of the MCA plot and the third
quadrant exclusively consists of non-rhythmic patterns identified
by ORIOS. Thus the first and the third quadrants of MCA
plot appear to distinguish ORIOS from the others. The vertical
axis (Dim2) may be interpreted as the axis drawing distinctions
between ORIOS and RAIN algorithms. Lastly, it is clear from the
MCA plot that ORIOS normalization methods are less separated
than JTK or RAIN, i.e., rhythmic (and non-rhythmic) groups are
more compact when using ORIOS, which is one more reason, in
addition to the results provided in Larriba et al. (2016), to prefer
ORIOS as the algorithm for detecting rhythmic genes.

To show that our proposed rhythmicity measureMRobust(n, a)
is generally robust to the normalization methods, we computed
the Spearman and Pearson correlation coefficients between
MRobust(ni, a) and MRobust(nj, a), for all pairs of normalization
methods ni, nj, i 6= j and compared the correlations with
those corresponding to the standard measure M(n, a). In
addition to Spearman and Pearson correlation coefficient, we
also computed the percent of concordance of rhythmic and

non-rhythmic genes across all normalization methods using
standard measure M(n, a) and the proposed robust measure
MRobust(n, a). Due to space reasons, in the main paper we only
present the results for ORIOS, i.e., a = ORIOS, but the results
corresponding to JTK and RAIN are provided in the supporting
materials.

In our correlation and concordance analyses reported in
Figures 4–6, we limited to only those probe sets that were
considered to be rhythmic by the criterion Mg(n,ORIOS) ≥

0.99 for at least one normalization method n. Thus we limited
to 15,369 probe sets out of 45,101. The left hand panels of
Figures 4–6 correspond toM(n,ORIOS), whereas the right hand
panels correspond to MRobust(n,ORIOS). From these figures it
is clear that both correlation and the concordance increase
substantially for every pair of normalization methods from the
left panel to the right panel. To illustrate this fact, observe
that the Spearman correlation between M(Qspline,ORIOS) and
M(VSN,ORIOS) is 0.65 (left panel of Figure 4). However,
the Spearman correlation between MRobust(Qspline,ORIOS) and
MRobust(VSN,ORIOS) is 0.95 (right panel of Figure 4), which
is a substantial increase. The increase is even more dramatic
if one were to consider the Pearson correlation coefficient
which increases from 0.31 to 0.91 (Figure 5). Even the
percentage of concordant genes between these normalization
procedures increases dramatically by more than 27%, from
69.85 to 97.48% (Figure 6). For each normalization method
n, these increases are further illustrated using scatter plots
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FIGURE 3 | Multiple Correspondence Analysis factor map for the different gene profiles under all normalizations and algorithms considered, together with the

averaged rhythmic and non-rhythmic profiles for each algorithm and the six gene patterns defined in the table. The Figure exposes the relationship between the first

axis and rhythmicity (with rhythmic genes on the right hand side), and how the second axis separates the different detection algorithms.

FIGURE 4 | Spearman rank correlation coefficients between all pairs of normalization procedures considering the standard measure of rhythmicity M (left) and the

proposed robust measure MRobust (right) for the ORIOS algorithm using the 15,369 probe sets, showing a highly increased consistency due to bootstrapping.

of the pairs [Mg(n,ORIOS),Mg(Qspline,ORIOS)] (left panel)
and [M

g

Robust
(n,ORIOS),M

g

Robust
(Qspline,ORIOS)] (right panel)

in Figure 7. The scatter plots on the left generally display
highly non-elliptic scatter of points with no clear correlation.
However, the scatter plots on the right panel which correspond
to our robust method, appear to be very elliptic and in some
cases with very small minor axis. As a by-product, these
scatter plots together with Figures 4–6, imply that among the
seven normalization methods, the Constant and Invariant Set
normalization methods may be the least preferred normalization
methods as the robust measure corresponding to these methods
seem to be least correlated with others. Similar dramatic increases

are also seen for JTK and RAIN as described in the figures in the
online Supplementary Material (Figures S2–S9).

For the dataset corresponding to the mouse pituitary data
(see section 2.2 in the Supplementary Material) and the NIH3T3
mouse cell line data (section 2.3 in the Supplementary Material)
we obtain similar increases. For example, for the mouse pituitary,
the Spearman rank correlation betweenQspline andVSN (for the
ORIOS algorithm) increases from 0.4 for the standard measure
to 0.87 for the robust measure, while the Pearson coefficient
increases from 0.21 to 0.82 and the concordance percentage
goes from 62.56 to 98.67%. For the NIH3T3 cell lines, the same
measures increase from 0.38 to 0.82 for the Spearman rank
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FIGURE 5 | Pearson correlation coefficients between all pairs of normalization procedures considering the standard measure of rhythmicity M (left) and the proposed

robust measure MRobust (right) for the ORIOS algorithm using the 15,369 probe sets. The robust measure shows a highly increased consistency among

normalizations.

FIGURE 6 | Percentage of (rhythmic and non-rhythmic) concordant probe sets before (left) and after (right) bootstrapping for all pairs of normalization procedures

using the 15,369 probe sets. Bootstrapping increases significantly the concordance.

correlation, from 0.23 to 0.75 for the Pearson correlation and
from 62.01 to 99.06% for the concordance percentage.

4. DISCUSSION

Determination of circadian clock genes is an important problem
in various fields, especially clinical pharmacology (Zhang et al.,
2014; Chen and Yang, 2015) where they play an important role
in drug delivery and medicine. However, identification of such
rhythmic genes in genome-wide studies involving oscillatory
systems has been a long standing problem. While it is well-
acknowledged in the literature that normalization methods play
an important role in determining differentially expressed genes
in a pair of conditions (Cheng et al., 2016), as demonstrated
in this paper, they play a bigger role in determining rhythmic
genes in long-series time-course experiments. For example, as
observed in Figure 1 and as seen from Spearman and Pearson

correlations reported in Figures 4, 5, the rhythmicity of a gene
can be dramatically affected by the normalization method used.
This is the first paper we know that studies this problem
for long-series time-course experiments and provides a simple
bootstrap based methodology that correlates well across various
normalization methods. The pairwise correlations among the
normalization methods improve dramatically by using our
proposed methodology. For example, the Pearson correlation
coefficient between Qspline and VSN nearly triples from 0.31
to 0.91 after applying our robust methodology. All statistical
decision rules require a user-supplied threshold when making
inferences and the proposed methodology is no exception.
The threshold of 0.99 used in our criterion for rhythmicity
corresponds to 1% level of significance and is largely motivated
by the specificity and sensitivity findings of Larriba et al. (2016).

Since the Spearman correlation coefficient is based on the
ranks, we therefore make a crucial observation from Figure 4
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FIGURE 7 | For each normalization method n, the left panels represent the pairwise scatter plots of [Mg(n,ORIOS),Mg(Qspline,ORIOS)] and the right panels

represent the pairwise scatter plots of [M
g
Robust

(n,ORIOS),M
g
Robust

(Qspline,ORIOS)]. Red line is the 45◦ diagonal and the blue lines are the Cartesian axes. Right side

scatter plots show a much more elliptical shape and a higher correlation indicating higher consistency between Qspline and the other normalizations.

(and Figures S10, S22 in the Supplementary Material) that rank
of rhythmicity of a gene is correlated across all normalization
methods considered here when our bootstrap basedmethodology
is applied. Thus, if a gene has a high rank of rhythmicity under
one normalization method, then it is also expected to have a

similarly high rank of rhythmicity under other normalization
methods. Conversely, if a gene has a very low rhythmicity rank
under one normalization method then it will likely to have
low rank under a different normalization method. To illustrate
this point, consider the two genes described in the motivating
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figure of this paper (Figure 1). As noted earlier, under the
standard criterion Mg(n,ORIOS) ≥ 0.99, the rhythmicity calls
on these two genes highly depended upon the normalization
method n. However, under the criterion M

g

Robust
(n,ORIOS) ≥

0.99, neither of these genes are considered to be rhythmic.
Specifically, using the normalization methods used earlier for
Figure 1, we obtained the following robust rhythmicity measures

M
Serpina3k
Robust

(Quantile,ORIOS) = 0.127, M
Serpina3k
Robust

(Constant,OR

IOS) = 0.367, MMaml1
Robust

(Loess,ORIOS) = 0.675, and

MMaml1
Robust

(InvariantSet,ORIOS) = 0.614. None of these numbers
exceed 0.99.

Observe that, unlike Figures S8, S9 in the Supplementary
Material for JTK and RAIN algorithms, none of the scatter
points in the right panel of Figure 7 for ORIOS take negative
values, except for one, thus indicating that MRobust(n,ORIOS)
almost always takes positive values for all normalization
methods n. However,MRobust(n, JTK) andMRobust(n,RAIN) take
negative values. Notice that something similar happens for both
the mouse pituitary (Figures S19–S21 in the Supplementary
Material) and NIH3T3 cell line datasets (Figures S31–S33).
Since MRobust(n, a) = Ê(θ̂(n, a)) − R̂MSE(θ̂(n, a)), therefore the
variability in p-values for tests for rhythmicity using JTK and
RAIN methods is larger than the corresponding estimated p-
values. Thus the JTK and RAIN methods produce p-values that
are subject to higher variation and uncertainty than the expected
p-values. This is in sharp contrast to ORIOS which almost always
produced p-values subject to smaller variability than the expected
p-values. This is one more reason, in addition to the results
provided in Larriba et al. (2016), to prefer ORIOS as the method
for detecting rhythmic genes.

The bootstrap methodology introduced in this paper is
computationally efficient. For each of the datasets analyzed in this
paper, the method required ∼ 70 min of CPU time to generate
and process 45,101 probe sets on Windows 7 Professional
3.60 GHz dual processors computer with disk space using 100
bootstrap samples.

From our investigation of real data and the bootstrap
simulated data, we find that our bootstrap procedure provides
a simple and a convenient way to simulate oscillatory signals
that potentially resemble realistic patterns of expression. Thus,
as a secondary contribution, in this paper we introduced a

bootstrap methodology that not only provides methodology to
detect rhythmic genes but it also allows researchers to conduct
simulation studies to generate realistic rhythmic patterns. Notice
also that, although for illustration and clarity purposes, in this
paper we focused on gene expression studies (such as microarray
and RNA-seq), the methodology described here is applicable to
any modern high-throughput technology involving oscillatory
systems. For example, it can potentially be used for analyzing
continuous time microbiome data, such as those obtained in
Caporaso et al. (2011).
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