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The Leaf Clinical Trials Corpus: a 
new resource for query generation 
from clinical trial eligibility criteria
Nicholas J. Dobbins   1 ✉, Tony Mullen   2, Özlem Uzuner3 & Meliha Yetisgen1

Identifying cohorts of patients based on eligibility criteria such as medical conditions, procedures, 
and medication use is critical to recruitment for clinical trials. Such criteria are often most naturally 
described in free-text, using language familiar to clinicians and researchers. In order to identify 
potential participants at scale, these criteria must first be translated into queries on clinical databases, 
which can be labor-intensive and error-prone. Natural language processing (NLP) methods offer a 
potential means of such conversion into database queries automatically. However they must first be 
trained and evaluated using corpora which capture clinical trials criteria in sufficient detail. In this paper, 
we introduce the Leaf Clinical Trials (LCT) corpus, a human-annotated corpus of over 1,000 clinical trial 
eligibility criteria descriptions using highly granular structured labels capturing a range of biomedical 
phenomena. We provide details of our schema, annotation process, corpus quality, and statistics. 
Additionally, we present baseline information extraction results on this corpus as benchmarks for future 
work.

Background & Summary
Randomized controlled trials serve a critical role in the generation of medical evidence and furthering of bio-
medical research. In order to identify patients for clinical trials, investigators publish eligibility criteria, such as 
past history of certain conditions, treatments, or laboratory tests. These eligibility criteria are typically composed 
in free-text, consisting of inclusion and exclusion criteria. Patients meeting a trial’s eligibility criteria are consid-
ered potential candidates for recruitment.

Recruitment of participants remains a major barrier to successful trial completion1, so generating a large 
pool of potential candidates is often necessary. Manual chart review of hundreds or thousands of patients to 
determine a candidate pool, however, can be prohibitively labor- and time-intensive. Cohort discovery tools 
such as Leaf2 and i2b23 may be used, providing researchers with a relatively simple drag-and-drop graphical 
interface in their web browser to create database queries to find potential patients in electronic health records 
(EHR). Learning how to use such tools nevertheless presents a challenge, as graphically-represented concepts 
may not align with researchers’ understanding of biomedical phenomena or trial eligibility criteria. In addition, 
certain complex queries may simply be impossible to execute due to structural limitations on the types of possi-
ble queries presented in these tools, such as complex temporal or nested sequences of events.

An alternative approach which holds promise is the use of natural language processing (NLP) to automati-
cally analyze eligibility criteria and generate database queries to find patients in EHRs. NLP-based approaches 
have the advantage of obviating potential learning curves of tools such as Leaf, while leveraging existing eligi-
bility criteria composed in a format researchers are already familiar with. Recent efforts to explore NLP-based 
approaches to eligibility criteria query generation have been published. These approaches can be generally cate-
gorized as (1) modular, multi-step methods which transform eligibility criteria into intermediate representations 
and finally into queries using rules4–6, (2) direct text-to-query generation methods using neural network-based 
semantic parsing5,6, and (3) information retrieval approaches to detect relevant sections of free-text notes meet-
ing a given criteria7–10.

For each category of NLP approaches, a key element for accelerating research efforts is large, robust corpora 
which capture eligibility criteria semantics sufficiently for high-accuracy query generation. Such corpora can 
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serve as reliable benchmarks for purposes of comparing NLP methods as well as training datasets. A number of 
corpora designed for multi-step methods, which we focus on here, have been published. Past corpora cover only 
a modest number of eligibility criteria11, are narrowly focused on certain diseases only12, are not publicly avail-
able13,14, or have annotations insufficiently granular to fully capture the diverse, nuanced semantics of eligibility 
criteria15. Yu et al.6 released a corpus designed for direct text-to-query generation with semantic parsing, how-
ever given the relative simplicity of generated queries to date compared to the complexity of clinical databases, 
it’s not clear this approach is yet viable for real-world clinical trials recruitment.

In this paper, we present the Leaf Clinical Trials (LCT) corpus. To the best of our knowledge, the LCT corpus 
is the largest and most comprehensive human-annotated corpus of publicly available clinical trials eligibility 
criteria. The corpus is designed to accurately capture a wide range of complex, nuanced biomedical phenomena 
found in eligibility criteria using a rich, granular annotation schema. As the LCT annotation schema is uniquely 
large, fine-grained and task-oriented, the corpus can serve as a valuable training dataset for NLP approaches 
while significantly simplifying disambiguation steps and text-processing for query generation. The LCT annota-
tion schema builds upon the foundational work of EliIE12, an Information Extraction (IE) system for eligibility 
criteria, and Chia15, a large corpus of clinical trials of various disease domains. Expanding the EliIE and Chia 
annotation schemas, we developed the LCT annotation schema to greatly increase the variety of biomedical 
phenomena captured while also annotating eligibility criteria semantics at a significantly more granular level. 
Table 1 presents a comparison of the LCT corpus and these corpora.

In the following sections, we (1) discuss the LCT corpus annotation schema, (2) include descriptive statistics 
on corpus structure, (3) provide baseline named entity recognition and relation extraction performance using 
the corpus, and (4) discuss areas of future potential for query generation in the Usage Notes section.

Methods
Eligibility criteria and database queries.  The NLP tasks involved in transforming eligibility criteria into 
database queries include named entity recognition (NER) to tag meaningful spans of text as named entities, rela-
tion extraction to classify relations between named entities, normalization to map named entities to common 
coded representations (e.g., ICD-10), negation detection to detected negated statements (e.g., “not hyperten-
sive”) and so on. Gold standard corpora quality can thus directly affect performance and the validation of each 
of these tasks. In this article, we only focus on design and development of the LCT corpus. Figure 1 illustrates 
why corpora structure and integrity are important for the task of query generation, using examples of eligibility 
criteria annotated using the LCT annotation schema and corresponding hypothetical Structured Query Language 
(SQL) queries. In the first eligibility criterion, “preeclampsia” is explicitly named, and thus can be directly nor-
malized to an International Classification of Diseases-Tenth Revision (ICD-10) or other coded representation. 
However, eligibility criteria involving non-specific drugs, conditions, procedures, contraindications, and so on 
are used frequently in clinical trials. In the second criterion in Fig. 1, “diseases” in “diseases that affect respiratory 
function” is non-specific, and must be reasoned upon in order to determine appropriate codes, such as asthma, 

Measure EliIE12 Chia15 LCT Corpus

Disease domain Alzheimer’s Disease All All

No. of Eligibility Descriptions 230 1,000 1,006

No. of Annotations 15,596 68,174 105,816

No. of Entity types 8 15 50

No. of Relation types 3 12 51

Mean Entities per doc. — 46 105

Mean Relations per doc. — 19 49

Table 1.  Annotation statistics for EliIE, Chia, and LCT corpora.

Fig. 1  Example eligibility criteria annotated used the LCT corpus annotation schema (left) and corresponding 
example SQL queries (right) using a hypothetical database table and columns. Annotations were done using the 
Brat annotation tool19. The ICD-10 codes shown are examples and not intended to be exhaustive.
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chronic obstructive pulmonary disease (COPD), or emphysema. Programmatically reasoning to generate queries 
in such cases would be challenging and often impossible if the underlying semantics were not captured appropri-
ately. With this in mind, we developed the LCT annotation schema in order to enable reasoning and ease query 
generation for real-world clinical trials use. As the second example in Fig. 1 shows, the LCT annotation captures 
the semantics of complex criteria, with changes to “respiratory function” annotated using a Stability[change] 
entity and Stability relation, and the cause, “diseases” annotated with a Caused-By relation. During query gener-
ation, a hypothetical algorithm can thus use LCT entities and relations to first normalize the span “respiratory 
function”, then reason that asthma, COPD, emphysema, and other conditions can affect respiratory function and 
thus the generated query should find patients with those diagnoses.

Annotation schema.  We aimed to develop an expressive, task-oriented annotation schema which could 
capture a wide range of medical concepts and logical constructs present in eligibility criteria. To accomplish this, 
we first analyzed previously published corpora11,12,15,16 and expanded the list of included biomedical phenomena 
to fully capture the context and logic present in real clinical trials criteria. As one example, we introduced an 
entity called Contraindication to reflect where use of a given treatment is inadvisable due to possible harm to the 
patient.

The LCT annotation schema is designed with the following goals and assumptions:

	 1.	 The annotation schema should be practical and task-oriented with a focus on facilitating ease of query 
generation.

	 2.	 A greater number of more specific, less ambiguous annotated phenomena should be favored over a small-
er number of possibly ambiguous ones.

	 3.	 Annotations should be easily transformable into composable, interconnected programmatic objects, 
trees, or node-edge graph representations.

	 4.	 The annotation schema should model eligibility criteria intent and semantics as closely as possible in 
order to ensure generated queries can do the same.

The LCT annotation schema is composed of entities and relations. Entities refer to biomedical, demo-
graphic, or other named entities relevant to eligibility criteria, and are annotated as a span of one or more tokens. 
We organized LCT entities into the following categories:

•	 Clinical - Allergy, Condition, Condition-Type, Code, Contraindication, Drug, Encounter, Indication, Immuni-
zation, Observation, Organism, Specimen, Procedure, Provider.

•	 Demographic - Age, Birth, Death, Ethnicity, Family-Member, Language, Life-Stage-And-Gender.
•	 Logical - Exception, Negation.
•	 Qualifiers - Acuteness, Assertion, Modifier, Polarity, Risk, Severity, Stability.
•	 Temporal and Comparative - Criteria-Count, Eq-Comparison (an abbreviation of “Equality Comparison”), 

Eq-Operator, Eq-Temporal-Period, Eq-Temporal-Recency, Eq-Temporal-Unit, Eq-Unit, Eq-Value.
•	 Other - Coreference, Insurance, Location, Other, Study.

The LCT corpus also includes 7 Name entities: Allergy-Name, Condition-Name, Drug-Name, 
Immunization-Name, Observation-Name, Organism-Name and Procedure-Name. Name entities serve 
a special purpose in the LCT corpus, as they indicate that a span of text refers to a specific condition, drug, 
etc., as opposed to any condition or drug. Name entities overlap with their respective general entities. 
For example, the span “preeclampsia” refers to a specific condition, and would thus be annotated as both a 
Condition and Condition-Name, while the span “diseases” is non-specific and would be annotated as only 
Condition. A full listing of the LCT annotation guidelines can be found at https://github.com/uw-bionlp/
clinical-trials-gov-annotation/wiki.

We defined a total of 50 entities in the LCT corpus. Examples of selected representative entities are pre-
sented in Table 2. In our representation, a subset of entities have values as well. For example, an Encounter may 
have a value of emergency, outpatient or inpatient. Values are optional in some entities (such as Encounters or 
Family-Member, where they may not always be clear or are intentionally broad) and always present in others. 
In the example annotations presented below, values are denoted using brackets (“[…]”) following entity labels.

Relations serve as semantically meaningful connections between entities, such as when one entity acts upon, 
is found by, caused by, or related in some way to another. We categorize relations into the following:

•	 Alternatives and Examples - Abbrev-Of, Equivalent-To, Example-Of.
•	 Clinical - Code, Contraindicates, Indication-For, Name, Provider, Specimen, Stage, Type.
•	 Dependent - Caused-By, Found-By, Treatment-For, Using.
•	 Logical - And, If-Then, Negates, Or.
•	 Qualifier - Acuteness, Asserted, Dose, Modifies, Polarity, Risk-For, Severity, Stability.
•	 Temporal and Comparative - After, Before, Criteria, Duration, During, Max-Value, Min-Value, Mini-

mum-Count, Numeric-Filter, Operator, Per, Temporal-Period, Temporal-Recency, Temporal-Unit, Temporality, 
Unit, Value.

•	 Other - From, Except, Has, Is-Other, Location, Refers-To, Study-Of.

We defined a total of 51 relations in the LCT corpus. Examples of relation criteria are shown in Table 3.
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In our annotations, some entity spans overlap with other entity spans in order to fully capture complex 
underlying semantics. Consider for example, the expression “Ages 18–55 years old”. While an Age entity may 
be assigned to token “Ages”, if an Eq-Comparison entity alone were assigned to the span “18–55 years old”, the 
underlying semantics of the tokens “18”, “-”, “55”, and “years” would be lost. In the following examples, we use 
the term fine-grained entity to refer to entities which are sub-spans of other general entities. Fine-grained 
entities are linked to general entities by relations. We use down arrow symbols (↓) to denote entity annotation 
and left and right arrow symbols (← and →) to denote relations. The (+) symbols denote overlapping entities 
on the same span.

The example expression “Ages 18–55 years old” would be annotated in three layers. In the first layer, the 
expression is annotated with Age and Eq-Comparison general entities with a relation between them:

–

‐
↓ ↓

 →
−

� �������� ��������

Eq Comparison

“Ages” “18 55 years old”

Age
Numeric Filter

In the second layer, fine-grained entities with respective values are annotated:

↓ ↓ ↓ ↓
‐

‐ ‐ ‐
‐ ‐

years

Eq Value
Eq Operator

between
Eq Value

Eq Temporal Unit
year

“18” “ ” “55” “ ”

[ ] [ ]

Category Entity Values Example Text

Clinical

Condition — Diagnosed with 
Condition

hypertension  in past year

Contraindication — any 
Contraindication
contraindications  to vaginal delivery

Drug — on 
Drug

beta blockers

Encounter emergency, outpatient, inpatient recently 
Encounter inpatient

admitted
[ ]

 to a hospital

Immunization — received 
Immunization

Influenza vaccination

Observation lab, vital, clinical-score, survey, social-habit
Observation lab

Platelet count
[ ]

 less than 500

Procedure — Undergoing or scheduled for a 
Procedure

colonoscopy

Demographic

Age — 43 years 
Age
old

Birth —
Birth
born  within the past 6 months

Family-Member mother, father, sibling, etc. history of 
‐Family Member mother
maternal

[ ]
 breast cancer

Language — Speaks 
Language
English  or 

Language
Spanish

Logical Negation — with 
Negation

no  systemic disease

`Qualifier

Assertion intention, hypothetical, possible which 
Assertion hypothetical

may
[ ]

 cause conditions

Modifier —
Modifier
alcohol  or 

Modifier
substance  abuse

Polarity low, high, positive, negative showing 
Polarity high

elevated
[ ]

 serum creatinine

Risk — at heightened 
Risk

potential  for suicide

Severity mild, moderate, severe with 
Severity severe

serious
[ ]

 complications from surgery

Stability stable, change conditions known to 
Stability change

affect
[ ]

 mood

Temporal and Comparative

Criteria-Count — at least 3 of 
‐Criteria Count

the following conditions :

Eq-Comparison —
‐Eq Comparison

greater than 50ml

Eq-Temporal-Period past, present, future
‐ ‐Eq Temporal Period present

Active
[ ]

 illness

Eq-Temporal-Recency first-time, most-recent
‐ ‐ ‐Eq Temporal Recency most recent

Latest
[ ]

 BMI > 35

Other Location residence, clinic, hospital, unit, emergency-department Seen at 
Location clinic

diabetes care clinic
[ ]

Table 2.  Examples of representative LCT annotation schema entities. A full listing of all entities can be found in 
the LCT annotation guidelines at https://github.com/uw-bionlp/clinical-trials-gov-annotation/wiki.
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In the third layer, relations connecting fine-grained entities to the general Eq-Comparison entity are added:











→

 →

→

 →

‐

‐

‐ ‐

‐

‐ ‐
‐

Eq Comparison

Eq Value 18

Eq Operator between

Eq Value 55

Eq Temporal Unit year

“ ”

[ ]“ ”

“ ”

[ ]“years”

Value

Operator

Value

Temporal Unit

This multilayered annotation strategy allows significant flexibility in capturing entities and relations in a 
slot-filling fashion, simplifying the task of downstream query generation. We show examples of this in the Usage 
Notes section.

The LCT annotation schema contributes the following novel features: (1) deep granularity in entities and 
relations, which enables (2) rich semantic representation, closely capturing the intent of complex clinical trial 
eligibility criteria and facilitating accurate query generation.

Deep entity and relation granularity.  We assume that more specific annotation labels are generally more 
straightforward to generate accurate queries with. For example, within the span, “preceding six months”, anno-
tating the token “preceding” as Temporal (an entity type in Chia) may appear to be adequate, given that an 
English-speaking human would understand that this refers to the past. Without further information, however, a 
naïve algorithm would be unable to determine (1) whether such a entity refers to the past, present, or future, (2) 
that the token “six” refers to a numeric value, and (3) that “months” refers to a unit of temporal measurement. 

Category Relation Example Annotation

Alternatives and Examples

Abbrev-Of ← 
‐ ( )Condition Abbrev Of Condition

Post Concussion Syndrome PCS

Equivalent-To ←  < ″
−

mm100,000/Condition Equivalent To Observation lab
Thrombocytopenia platelets

[ ]
3

Example-Of ←  . .
− ( )e gCondition Example Of Condition

skin condition eczema

Clinical Contraindicates conditions  →Contraindication Contraindication Procedure
contraindicating MRI

Dependent

Caused-By  →
−Observation Caused By

swellings  due to 
Condition

trauma

Found-By  →
‐Observation Found By

lesion  seen on standard 
Procedure
imaging

Treatment-For
‐

 →Procedure Treatment For

coronary bypass surgery  for 
Condition

atherosclerosis

Using →Procedure Using

total knee arthroplasty  with 
Procedure

spinal anesthesia

Logical If-Then BMI  →‐ ‐Eq Comparison If Then

greater than 38  for 
‐ ‐ ‐Life Stage And Gender female

women
[ ]

Qualifier

Risk-For
‐

 →Risk Risk For

risk  of 
Death
death

Severity  →Severity mild Severity

mild
[ ]

 
Observation
symptoms

Stability  →Observation Stability

hemodynamically  
Stability change

unstable
[ ]

Temporal and Comparative

After →Condition After

infected  following 
Encounter inpatient

admission
[ ]

Before →diagnosis of Condition Before

aortic stenosis  prior to 
Encounter

visit

Duration  →Condition Duration

type 1 diabetes  for 
‐Eq Comparison

at least 1 year

During  →Procedure Duration

mechanically ventilated  while 
Encounter inpatient

admitted
[ ]

Numeric-Filter  →
‐Observation vital Numeric Filter Eq Comparison

body weight
[ ]

less than 110 pounds
within past 6 months

Minimum-Count  →
‐ ‐Encounter inpatient Minimum Count Eq Comparison

admitted
[ ]

at least twice

Temporality
‐ →Encounter Temporality Eq Comparison

seen within past 6 months

Other Location  →Encounter inpatient Location

admitted
[ ]

 to the 
Location unit

ICU
[ ]

Table 3.  Examples of representative relations. Direction of arrows indicates role, i.e., subject → target entity.
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In such cases, most query generation algorithms introduce additional rule-based or syntactic parsing modules, 
such as SuTime17 to further normalize the phrase to a value4,11. This ambiguity in label semantics creates unnec-
essary complexity in downstream systems, requiring that the same text be processed a second time.

In contrast, we designed the LCT annotation schema to favor discrete, explicit entities and relations where 
possible, with an aim toward reducing the need for additional normalization steps needed for query generation. 
In our annotation schema, this example would be annotated with the following fine-grained entities:

As shown in the example, each token is uniquely annotated, with the values [past] and [month] serving 
to more clearly disambiguate semantics of the temporal phrase to a normalized temporal value. Moreover, as 
fine-grained entities are connected by relations to general entities, which can in turn have relations to other 
general entities, the LCT annotation schema is able to capture eligibility criteria semantics at a deeper level than 
other corpora.

Rich semantic representation.  Certain eligibility criteria cannot be directly translated into queries, but instead 
must first be reasoned upon. For example, a query to find patients meeting the criterion of “conditions con-
traindicating pioglitazone” requires reasoning to first answer the question, What conditions contraindicate use 
of pioglitazone? Such reasoning may be performed by a knowledge base or other methods, but cannot be done 
unless the contraindicative relation is detected:

As the span “Conditions” is labeled Condition but does not have an overlapping Condition-Name entity, it 
is considered unnamed and thus would need to be reasoned upon to determine. “[P]ioglitazone”, on the other 
hand, includes a Drug-Name entity and is thus considered named. The absence of overlapping Name entities 
serves as an indicator to downstream applications that reasoning may be needed to determine relevant con-
ditions or drugs. We examine additional cases of the LCT’s semantic representation and benefits in the next 
section, where we compare the LCT annotation schema to Chia’s.

Comparison to Chia.  We designed the LCT annotation schema by building upon the important previous 
work of EliIE and Chia. As Chia itself builds upon EliIE and is more recent, in the next section we compare the 
LCT corpus and Chia by examining cases of ambiguity handling and annotation difference in entities, relations, 
and coupling of entity types to the OMOP18 (Observational Medical Outcomes Partnership) data model. For each 
case we examine the LCT annotation schema’s novel solutions and contributions. Figure 2 shows comparison 
examples of annotations of the same eligibility criteria using the two corpora in the Brat annotation tool19.

Capturing entity semantics.  Example 2 of Fig. 2 demonstrates the need to closely capture semantics in clinical 
trials eligibility criteria for unnamed entities. The span “Medication” in “Medication[s] which affect glycemic 
control” refers to any drug which potentially affects glycemic control. As discussed, the LCT annotation schema 
uses Name entities to handle such cases, where the absence in this example of a Drug-Name entity indicates that 
“Medication” refers to any drug, and thus may need to be determined by downstream use of a knowledge base 
or other methods.

As can be seen, Chia does not differentiate between named and unspecified drugs, conditions, procedures 
and so on. While it is true that for query generation one may need to normalize these spans to coded representa-
tions (e.g., ICD-10, RxNorm or LOINC codes) and may in the process find that the span “Medication” is not a 
particular medication (and thus can be assumed to be any medication), such a workaround nonetheless compli-
cates usage of the corpus in finding and handling such cases in a more direct, less error-prone way.

Consider also the phrase, “after age 30” in example 4 in Fig. 2. In Chia, disambiguation of time units, val-
ues, and chronological tense must be performed by additional processing, as the Chia Value entity provides no 
information as to the semantics of the component sub-spans. In contrast, in the LCT corpus the tokens “after”, 
“age”, “30” are annotated with the explicit entities and relations to enable more straightforward query generation.

Capturing relation semantics.  Eligibility criteria frequently contain entities which relate to other entities in the 
form of examples, abbreviations, equivalencies, or explicit lists. Chia uses Subsumes relations to denote that one 
or more entities are a subset, depend on, or are affected by another entity in some way. In many cases however 
these entities leave significant semantic ambiguity which may complicate query generation. Consider the phrase:

…conditions predisposing to dysphagia eg gastroesophageal reflux disease GERD“ ( , [ ] )”

https://doi.org/10.1038/s41597-022-01521-0
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In this case, “gastroesophageal reflux disease” is an example of a condition, while “GERD” is an abbreviation. 
However, both are Subsumes relations in the Chia annotation:

In contrast, in the LCT annotation schema this example would be annotated as:

The LCT annotation uses Abbrev-Of and Example-Of relations to clearly differentiate relations between “gas-
troesophageal reflux disease”, “GERD”, and “conditions predisposing to dysphagia”. Additionally, rather than 
grouping the latter into a single Condition entity, the LCT is also much more granular, with the annotation 
reflecting that dysphagia is a condition patients are hypothetically predisposed to (due to other conditions such 
as GERD), but not necessarily actively afflicted by.

Another example illustrating the importance of capturing relation semantics can be seen in the following 
Chia annotations:

	 (1)

Fig. 2  Examples of clinical trials eligibility criteria annotated with Chia and LCT annotation schemas. Each 
example shows a criterion from a Chia annotation (above) and an LCT annotation of the same text for purposes 
of comparison (below).

https://doi.org/10.1038/s41597-022-01521-0
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	 (2)

While syntactically similar, the semantics in chronology expressed in the two criteria are different. In (1), 
“type 1 diabetes for at least 1 year” suggests that the diagnosis of type 1 diabetes mellitus should have occurred 
at least 1 year prior to the present. In other words, a unit of temporal measurement (1 year), should have passed 
since initial diagnosis. In contrast, “Acute coronary syndrome in the past 6 months” (2) suggests that a range 
of dates between the present and a past event (past 6 months), should have passed since the diagnosis. In Chia, 
however, the same Has-Temporal relation is used for both, blurring distinctions between durations of time versus 
ranges of dates, potentially leading to errors during query generation.

In the LCT annotation schema, these would be annotated as (omitting fine-grained entities for brevity):

	 (3)

	 (4)

The LCT annotations distinguish these types of temporal semantics by using distinct Duration and 
Temporality relations, allowing downstream queries to more accurately reflect researcher intent. The LCT corpus 
also does not include “for” or “in the” as part of the entities.

Data model mapping.  The Chia annotation schema is mapped to the OMOP Common Data Model18 and is 
designed to ease integration with other OMOP-related tools and generation of SQL queries on OMOP databases. 
Chia OMOP-derived entities generally follow the naming convention of OMOP domains and SQL database 
tables, such as Person, Condition, Device and so on.

The LCT annotation schema takes a different approach by intentionally avoiding direct mappings to data 
models. This approach was chosen to (1) allow the annotation entities and relations flexibility to be transformed 
to any data model (including but not limited to OMOP) and (2) provide flexibility in capturing criteria impor-
tant to the task of query generation, even when such criteria are not represented in OMOP.

A disadvantage of directly coupling an annotation schema to a data model is evidenced by criteria such as:

Males aged years and above“ 18 ”

In Chia, spans related to gender and age share the same Person entity:

The use of the Chia Person entity across gender and age results in loss of information and complications for 
query generation. As with quantitative and temporal annotations, the generic Person entity again forces the 
burden of normalization and additional parsing to downstream applications. In contrast, this example would be 
annotated first using general entities and relations in the LCT annotation schema:

Followed by fine-grained entities and values:

‐

‐

‐ ‐

‐











→

 →

 →
−Eq Comparison

Eq Value 18

Eq Temporal Unit year years

Eq Operator GTEQ or above

“ ”

[ ]“ ”

[ ]“ ”

Value

Temporal Unit

Operator
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The LCT annotation captures the male and age spans as distinguishable entities, closely preserving the 
semantics of the original text.

Annotation process.  We used eligibility criteria from https://clinicaltrials.gov as the basis for our corpus.
We extracted 1,020 randomly selected clinical trials eligibility descriptions, 20 for training and 

inter-annotator comparison and 1,000 for post-training annotation. Documents were included only if they met 
the following criteria:

	 1.	 The combined inclusion and exclusion criteria text was at least 50 characters long.
	 2.	 The clinical trial was uploaded on or after January 1st, 2018. This date was chosen because we found that 

clinical trials performed further in the past appeared to exhibit less structural consistency in language, 
punctuation and indentation compared to more recent text.

During annotation, 14 documents were found to be information poor (often with no spans to annotate) and 
discarded, resulting in 1,006 total annotated eligibility descriptions. Annotation was performed by two annota-
tors, the first a biomedical informatician and the second a computer scientist. For initial annotation training, 20 
documents were distributed to both annotators. Annotation was done in the following steps:

	 1.	 Annotation meetings were held bi-weekly for 3 months following initial annotation training in which the 
annotation guidelines were introduced. Initial meetings focused on discussion of annotation guideline 
implementation and revision. After each meeting, the annotation guidelines were revised to include new 
named entities and relationships and inter-annotator agreement was recalculated using F1-scores. Each 
annotator used the UMLS Terminology Services (UTS) Metathesaurus Browser (https://uts.nlm.nih.gov/
uts/umls/home) to search for biomedical concepts whose meaning was unclear.

	 2.	 After annotation guideline revisions and annotation training were completed, eligibility criteria were assigned 
to each annotator, with each clinical trial eligibility criteria annotated by a single annotator using the BRAT 
annotation tool19. Due to differences in time availability for annotation, roughly 90% (887 documents) of the 
annotation task was performed by the first annotator, and 99 documents by the second annotator.

	 3.	 At the point in which 50% of the corpus was annotated, we trained two neural networks (one for gener-
al entities and another for fine-grained entities) using the NeuroNER tool20 on our manually annotated 
eligibility criteria to predict annotations for the remaining 50%. NeuroNER is a state-of-the-art entity 
extraction system which has been successfully adapted to tasks such as de-identification and concept 
extraction. NeuroNER utilizes bidirectional Long Short-Term Memory and Conditional Random Fields 
(biLSTM + CRF) for token-level multiple-label prediction. We used the NeuroNER-predicted entities to 
auto-populate our remaining eligibility descriptions.

	 4.	 Manual annotation was completed on the remaining 50% of eligibility descriptions by editing and correct-
ing the predicted entities from NeuroNER in (3).

The resulting corpus included 887 single-annotated and 119 double-annotated total notes.

Data Records
The LCT corpus annotated eligibility criteria and text documents can be found at https://doi.org/10.6084/
m9.figshare.1720961021. Code for pre-annotation and analysis are available at https://github.com/uw-bionlp/
clinical-trials-gov-data. The LCT corpus is annotated using the Brat “standoff ” format. The Brat format includes 
two file types, “.txt” files and “.ann” files.

Text (.txt) files.  The free-text eligibility criteria information in the 1,006 documents of the LCT corpus. Each 
file is named using the “NCT” identifier used by https://clinicaltrials.gov.

Annotation (.ann) files.  The annotation files used by Brat for tracking annotated spans of text and relations. 
Each.ann file corresponds to a.txt file of the same name. Each row of a.ann file may begin with a “T” (for an entity) 
or “R” (for a relation), followed by an incremental number for uniquely identifying the entity or relation (e.g., 
“T15”). “T” rows are of the form “T<number> <entity type> <start character index> <stop character index>”, 
where start and stop indices correspond to text in the associated.txt file. “R” rows are of the form “R<number> 
<relation type> Arg1: <ID>Arg2: <ID>”, where ID values correspond to identifiers of entities. Additionally, 
for ease of annotation certain LCT relations are defined as arguments of Brat “events”, identified by “E”. “E” rows 
are of the form “E<number> <entity type>: <ID> <relation type>: <ID>”.

More information on the Brat format can be found at https://brat.nlplab.org/standoff.html.

Technical Validation
Inter-annotator agreement.  Inter-annotator agreement was calculated using F1 scoring for entities and 
relations with 20 double-annotated documents. Entity annotations were considered matching only if entity types 
and token start and end indices matched exactly. Relations annotations were similarly considered matching only 
if relation type and token start and end indices of both the subject and target matched exactly.

Initial inter-annotator agreement using the 20 training documents was 76.1% for entities and 60.3% for rela-
tions. Inter-annotator agreement improved slightly to 78.1% (+2%) for entities and 60.9% (+0.6%) for relations 
in the 99 additional double-annotated documents, indicating reasonably high annotator agreement considering 
the complexity of the annotation task.
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We found two categories of annotation differences in double-annotated eligibility criteria. First, in spans such as:

Reported being a daily smoker“ ”

While both annotators tended to annotate “smoker” as both a Condition and Condition-Name, adjectives 
such as “daily” were often annotated as Eq-Comparison and Eq-Temporal-Unit[day] by one annotator and 
Stability[stable] by the other. After review, these were generally reconciled to the first pattern.

The second category of differences can be seen in spans such as “CDI Diarrhea”, where “CDI” refers 
to Clostridium Difficile Infection. In these cases, the annotators may annotate this span as (omitting 
Condition-Name entities for brevity):

↓ ←  ↓
−

CDI

Condition

Diarrhea

Condition

“ ” “ ”

(5)
Caused By

or

↓
Condition

“CDI Diarrhea”

(6)

The first annotation separates “CDI” and “Diarrhea” into two entities, with “Diarrhea” Caused-By “CDI”, 
while the second annotation treats them as a single entity. Reconciliation in these cases was done by referring 
to the UMLS Metathesaurus to determine whether the combined span existed as a single concept within the 
UMLS. As “Clostridium Difficile Diarrhea” exists as a UMLS concept (C0235952), the annotations in this exam-
ple were reconciled to use the second, multi-span entity.

Baseline prediction.  To evaluate baseline predictive performance on the LCT corpus, we first created a 
randomly assigned 80/20 split of the corpus, with 804 documents used for the training set and 202 for the test 
set. For entity prediction, we trained NER models using biLSTM + CRF and BERT22 neural architectures. For 
BERT-based prediction, we used two pretrained models trained on published medical texts, SciBERT23 and 
PubMedBERT24. For both biLSTM + CRF and BERT predictions, we trained one model to predict general enti-
ties and another for fine-grained entities.

For relation extraction, we evaluated SciBERT for sequence classification as well as a modified BERT archi-
tecture, R-BERT, following methods developed by Wu & He25, also using the pretrained SciBERT model. Table 4 
shows hyperparameters used for each task.

We achieved the highest micro-averaged F1 score of 81.3% on entities using SciBERT and 85.2% on relations using 
the R-BERT architecture with SciBERT. Results of representative entities and relations are shown in Tables 5 and 6.

Among entities, we found two particular categories performed relatively well with F1 scores of 70% or often 
greater: (1) Entities which are syntactically varied but occurred relatively frequently in eligibility descriptions, 
such as Condition, Procedure, and Eq-Comparison, (2) Entities which sometimes occurred less frequently but 
with greater relative syntactic consistency and structure, such as Age, Contraindication, and Birth. Entities which 
occurred very infrequently, such as Death tended to have both low precision and recall.

For relations, we found the most frequently occurring relations, such as Eq-Comparison, Temporality, 
Modifies, and Example-Of to perform well, with F1 scores greater than 85%. Among less frequently occurring 
relations, we found a number of cases where relations which tend to occur in similar positions within sentences 
and grammatical structures were frequently mistaken during prediction. For example, Eq-Comparison (e.g., 
“greater than 40”) and Minimum-Count (e.g., “at least twice”) were sometimes incorrectly predicted. We found 
similar incorrect predictions for relations such as Treatment-For (e.g., “Surgery for malignant pathology”) and 
Using (e.g., “knee joint replacement with general anaesthesia”).

In future work we intend to examine approaches improving prediction of less frequently occurring entities and 
relations. A full listing of baseline prediction results can be found with the annotation guidelines at https://github.com/
uw-bionlp/clinical-trials-gov-annotation/wiki/Named-Entity-Recognition-and-Relation-Extraction-performance.

Task Architecture Hyperparameter/Embeddings Training Value

Named Entity Recognition biLSTM + CRF

Character Dimensions 25

Token Embedding Dimensions 100

Learning Rate 0.005

Dropout 0.5

Pretrained Embeddings GloVe28

Relation Extraction BERT & R-BERT
Pretrained Model SciBert

Learning Rate 0.00003

Table 4.  Hyperparameters and pre-trained embeddings used for named entity recognition and relation 
extraction baseline results. For the NER task, the same architecture and hyperparameters were used for both 
general and fine-grained entity models. For the relation extraction task, the same hyperparameters were used 
with both the BERT and R-BERT architectures.
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Annotation quality evaluation.  To determine the quality of single-annotated documents compared to those 
which were double-annotated, we trained NER models (one for general and another for fine-grained entities, as in ear-
lier experiments) using SciBERT with the 887 single-annotated documents and evaluated on the 119 double-annotated 
documents. The results were a precision of 79.7%, recall of 82.5%, and an F1 score of 81.4%, which are very close to the 
highest performance of our randomly split train/test set results shown in Table 5. These results indicate relative uni-
formity and consistency in the corpus across both single- and double-annotated documents.

As the latter near-half (493 documents) of the LCT corpus was automatically annotated, then manually cor-
rected, we also evaluated the quality of the manually annotated portion versus the semi-automatically annotated 
portion to ensure consistency. We first trained NER models with SciBERT using the manually annotated portion 
and tested on the semi-automated portion, then reversed the experiment and trained on the semi-automated 
portion and tested on the manually annotated portion. Results are shown in Table 7.

Results of the experiments when training on both the manually and semi-automatically annotated halves of the 
corpus show comparable results, with the greatest difference being in precision, with the manual annotation-trained 
model performing slightly worse (−4.7%) in prediction versus the semi-automated annotation-trained model. 
Overall F1 scores were similar at 78.6% and 80.0%, suggesting reasonable consistency across the corpus.

Usage Notes
The LCT corpus is designed to facilitate query generation and question answering for real-world clinical trials 
and clinical research, specifically for a future version of the Leaf cohort discovery tool2. Figure 4 visualizes an 
example of a transformation of LCT annotated data into a Directed Acyclical Graph (DAG) structure, which can 
then be potentially compiled into SQL, FHIR, SPARQL, or other query methods.

To demonstrate the value and utility of the corpus, using the trained baseline Named Entity Recognition and 
Relation Extraction models, we developed a simple prototype web application to test named entity and relation 
prediction on unseen text. Figure 3 shows a screenshot of the models correctly predicting entities and relations 
on an input sentence not present in the LCT corpus. As can be seen, the models are able to predict entities and 
relations with very high accuracy on new text, demonstrating the power of the corpus.

Category Entity Count biLSTM + CRF PubMedBERT SciBERT

Clinical

Condition 7,087 78.6/78.1/78.3 76.1/79.4/77.7 78.4/83.3/80.8

Contraindication 142 93.7/78.9/85.7 77.4/80.0/78.6 100.0/96.6/98.3

Drug 1,404 76.8/81.3/79.0 74.1/80.9/77.4 73.4/80.9/77.0

Encounter 302 64.1/58.1/60.9 51.7/61.7/56.3 58.3/74.4/65.4

Observation 2,558 74.3/66.1/69.9 67.9/73.5/70.6 72.1/77.6/74.7

Procedure 3,016 68.4/75.5/71.9 67.0/75.9/71.2 71.3/79.4/75.1

Demographic

Age 708 91.3/95.4/93.3 82.4/88.5/85.3 99.1/98.3/98.7

Birth 27 100.0/80.0/88.8 100.0/62.5/76.9 100.0/62.5/76.9

Death 35 33.3/33.3/33.3 0.0/0.0/0.0 100.0/20.0/33.3

Family-Member 147 40.0/19.0/25.8 33.3/55.5/41.6 44.9/61.1/51.7

Language 194 92.5/96.1/94.3 73.8/100.0 84.9 96.6/93.5/95.0

Logical Negation 952 74.3/82.7/78.2 60.9/73.1/66.4 73.5/82.9/77.9

Qualifier

Assertion 1,157 66.6/62.8/64.7 56.1/58.9/57.5 62.1/65.8/63.9

Modifier 3,464 65.0/58.3/61.5 59.2/64.0/61.5 58.5/65.4/61.8

Polarity 360 82.5/88.0/85.1 74.6/67.4/70.8 81.4/79.5/80.4

Risk 117 93.1/96.4/94.7 91.3/91.3/91.3 95.4/91.3/93.3

Severity 569 86.8/90.8/88.7 76.7/79.5/78.1 86.5/94.1/90.2

Stability 397 84.2/67.6/75.0 79.4/75.0/77.1 75.3/84.7/79.7

Temporal and 
Comparative

Criteria-Count 33 50.0/66.6/57.1 28.5/40.0/33.3 12.5/20.0/15.5

Eq-Comparison 5,298 83.1/83.8/83.4 81.4/85.0/83.2 85.3/89.3/87.3

Eq-Temporal-
Period 2,057 88.7/89.2/88.9 70.0/73.9/71.9 82.6/86.3/84.4

Eq-Temporal-
Recency 131 68.7/84.6/75.8 43.4/55.5/48.7 50.0/66.6/57.1

Eq-Temporal-
Unit 1,808 95.1/97.6/96.4 97.4/98.1/97.8 98.2/99.4/98.8

Eq-Value 3,835 91.8/95.3/93.5 95.5/96.2/95.9 96.4/97.1/96.7

Other Location 371 68.5/58.7/63.2 65.4/71.6/68.3 73.4/78.3/75.8

— Total 56,146 80.2/79.6/79.9 75.3/78.7/77.0 79.0/83.7/81.3

Table 5.  Baseline entity prediction scores (%, Precision/Recall/F1). Corpus-level micro-averaged scores are 
shown in the bottom row. For brevity a representative sample of entities is shown. Count refers to the total count 
of unique spans annotated in the entire corpus. Entities included in the total count and scores but omitted for 
brevity are Acuteness, Allergy, Condition-Type, Code, Coreference, Ethnicity, Eq-Operator, Eq-Unit, Indication, 
Immunization, Insurance, Life-Stage-And-Gender, Organism, Other, Specimen, Study and Provider.
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Limitations.  The LCT corpus is designed as a granular and robust resource of annotated eligibility criteria to 
enable models for entity and relation prediction as means of query generation. The corpus does have a number of 
limitations however which should be recognized. First, the corpus is largely singly annotated, with 119 of 1,006 
documents (11%) double annotated and reconciled, while double annotation is generally considered to be the 
gold standard in the NLP research community. As discussed in the Technical Validation section, the reasonably 
high F1 score from experiments to evaluate NER when training on the singly annotated portion of the corpus 
suggests relative consistency of annotation across both single and double annotated documents. Additionally, 
entities in roughly half of the LCT corpus (493 documents) were automatically predicted, then manually cor-
rected. This can potentially lead to data bias if predicted entities are not thoroughly reviewed and corrected by 
human annotators. Similar results from our experiments to detect differences in performance by training on the 
manually annotated portion versus the semi-automatically annotated portion (F1 scores of 78.6% and 80.0%) 
suggest this may not be not a significant issue. Last, though the ultimate goal of the LCT corpus is to facilitate 
more accurate query generation, the corpus itself is not composed of queries by which it can be compared to sim-
ilar corpora and thus cannot necessarily be proven to be more effective. Similarly, as we do not formally define a 
quantifiable means for measuring semantic representation within annotations, it is difficult to demonstrate that 
the LCT corpus enables more accurate query generation.

Category Relation Count SciBERT R-BERT + SciBERT

Alternatives and 
Examples

Abbrev-Of 462 95.2/90.9/93.0 92.3/93.1/94.2

Equivalent-To 516 61.5/69.5/65.3 59.6/67.3/63.2

Example-Of 1,497 94.8/92.9/93.8 90.5/91.7/91.1

Clinical

Contraindicates 153 90.9/90.9/90.9 90.9/90.9/90.9

Caused-By 726 63.0/86.4/72.9 78.6/86.4/82.3

Found-By 293 90.4/59.3/71.7 9.3/71.8/75.4

Treatment-For 457 69.2/69.2/69.2 61.7/74.3/67.4

Using 405 73.8/83.7/78.4 66.6/64.8/65.7

Logical

And 821 54.1/60.0/56.9 53.8/53.8/53.8

If-Then 261 57.6/65.2/61.2 55.5/65.2/60.0

Negates 984 74.3/91.0/81.8 74.5/88.7/81.0

Or 4,156 85.1 93.2 89.0 88.4/92.2/90.2

Qualifier

Asserted 1,184 83.7/89.0/86.3 85.9/89.0/87.5

Modifies 3,400 90.9/94.2/92.5 92.2/95.4/93.8

Risk-For 90 92.3/85.7/88.8 92.8/92.8/92.8

Severity 529 80.2/96.6/87.6 86.3/96.6/91.2

Stability 395 76.0/92.6/83.5 76.4/95.1/84.7

Temporal and 
Comparative

After 166 75.0/70.5/72.7 72.2/76.4/74.2

Before 320 70.2/86.6/77.6 78.1/83.3/80.6

Duration 243 59.3/79.1/67.8 64.5/83.3/72.7

During 350 66.6/68.7/67.6 63.6/65.6/64.6

Numeric-Filter 1,957 84.6/93.3/88.7 85.7/92.3/88.8

Minimum-Count 173 64.2/69.2/66.7 71.4/76.9/74.0

Temporality 2,645 80.7/90.7/85.4 81.8/92.2/86.7

Other Location 207 64.2/94.7/76.6 69.2/94.7/80.0

— Total 24,379 80.2/88.2/84.0 82.5/88.0/85.2

Table 6.  Baseline relation prediction scores (%, Precision/Recall/F1). Corpus-level micro-averaged scores are 
shown in the bottom row. For brevity a representative sample of relations is shown. Count refers to the total 
count annotated in the entire corpus, including relations not shown. The count total excludes general to fine-
grained entity relations, which as overlapping spans are not used for relation prediction. Relations included in 
the total count and scores but omitted for brevity are Acuteness, Code, Criteria, Except, From, Indication-For, Is-
Other, Max-Value, Min-Value, Polarity, Provider, Refers-To, Specimen, Stage, Study-Of and Type.

Training Set Test Set Precision Recall F1

Manual Semi-automated 75.4 82.1 78.6

Semi-automated Manual 80.1 79.9 80.0

Table 7.  Results of NER experiments using the manually annotated and semi-automated portions of the 
corpus. The manually annotated portion includes 513 documents while the semi-automatically annotated 
portion is 493 documents.
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Future work.  As discussed, evaluation of generated query accuracy and semantic representation in anno-
tations is difficult and can potentially be done by different methods, such as ROUGE scoring26 to compare gen-
erated query syntax to expected syntax, or by including UMLS Concept identifiers27 within the LCT annotation 
schema and comparing the number of UMLS concepts to those found in other corpora.

Fig. 4  Example of an LCT annotated document (top) transformed into a Directed Acyclical Graph (bottom). 
LCT entities and relations are readily transformable into tree, graph, or object-oriented representations used for 
query generation.

Fig. 3  Screenshot of a prototype web application for real-time entity and relation prediction on custom user 
input text.
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Taking a different approach, in future work, we intend to evaluate the LCT corpus and query generation 
methods by evaluating generated queries in the context of real clinical trials which have taken place at the 
University of Washington (UW). As the UW EHR system maintains clinical trial enrollments and patient identi-
fiers alongside clinical data, it is possible to query our EHR databases to compare patients who actually enrolled 
in clinical trials versus those found by our queries had they been run at the time of a given trial. We believe this 
means of evaluation is uniquely valuable as it uses real world clinical trials and EHR data while scoring queries 
by the accuracy of their ultimate results rather than less consequential factors such as syntax.

Code availability
All code used to generate, pre-annotate, and analyze the LCT corpus is freely available at https://github.com/uw-
bionlp/clinical-trials-gov-data. The LCT annotation guidelines can be found at https://github.com/uw-bionlp/
clinical-trials-gov-annotation/wiki.
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