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Objective: Intradural spinal tumors are uncommon and while associations between clinical 
characteristics and surgical outcomes have been explored, there remains a paucity of litera-
ture unifying diverse predictors into an integrated risk model. To predict postresection out-
comes for patients with spinal tumors.
Methods: IBM MarketScan Claims Database was queried for adult patients receiving sur-
gery for intradural tumors between 2007 and 2016. Primary outcomes-of-interest were 
nonhome discharge and 90-day postdischarge readmissions. Secondary outcomes included 
hospitalization duration and postoperative complications. Risk modeling was developed us-
ing a regularized logistic regression framework (LASSO, least absolute shrinkage and selec-
tion operator) and validated in a withheld subset.
Results: A total of 5,060 adult patients were included. Most surgeries utilized a posterior 
approach (n = 5,023, 99.3%) and tumors were most commonly found in the thoracic re-
gion (n = 1,941, 38.4%), followed by the lumbar (n = 1,781, 35.2%) and cervical (n = 1,294, 
25.6%) regions. Compared to models using only tumor-specific or patient-specific features, 
our integrated models demonstrated better discrimination (area under the curve [AUC] 
[nonhome discharge] = 0.786; AUC [90-day readmissions] = 0.693) and accuracy (Brier 
score [nonhome discharge] = 0.155; Brier score [90-day readmissions] = 0.093). Compared 
to those predicted to be lowest risk, patients predicted to be highest-risk for nonhome dis-
charge required continued care 16.3 times more frequently (64.5% vs. 3.9%). Similarly, 
patients predicted to be at highest risk for postdischarge readmissions were readmitted 7.3 
times as often as those predicted to be at lowest risk (32.6% vs. 4.4%).
Conclusion: Using a diverse set of clinical characteristics spanning tumor-, patient-, and 
hospitalization-derived data, we developed and validated risk models integrating diverse 
clinical data for predicting nonhome discharge and postdischarge readmissions.
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INTRODUCTION

Intradural spinal tumors constitute up to 8% of all central ner-
vous system tumors,1 and encompass both extramedullary tu-
mors, such as schwannomas, and intramedullary tumors, such as 
ependymoma, astrocytoma, or hemangioblastoma.2 Surgeries to 
resect these tumors are relatively complex procedures with wide 
variation in surgical practice and outcomes reported in the liter-
ature.3,4 Large nationwide studies have reported complication 

rates as high as 18% and range broadly from wound hematoma 
and hemorrhage to urinary and pulmonary complications.5

Prior studies have attempted to evaluate predictors of out-
come after intradural tumor resection, but most have been sin-
gle institution series, with relatively few numbers of patients 
studied and with limited interpretability across diverse health-
care systems and geographical regions.6-8 Using a nationwide 
longitudinal database containing the healthcare claims of over 
150 million enrollees covered by qualifying insurance plans, we 
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sought to identify features predictive of hospital and postdis-
charge outcomes in a cross-sectional approach. In our cohort of 
over 5,000 patients receiving surgery for intradural spinal tumors, 
we developed and validated risk classification models integrating 
individual predictors within a unified predictive framework to an-
ticipate nonhome discharge and readmission within 90 days of 
discharge. These models offer opportunities to patient-specific 
risk of postoperative complications while potentiating future ef-
forts to optimize quality and efficiency of care delivery.

MATERIALS AND METHODS

This study was approved by the Institutional Review Board 
of Stanford University (No. 40974) and complies with guide-
lines established by the Health Insurance Portability and Ac-
countability Act. Patient consent was not required as only dei-
dentified data was used. Adult patients receiving spine surgery 
for resection of intradural tumors between 2007 and 2016 were 
identified in the IBM MarketScan Claims Database, which we 
have previously described.9,10 Inclusion criteria required an in-
patient procedure code indicating either laminectomy or cor-
pectomy for intradural lesion removal concurrent with a diag-
nosis code indicating spinal neoplasm (Supplementary Table 1). 
Concurrent anterior and posterior approach codes were classi-
fied as combined approach. Tumor location was identified by 
current procedural terminology (CPT) identifier while tumor 
type and grade were determined by International Statistical 
Classification of Diseases (ICD)-9/10 identifiers. Tumor type 
was classified as either meningioma, primary spinal cord/nerve 
sheath tumor, or metastasis. Comorbidities were assessed ac-
cording to the Elixhauser comorbidity index, which defines a set 
of comorbid conditions most associated with outcomes and re-
source use.11 Other variables considered include use of an oper-
ating microscope, intraoperative neuromonitoring, and postre-
section arthrodesis. Discharge disposition was stratified as ei-
ther home discharge or nonhome discharge (e.g., inpatient re-
habilitation, skilled nursing facility [SNF], or other healthcare 
facility). Analyses of postdischarge outcomes required at least 90 
days of continuous postdischarge follow-up. Planned readmis-
sions for physical rehabilitation, radiotherapy, or chemotherapy 
were not considered (ICD-9: V57, V58.0, V58.1, ICD-10: Z51.0, 
Z51.1, Z51.8). New-onset paralysis or paresis was identified by 
the presence of corresponding ICD-9 or ICD-10 identifier after 
surgery that were not present at any time prior to surgery. Sec-
ondary analyses included evaluation of predictors associated 
with either new-onset paralysis/paresis or wound infection. 

Only patients with non-null values for all noncomorbidity pre-
dictors were included. Primary inpatient outcomes include 
postsurgical inpatient stay duration and discharge disposition. 
Our secondary outcome-of-interest was hospital readmission 
within 90 days following the initial index encounter.

1. Statistical Analysis
Wilcoxon rank-sum and chi-square tests were used to evalu-

ate differences in continuous and categorical variables, respec-
tively. Trends over time were evaluated using Pearson correla-
tion coefficient. Multiple regression was used to evaluate factors 
associated with prolonged inpatient stay, index admission cost, 
and 90-day postdischarge costs. Multivariable logistic regres-
sion was used to assess factors associated with nonhome dis-
charge (defined as rehabilitation, SNF, or another healthcare fa-
cility), risk of postdischarge complications, and risk of postop-
erative readmissions. All p-values are 2-sided and threshold for 
statistical significance was established at an α of 0.05. Statistical 
and graphical analyses were conducted using R (ver. 3.6.0, R 
Foundation for Statistical Computing, Vienna, Austria) and 
GraphPad Prism 8 (GraphPad Software, San Diego, CA, USA).

2. Predictive Modeling
The full cohort was randomly split into a 70% training datas-

et and a 30% validation dataset, which was not used in model 
training. Binary classification models were developed using a 
logistic regression approach regularized by the least absolute 
shrinkage and selection operator (LASSO) penalty.12 In brief, 
LASSO offers both variable selection and regularization to opti-
mize model accuracy and parsimony by incorporating the ad-
ditional penalty term Penalty=

significance was established at an  of 0.05. Statistical and graphical analyses were conducted using R (ver. 

3.6.0, R Foundation for Statistical Computing, Vienna, Austria) and GraphPad Prism 8 (GraphPad Software, 

San Diego, CA, USA). 

 

2. Predictive Modeling 

The full cohort was randomly split into a 70% training dataset and a 30% validation dataset, which was not 

used in model training. Binary classification models were developed using a logistic regression approach 

regularized by the least absolute shrinkage and selection operator (LASSO) penalty.12 In brief, LASSO 

offers both variable selection and regularization to optimize model accuracy and parsimony by 

incorporating the additional penalty term 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝜆𝜆 ∑ |𝛽𝛽𝑖𝑖|𝑛𝑛
𝑖𝑖=1  for a 𝑛𝑛  features, where 𝜆𝜆  represents a 

shrinkage factor determining the magnitude of regularization. For each model, 𝜆𝜆 was selected using 5-fold 

cross validation minimizing the logistic loss function. This contrasts with stepwise logistic regression 

models, which does not implement any regularization but rather seeks to iteratively optimize model fit on 

training data based on various combinations of included features. In general, LASSO was chosen a priori 

as the predictive modeling approach over alternative regularization strategies such as ridge regression given 

its emphasis on model parsimony, which is an important factor when considering the usability in real-world 

applications. Variable coefficients and constant terms are provided to allow for reapplication and validation 

of our models on external data. Odds ratios described in the final model table can be converted to logit 

regression coefficients by applying the natural log function. The combined log-odds for a given patient can 

be estimated by 𝑃𝑃(𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂) = 𝑒𝑒𝛼𝛼0+∑ 𝛽𝛽𝑖𝑖
𝑛𝑛
𝑖𝑖=1 𝑋𝑋𝑖𝑖

1+ 𝑒𝑒𝛼𝛼0+∑ 𝛽𝛽𝑖𝑖𝑛𝑛
𝑖𝑖=1 𝑋𝑋𝑖𝑖

 , where βi are the logit regression coefficients for each of 

the included features and α0 represents the y-intercept estimate/constant. 

Input features were classified as either patient-specific, tumor-specific, or other. Discharge disposition 

was only included in the input feature set for predicting postdischarge readmissions (nonhome discharge 

was the outcome variable for the other model). Internal validation of the models was conducted on the 

 for a n features, where 
λ represents a shrinkage factor determining the magnitude of 
regularization. For each model, λ was selected using 5-fold cross 
validation minimizing the logistic loss function. This contrasts 
with stepwise logistic regression models, which does not imple-
ment any regularization but rather seeks to iteratively optimize 
model fit on training data based on various combinations of in-
cluded features. In general, LASSO was chosen a priori as the 
predictive modeling approach over alternative regularization 
strategies such as ridge regression given its emphasis on model 
parsimony, which is an important factor when considering the 
usability in real-world applications. Variable coefficients and 
constant terms are provided to allow for reapplication and vali-
dation of our models on external data. Odds ratios described in 
the final model table can be converted to logit regression coef-
ficients by applying the natural log function. The combined 



Predicting Outcomes after Intradural Spinal Tumor ResectionJin MC, et al.

https://doi.org/10.14245/ns.2143244.622 � www.e-neurospine.org   135

log-odds for a given patient can be estimated by P(Outcome)=  

significance was established at an  of 0.05. Statistical and graphical analyses were conducted using R (ver. 

3.6.0, R Foundation for Statistical Computing, Vienna, Austria) and GraphPad Prism 8 (GraphPad Software, 

San Diego, CA, USA). 

 

2. Predictive Modeling 

The full cohort was randomly split into a 70% training dataset and a 30% validation dataset, which was not 

used in model training. Binary classification models were developed using a logistic regression approach 

regularized by the least absolute shrinkage and selection operator (LASSO) penalty.12 In brief, LASSO 

offers both variable selection and regularization to optimize model accuracy and parsimony by 

incorporating the additional penalty term 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝜆𝜆 ∑ |𝛽𝛽𝑖𝑖|𝑛𝑛
𝑖𝑖=1  for a 𝑛𝑛  features, where 𝜆𝜆  represents a 

shrinkage factor determining the magnitude of regularization. For each model, 𝜆𝜆 was selected using 5-fold 

cross validation minimizing the logistic loss function. This contrasts with stepwise logistic regression 

models, which does not implement any regularization but rather seeks to iteratively optimize model fit on 

training data based on various combinations of included features. In general, LASSO was chosen a priori 

as the predictive modeling approach over alternative regularization strategies such as ridge regression given 

its emphasis on model parsimony, which is an important factor when considering the usability in real-world 

applications. Variable coefficients and constant terms are provided to allow for reapplication and validation 

of our models on external data. Odds ratios described in the final model table can be converted to logit 

regression coefficients by applying the natural log function. The combined log-odds for a given patient can 

be estimated by 𝑃𝑃(𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂) = 𝑒𝑒𝛼𝛼0+∑ 𝛽𝛽𝑖𝑖
𝑛𝑛
𝑖𝑖=1 𝑋𝑋𝑖𝑖

1+ 𝑒𝑒𝛼𝛼0+∑ 𝛽𝛽𝑖𝑖𝑛𝑛
𝑖𝑖=1 𝑋𝑋𝑖𝑖

 , where βi are the logit regression coefficients for each of 

the included features and α0 represents the y-intercept estimate/constant. 

Input features were classified as either patient-specific, tumor-specific, or other. Discharge disposition 

was only included in the input feature set for predicting postdischarge readmissions (nonhome discharge 

was the outcome variable for the other model). Internal validation of the models was conducted on the 

 where βi are the logit regression coefficients for each 
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Input features were classified as either patient-specific, tumor-
specific, or other. Discharge disposition was only included in 
the input feature set for predicting postdischarge readmissions 
(nonhome discharge was the outcome variable for the other mod-
el). Internal validation of the models was conducted on the with-
held 30% validation subset. Model discrimination was evaluat-
ed using receiver operating characteristic (ROC) curves and as-
sociated area under the curves (AUCs). AUC values range from 
0.5, which represents random choice, to 1.0, representing per-
fect discrimination. Prediction accuracy was evaluated using 
Brier scores, which measures the mean-squared-error of pre-
dictions (compared to empiric outcomes). Brier scores closer to 
0 indicate lower prediction errors, reflecting higher model ac-
curacy. Furthermore, we simulate risk stratification by defining 
percentile groups in the validation subset and computing em-
piric frequency of outcomes-of-interest (nonhome discharge 
and 90-day readmissions). To interrogate variable importance, 
model coefficients were computed following standardization of 
input data by each covariate’s variance. As presented, higher 
standardized coefficients represent increased importance and 
negative values indicate features that inversely associate with 
the outcome-of-interest.

Risk groups were defined a priori using the following 5 strata 
scheme: the highest- and lowest-risk groups were defined as the 
top and bottom 10% cases ordered by predicted risk, respective-
ly. Medium risk was defined as the middle 50% of all patients 
(25th to 75th risk percentile) while the final 2 risk strata com-
prised patients on the low-medium (10th to 25th percentile) and 
medium-high (75th to 90th percentile) spectrum. For models 
achieving a validation set AUC of at least 0.700, conversion of 
logistic regression coefficients into numerical risk scales was 
performed using the method described by Sullivan et al.13 All 
model development and validation was performed in R (ver. 
3.6.0) using the glmnet,14 rms,15 and pROC16 packages.

RESULTS

1. Cohort Characteristics
A total of 5,060 patients receiving resection of intradural spi-

nal tumors were identified (Table 1). Tumors of the thoracic 
(n = 1,941, 38.4%) and lumbar spine (n = 1,781, 35.2%) were 
most common, followed by cervical tumors (n= 1,294, 25.6%). 

Table 1. Cohort characteristics of patients receiving resection 
of intradural tumors

Characteristic Value

Full cohort 5,060 (100)

Age at surgery (yr) 51.47 ± 14.48

Sex

Male 2,302 (45.5)

Female 2,758 (54.5)

Year of admission 2,011.13 ± 2.58

Region

Northeast 994 (19.6)

North Central 1,192 (23.6)

South 1,902 (37.6)

West 863 (17.1)

Unknown 109 (2.2)

Plan type

Comprehensive 327 (6.9)

EPO 64 (1.3)

HMO 514 (10.8)

POS 340 (7.1)

PPO 3,153 (66.1)

POS with capitation 30 (0.6)

CDHP 193 (4)

HDHP 147 (3.1)

Tumor classification

Meningioma 1,521 (30.1)

Spinal cord tumor 3,072 (60.7)

Metastasis 265 (5.2)

Other 202 (4)

Tumor grade

Benign 3,025 (59.8)

Malignant 862 (17)

Unknown 1,173 (23.2)

Location

Lumbar 1,781 (35.2)

Cervical 1,294 (25.6)

Sacral 44 (0.9)

Thoracic 1,941 (38.4)

Compartment

Extramedullary 3,757 (74.2)

Intramedullary 1,203 (23.8)

Intradural, NOS 100 (2)
(continued)
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Spinal cord/nerve sheath tumors (n= 3,072, 60.7%) and menin-
giomas (n= 1,521, 30.1%) constituted the vast majority of the 
cohort and majority were benign (n= 3,025, 59.8%) while 862 
(17%) were malignant. Tumor grade was not available for 1,173 
lesions (23.2%). The majority of tumors were extramedullary 
(n= 3,757, 74.2%). Operating microscope (n= 3,150, 62.3%) and 
intraoperative neuromonitoring (n= 2,862, 56.6%) use was com-
mon. While there was no change in frequency of microscopic 
surgery between 2007 and 2016 (62.1% to 65.0%, p = 0.314), 
use of intraoperative neuromonitoring increased significantly 
between 2007 and 2016 (46.7% to 64.7%, p< 0.001) (Fig. 1A, B).

2. Discharge Timing and Disposition
Median length of postsurgical hospital stay was 4 days (95% 

confidence interval [CI], 1–18) and most patients were discharged 
to home (n= 3,767, 74.4%). Malignant tumor grade (B= 1.763; 
95% CI, 1.259–2.268), cervical or thoracic location (B [cervi-
cal]= 0.645; 95% CI, 0.239–1.050, B [thoracic]= 0.502; 95% CI, 
0.140–0.864), intramedullary location (B=1.250; 95% CI, 0.857–
1.643), and certain comorbidities (e.g., pulmonary circulation 
disorders, paralysis, other neurological disorders, unexpected 
weight loss, fluid and electrolyte disorders, and depression) were 
independently associated with longer hospitalizations (Fig. 1C, 
full results in Supplementary Table 2). After adjusting for co-
morbid conditions, demographics, and tumor-specific factors, 
neither anterior (B= 2.109; 95% CI, -0.803 to 5.021) nor com-
bined (B= 1.576; 95% CI, -4.406 to 7.557) surgical approach was 
associated with longer postsurgical inpatient stay. Operating mi-
croscope use (B= -0.850; 95% CI, -1.169 to -0.531) was associat-
ed with shorter stay duration while intraoperative neuromoni-
toring did not independently impact length of hospitalization.

A minority of patients were discharged to either rehabilitation 
(n=603, 11.9%) or to a SNF or other nonhome care facility (n=353, 
7.0%). On multivariable analysis, demographic and lesion-spe-
cific factors independently associated with nonhome discharge 
(either rehabilitation, SNF, or other nonhome care facility) in-
clude older age (continuous; OR, 1.026; 95% CI, 1.020–1.033), 
female sex (vs. male; OR, 1.291; 95% CI, 1.110–1.503), malignant 
tumor grade (vs. benign; OR, 1.684; 95% CI, 1.349–2.104), cervi-
cal location (vs. lumbar location; OR, 1.993; 95% CI, 1.629–2.438), 
and thoracic location (vs. lumbar location; OR, 2.456; 95% CI, 
2.047–2.945) (full results in Supplementary Table 2).

To simulate a predictive model for anticipating nonhome dis-
charge, we trained a LASSO-penalized logistic regression clas-
sifier on a set of patient, hospitalization, and tumor features (Ta-
ble 2) and tested model performance on the withheld validation 

Characteristic Value

Surgical approach

Posterior 5,023 (99.3)

Anterior 34 (0.7)

Combined 3 (0.1)

Arthrodesis 452 (8.9)

Operating microscope used 3,150 (62.3)

Intraoperative neuromonitoring 2,862 (56.6)

Comorbidities

Congestive heart failure 175 (3.5)

Cardiac arrhythmia 732 (14.5)

Valvular disease 435 (8.6)

Pulmonary circulation disorders 95 (1.9)

Peripheral vascular disorders 395 (7.8)

Hypertension uncomplicated 2,091 (41.3)

Hypertension complicated 237 (4.7)

Paralysis 785 (15.5)

Other neurological disorders 437 (8.6)

Chronic pulmonary disease 880 (17.4)

Diabetes uncomplicated 757 (15)

Diabetes complicated 236 (4.7)

Hypothyroidism 767 (15.2)

Renal failure 159 (3.1)

Liver disease 400 (7.9)

Peptic ulcer disease excluding bleeding 47 (0.9)

AIDS/HIV 7 (0.1)

Rheumatoid arthritis/collagen 415 (8.2)

Coagulopathy 142 (2.8)

Obesity 492 (9.7)

Weight loss 166 (3.3)

Fluid and electrolyte disorders 445 (8.8)

Blood loss anemia 55 (1.1)

Deficiency anemia 293 (5.8)

Alcohol abuse 60 (1.2)

Drug abuse 73 (1.4)

Psychoses 72 (1.4)

Depression 774 (15.3)

Values are presented as mean ± standard deviation or number (%).
EPO, exclusive provider organization; HMO, health maintenance or-
ganization; POS, point-of-service; PPO, preferred provider organiza-
tion; CDHP, consumer driven health plan; HDHP, high deductible 
health plan; NOS, not otherwise specified; AIDS/HIV, acquired im-
mune deficiency syndrome/human immunodeficiency.

Table 1. Cohort characteristics of patients receiving resection 
of intradural tumors (continued)
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Fig. 1. Cohort summary and contributors to increased hospitalization duration. (A) Trends in operative microscope and intra-
operative neuromonitoring use. (B) Slope and 95% confidence intervals reflect the line-of-best-fit. Multivariable assessment of 
variable contributions to postsurgical hospitalization length is presented. Comorbidities not depicted (see Supplementary Table 
2). CI, confidence interval; NOS, not otherwise specified.

A B

vs Male

vs Meningioma

vs Benign

vs Lumbar

vs Extramedullary

vs Posterior

2006	2008	 2010	 2012	 2014	 2016	 2018
Year of admission

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Fr
ac

tio
n 

of
 ca

se
s

Operating microscope
Slope = –0.3%/year
95% CI = –0.9%/year to 0.3%/year

2006	2008	 2010	 2012	 2014	 2016	 2018
Year of admission

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Fr
ac

tio
n 

of
 ca

se
s

Intraoperative neuromonitoring
Slope = 1.8%/year
95% CI = 1.1%/year to 2.5%/year

Age

Female

Year of admission

Spinal cord tumor
Metastasis

Malignant
Unknown

Cervical
Thoracic

Sacral

Intramedullary
Intradural, NOS

Anterior
Combined

Arthrodesis

Operating microscope

Intraoperative neuromonitoring

Shorter Longer
–5	 0	 5

B-value (days of hospitalization)

Fig. 2. Predictive modeling of nonhome discharge. Model performance for predicting nonhome discharge following intradural 
tumor resection was evaluated in the withheld validation subset. (A) Integrated model discrimination was compared to that of 
models utilizing only feature subsets. Empiric nonhome discharge rates were computed based on predicted risk strata (B), and 
the top 8 contributing features are visualized (C). AUC, area under the curve.

A 0	 0.10	 0.25	 0.50	 0.75	 0.90	1.00
1-Specificity

1.00

0.90

0.75

0.50

0.25

0.10

0

Se
ns

iti
vi

ty

Feature set used
       Full feature set (AUC = 0.786)
       Patient features (AUC = 0.644)
      Tumor features (AUC = 0.708)

B

0–
10

%
10

–25
%

25
–75

%
75

–90
%

90
–10

0%

Modeled risk strata

0.8

0.6

0.4

0.2

0

N
on

-h
om

e d
isc

ha
rg

e f
re

qu
en

cy

C
–0.1	 0.0	 0.1	 0.2	 0.3	 0.4

Standardized coefficient

Post-surgery hospitalization 
length (day) 

Age (yr)

Intramedullary location

Thoracic location

Comorbid  
paresis/paralysis

Malignancy

Female sex

Cervical location



Predicting Outcomes after Intradural Spinal Tumor ResectionJin MC, et al.

https://doi.org/10.14245/ns.2143244.622138  www.e-neurospine.org

Table 2. Components of the LASSO logistic regression models trained to predict nonhome discharge and postdischarge read-
mission

Characteristic
Nonhome discharge Postdischarge readmissions (90 days)

Odds ratio Coefficient Odds ratio Coefficient

Patient-specific features

Age at surgery 1.023 0.022 0.996 -0.004

Sex

   Male (reference)

   Female 1.207 0.188 0.951 -0.050

Comorbidities

Congestive heart failure 1.005 0.005 - -

Cardiac arrhythmia - - - -

Valvular disease - - - -

Pulmonary circulation disorders 1.411 0.344 1.634 0.491

Peripheral vascular disorders - - 0.959 -0.041

Hypertension uncomplicated - - - -

Hypertension complicated 1.164 0.152 - -

Paralysis 2.136 0.759 1.198 0.181

Other neurological disorders 1.148 0.138 - -

Chronic pulmonary disease - - - -

Diabetes uncomplicated 1.061 0.059 - -

Diabetes complicated 1.121 0.114 - -

Hypothyroidism - - 0.889 -0.117

Renal failure - - - -

Liver disease - - - -

Peptic ulcer disease excluding bleeding - - - -

AIDS/HIV - - - -

Rheumatoid arthritis/collagen - - - -

Coagulopathy 1.124 0.117 1.200 0.183

Obesity - - - -

Weight loss - - - -

Fluid and electrolyte disorders - - 1.134 0.126

Blood loss anemia 1.449 0.371 - -

Deficiency anemia - - - -

Alcohol abuse - - - -

Drug abuse - - - -

Psychoses 1.015 0.015 - -

Depression - - - -

Tumor-specific features

Tumor classification

   Meningioma (reference)

   Spinal cord tumor - - - -

   Metastasis - - 1.738 0.553

   Other - - - -

(continued)
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subset. In withheld cases, the integrated classifier achieved an 
AUC of 0.786 (Fig. 2A). By comparison, classification using only 
tumor- or patient-level features performed significantly worse. 
The final model optimized model included a total of 20 features 
(Supplementary Fig. 1A, B) and calibration of the model was 
robust (Supplementary Fig. 2A). Similarly, prediction accuracy 
was best for the integrated model (Brier score= 0.155 vs. 0.166 
[tumor features only] and 0.173 [patient features only]). Empir-
ically, patients anticipated by our model to be at highest risk 

were discharged to continued care 64.5% of the time compared 
to 4.0% of the time in the lowest risk subset (Fig. 2B). After nor-
malization each feature by its variance, the characteristics most 
contributory to model prediction were postsurgery hospitaliza-
tion length, patient age, and intramedullary location (Fig. 2C), 
further demonstrating the importance of aggregating diverse 
clinical features for risk assessment. To further improve model 
accessibility, we derived a numerical risk scale from the coeffi-
cients of the LASSO regression fit (Table 3). Conversion of summed 

Characteristic
Nonhome discharge Postdischarge readmissions (90 days)

Odds ratio Coefficient Odds ratio Coefficient

Tumor grade

   Benign (reference)

   Malignant 1.422 0.352 1.442 0.366

   Unknown - - - -

Tumor location

   Lumbar (reference)

   Cervical 1.225 0.203 1.138 0.129

   Sacral - - - -

   Thoracic 1.685 0.522 0.930 -0.072

Compartment

   Extramedullary (reference)

   Intramedullary 1.981 0.683 - -

   Intradural, NOS - - - -

Hospitalization- and operation-specific features

Surgical approach

   Posterior (reference)

   Anterior - - - -

   Combined - - 6.724 1.906

Arthrodesis 1.044 0.043 - -

Operating microscope used 0.904 -0.101 0.977 -0.023

Intraoperative neuromonitoring - - - -

Discharge disposition

   Home (reference)

   Rehabilitation - - 1.439 0.364

   SNF/other health facility - - - -

   Other - - - -

Postsurgical hospitalization duration (day) 1.066 0.064 1.029 0.029

Constant (intercept) -3.442 -2.068

LASSO, least absolute shrinkage and selection operator; AIDS/HIV, acquired immune deficiency syndrome/human immunodeficiency; NOS, 
not otherwise specified.
“Discharge disposition” was not included in the “continued care discharge” model as discharge status was the outcome measured. Dashes indi-
cate features included in the input set that were removed by LASSO regularization.

Table 2. Components of the LASSO logistic regression models trained to predict nonhome discharge and postdischarge read-
mission (continued)
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risk scores into empiric nonhome discharge risk is presented in 
Table 4; subsequent application of this scale to both the training 
and validation sets demonstrates good risk stratification between 
risk score groups (Fig. 3).

3. Readmissions and Postsurgery Complications
A total of 4,488 patients (88.7%) had at least 90 days of con-

tinuous postdischarge follow-up. Of patients with sufficient 
continuous postdischarge follow-up, 524 patients (11.7%) were 
readmitted within 90 days. Most frequent causes for readmis-
sion include cerebrospinal fluid leaks (11.6%) and surgical site 
infections (9.7%). After adjusting for demographics, comorbid-
ities, and tumor-specific covariates, operating microscope use 
remained prognostic for decreased risk of 90-day readmissions 

(OR, 0.798; 95% CI, 0.649–0.982, results summarized in Sup-
plementary Table 3). Tumor characteristics associated with 
higher risk of readmission include metastasis (OR, 2.516; 95% 
CI, 1.585–3.993), malignant grade (OR, 1.964; 95% CI, 1.462–
2.638), and cervical location (OR, 1.492; 95% CI, 1.152–1.933). 
Intramedullary location was not associated with higher read-
mission risk (OR, 1.087; 95% CI, 0.850–1.389).

Incidence of postoperative paralysis or paresis and wound 
infection were 6.4% and 3.3%, respectively. Tumor characteris-
tics associated with higher odds of postoperative paralysis or 
paresis include spinal cord/nerve sheath tumors (vs. meningio-
ma; OR, 1.658; 95% CI, 1.128–2.437), metastases (vs. meningi-
oma; OR, 2.236; 95% CI, 1.203–4.388), malignancy (vs. benign; 
OR, 1.618; 95% CI, 1.114–2.351), cervical or thoracic location 

Table 3. Numerical risk score for stratifying nonhome dis-
charge risk

Variable Score

Age (yr)

18–29 0

30–39 4

40–49 8

50–59 12

60–69 16

70–79 20

≥ 80 24

Female sex 3.5

Comorbidities

Pulmonary circulation disorders 6.5

Hypertension complicated 3

Paralysis 14

Other neurological disorders 2.5

Diabetes uncomplicated 1

Diabetes complicated 2

Coagulopathy 2

Blood loss anemia 7

Psychoses 0.5

Tumor and surgery characteristics

Malignant 6.5

Cervical level 3.5

Thoracic level 9.5

Intramedullary location 12.5

Arthrodesis 1

Operating microscope -2

Postsurgical hospitalization duration (per day) 1

Table 4. Conversion table for estimated risk of nonhome dis-
charge

Numerical risk score Probability of nonhome discharge

< 10 8.46%

10–14 10.05%

15–19 14.63%

20–24 18.44%

25–29 23.42%

30–34 44.87%

35–39 45.10%

≥ 40 66.02%

Fig. 3. Application of nonhome discharge numerical risk score 
for prediction of nonhome discharge. Conversion of numeri-
cal risk scores to empiric nonhome discharge risk demonstrates 
good stratification in both training and validation subsets.
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(vs. lumbar; OR [cervical], 2.765; 95% CI, 1.825–4.192; OR 
[thoracic], 3.557; 95% CI, 2.414–5.240), intramedullary loca-
tion (vs. extramedullary; OR, 2.721; 95% CI, 2.006–3.691) (Sup-
plementary Table 4). Microscopic surgery did not was associat-
ed with reduced odds of new-onset postsurgical paralysis or 
paresis (OR, 0.991; 95% CI, 0.687–1.207) or surgical site infec-
tions (OR, 0.760; 95% CI, 0.533–1.085). The most significantly 
prognostic variable of postoperative surgical site infections was 
year of admission, with a trend towards reduced infections in 
more recent surgeries (continuous; OR, 0.866; 95% CI, 0.804–
0.933). Intraoperative neuromonitoring did not affect risk of 
postsurgical paresis or surgical site infections. Separate analyses 
of extramedullary and intramedullary tumors also did not re-
veal improved motor recovery associated with intraoperative 
neuromonitoring (OR [intramedullary], 0.995; 95% CI, 0.579–
1.709; OR [extramedullary], 1.019; 95% CI, 0.689–1.508).

Using a LASSO-penalized logistic regression framework and 
characteristics available at discharge, we developed a predictive 
model to anticipate risk of readmission within 90 days of dis-
charge (Table 2). Classification performance of the integrated 
model vastly outperformed models with more limited input 
features (AUC= 0.693, Fig. 4A). Prediction accuracy was also 
maximized by the integrated model (Brier score= 0.093) com-
pared to the models incorporating only tumor (Brier score=0.093) 
or patient features (Brier score = 0.099). Empirically, of those 
predicted to be at highest risk of readmissions, 32.6% were even-
tually readmitted within 90 days of discharge (Fig. 4B). By com-
parison, only 4.4% of those predicted to be at lowest risk were re-

admitted within 90 days of discharge. Of the features selected for 
the final model, postsurgical hospitalization length, tumor ma-
lignancy, and discharge to rehabilitation were among the most 
significant predictors of readmissions (Fig. 4C). Performance on 
training data and model calibration are included in Supplemen-
tary Fig. 1C, 1D, and Supplementary Fig. 2B, respectively.

DISCUSSION

In a nationwide study of over 5,000 intradural tumor resec-
tions, operative-, tumor-, and patient-specific variables were in-
terrogated to understand their impact on inpatient and postdis-
charge outcomes. From an expansive feature set spanning di-
verse patient, tumor, and hospitalization characteristics, we de-
veloped 2 predictive models to anticipate nonhome discharge 
and postdischarge readmissions. In a validation set of withheld 
cases, those at highest risk for nonhome discharge were 16.3 
times as likely to require continued care compared to those at 
lowest risk. Similarly, patients predicted to be at highest risk for 
readmissions within 90 days of discharge eventually were read-
mitted 7.3 times as often as their lowest risk counterparts dur-
ing the 90 days following discharge.

1. �Assessing Predictors of Nonhome Discharge and 
Readmissions
Prior studies examining the effect of tumor-specific charac-

teristics on outcomes following resection of intradural neoplasms 
have generally been from either small single-institute cohorts 

Fig. 4. Predictive modeling of postdischarge readmissions. Model performance was evaluated on the withheld validation subset. 
(A) Discrimination ability was compared between the integrated risk model and models utilizing only feature subsets. Empiric 
90-day readmission frequency was computed based on predicted risk strata (B), and the top 8 contributing features are visual-
ized (C). AUC, area under the curve.
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or inpatient-focused databases such as the Nationwide Inpa-
tient Sample or the National Surgical Quality Improvement 
Program. Single-institute studies often lack the cohort size nec-
essary to explore the contributory effect of each tumor charac-
teristic to postsurgical outcomes and conclusions tend to be de-
scriptive and qualitative in nature.17-24 However, few of these 
studies were powered to conduct robust multivariable analyses. 
In an analysis of 221 spinal nerve sheath tumors, Safaee et al.24 
identified cervical tumor location as being associated with low-
er rates of gross total resection, which resulted in higher rates of 
tumor recurrence. Postoperative and postdischarge complica-
tions were separately evaluated in a subsequent study21; howev-
er, results of multivariable analyses were not presented.

Most frequently employed for the removal of cervical intra-
dural tumors,25-28 anterior tumor resection allows for improved 
access to lesion ventral to the spinal cord via corpectomy, ob-
viating the need for cord manipulation. Disadvantages to ante-
rior approaches include the need for vertebral stabilization 
through fusion and potentially increased risk of cerebrospinal 
fluid leaks given the added complexity of repairing anterior 
spinal dura. Combined anteroposterior approaches have also 
been used for resection of complex dumbbell tumors, which 
describe lesions with components in both the spinal canal and 
the paravertebral space.29 In our study, neither anterior nor 
combined surgical approach was associated with longer hospi-
tal stays. However, in our predictive model of postdischarge 
readmissions, combined approach surgery was the eighth most 
important feature. This is likely a combination of increased 
surgical complexity and the underlying tumor characteristics 
requiring a nonposterior approach.

Intraoperative neuromonitoring did not affect hospitaliza-
tion length, discharge disposition, or 90-day readmissions in 
our study, despite a significant increase in usage between 2007 
and 2016. Prior studies have explored and supported potential 
therapeutic utility of intraoperative sensory and motor neuro-
monitoring for cranial procedures, including intracranial tu-
mor resection30,31 and open cerebrovascular surgery.32 While 
numerous of studies have demonstrated diagnostic value asso-
ciated with use intraoperative neuromonitoring during resec-
tion of spinal tumors, its therapeutic value remains uncertain. 
In 2 prior retrospective studies of extramedullary and intra-
medullary tumor, respectively, Choi et al.33 and Harel et al.34 
did not observe any therapeutic benefit in patients receiving 
neuromonitoring,. More broadly, guideline recommendations 
acknowledge the utility of neuromonitoring as a diagnostic, 
but not therapeutic, adjunct during spine surgery.35 Our study 

did not uncover any observable benefit in either intramedul-
lary or extramedullary tumors but additional studies evaluat-
ing patient-reported outcome measures and functional status 
are necessary.

2. �Developing Integrated Risk Models Harnessing Diverse 
Feature Sets
A broad-spanning archetype evident in these prior studies is 

that, while predictors and their individual contributions to out-
comes-of-interest are assessed and quantified, there have been 
few studies exploring how these predictive features can be inte-
grated into a unified model to guide clinical decision-making. 
In our study, we demonstrate the superiority of an expansive 
feature set compared to those limited to tumor- or patient-de-
rived data, as the most significant contributors to model classi-
fication spanned tumor-, hospitalization-, and patient-level char-
acteristics. Applying our model to a subset of withheld cases, 
patients predicted to be at highest risk for nonhome discharge 
were only discharged to home 34.5% of the time, compared to 
96.1% of the time among patients at lowest predicted risk. Simi-
larly, readmissions were significantly more frequent among 
those our model predicted to be at highest risk than in those 
predicted to be at lowest risk (32.6% vs. 4.4%). We anticipate 
that, with further external validation, these models could serve 
within an early risk stratification framework to identify higher 
risk patients; these patients may benefit from prompt interven-
tion such as specialized surveillance programs with increased 
frequency of clinician follow-up or specialized postoperative 
recovery regimens with increased vigilance from patient care-
givers. However, subsequent cost-benefit analyses will be re-
quired to understand the optimal risk threshold above which 
altered clinical care may be indicated.

Examination of the contributing features to each model re-
veals the diversity of data required to optimize prediction accu-
racy. Among the top 8 features in our model for predicting non-
home discharge were 3 patient-specific characteristics (age, sex, 
comorbid paralysis/paresis), 4 tumor-specific characteristics 
(intramedullary location, thoracic location, tumor malignancy, 
and cervical location), and 1 hospitalization/operative-specific 
characteristic (postsurgical hospital stay length). The top 8 fea-
tures in our model for predicting postdischarge readmissions 
were similarly diverse, with 2 patient-specific characteristics 
(age, comorbid pulmonary circulation disorders), 3 tumor-spe-
cific characteristics (malignancy, metastatic disease, and cervi-
cal location), and 3 hospitalization/operative-specific character-
istics (postsurgical hospital stay length, discharge to rehabilita-
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tion, and combined surgical approach). As evidenced by this 
heterogeneity, maximizing predictive model performance re-
quires a diversity of input data and contributions from a collec-
tion of clinical variables. Extending upon prior studies that iden-
tified individual covariates associated with patient outcomes, 
our models demonstrate the potential utility of integrative ap-
proaches aggregating myriads of data points into a single uni-
fied outcome prediction.

We further improved the usability of our best performing 
model (prediction of nonhome discharge using a LASSO-regu-
larized logistic regression) by converting it into a numeric risk 
score containing demographics, 9 comorbidities, and tumor/
surgical characteristics. A companion reference table was pro-
vided grouping risk scores into strata along with corresponding 
nonhome discharge risk. Application to training and validation 
cohorts yielded comparable stratification and demonstrated ro-
bust ability to forecast discharge disposition. Particularly in the 
context of patient counseling and real time decision-making, 
we anticipate the availability of an easy-to-use risk scoring sys-
tem will make point-of-care prediction of hospitalization course 
more accessible and interpretable.

3. Limitations and Strengths
The standard limitations associated with large-scale database 

studies apply to our study including the potential for miscoded 
variables and bias in patient coverage across regions and provid-
ers. Additionally, while multivariable models were used to adjust 
for available covariates, it is possible that residual selection bias 
remains due to variables not available in the database. Limita-
tions associated with granularity of tumor characteristics must 
also be addressed, as important clinical characteristics, such as 
tumor size, histological subtype, and radiographic appearance, 
were not available. Specifically, preoperative functional status was 
also not available for assessment. Furthermore, our study adjust-
ed for comorbidities according to the Elixhauser index to esti-
mate burden of disease; however, precise documentation of pa-
tient characteristics at time of admission, such as severity of pain 
and sensorimotor disability, were not included in the database. 
More broadly, though the MarketScan database has been exten-
sively explored in neurosurgical research,36-38 data used in our 
study was extracted from ICD-9, ICD-10, and CPT identifiers 
and clinical notes were not available to comprehensively adjudi-
cate coding accuracy. Finally, while predictive modeling perfor-
mance was evaluated in a withheld validation set not used for 
model training, additional external validation is necessary.

CONCLUSION

From a diverse set of predictive features, we developed 2 risk 
prediction models to predict nonhome discharge and postdis-
charge readmissions following resection of intradural spinal tu-
mors. These integrative models significantly outperformed ap-
proaches using only tumor- or patient-level characteristics, em-
phasizing the need to translate discovery of predictive factors 
into clinically applicable models unifying heterogeneous clini-
cal data into a single risk prediction. Pending further validation, 
applications of these models offer the potential to improve de-
livery of precise high-value care.
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Supplementary Table 1. ICD/CPT codes used in study cohort definition

Description ICD-9/10 CPT

Surgery

Posterior

Intramedullary

   Cervical 63285

   Thoracic 63286

   Lumbar 63287

Extramedullary intradural

   Cervical 63280

   Thoracic 63281

   Lumbar 63282

Intradural, NOS

   Sacral 63283

Anterior

Intradural, NOS

   Cervical 63304

   Thoracic 63305, 63306

   Lumbar 63307

Operative characteristics

Operating microscope 69990

Neuromonitoring 95920, 95938, 95927, 95926, 95925, 95939, 95929, 95928, 95941, 95940

Arthrodesis

   Cervical 22548, 22554, 22590, 22595, 22600, 22551

   Thoracic 22556, 22532, 22610, 22532

   Lumbar 22558, 0171T, 22612, 22533, 22630, 22633

Diagnoses

Benign

   Meningioma 225.4, D32.1

   Spinal cord tumor 225.3, D33.4

Malignant

   Meningioma 192.3, C70.1

   Spinal cord tumor 1922, C72.0, C72.1

   Metastasis 198.3, C79.49

Unknown grade

   Meningioma 237.6, D42.1

   Spinal cord tumor 237.5, D43.4

Other 239.7, D49.7

Complications

Paralysis or paresis 342, 344, G81-G83

Surgical site infection 998.5, T81.4

ICD-9/10, International Statistical Classification of Diseases, nineth/tenth revision; CPT, current procedural terminology. 
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Supplementary Table 2. Regression models evaluating factors associated with hospitalization duration and discharge

Characteristic
Hospitalization duration Nonhome discharge

B 95% CI p-value OR 95% CI p-value

Age at surgery -0.010 -0.023 to 0.003 0.126 1.026 1.020–1.033 < 0.001

Sex

   Male (reference)

   Female -0.039 -0.354 to 0.276 0.807 1.291 1.110–1.503 < 0.001

Year of admission -0.172 -0.233 to -0.111 < 0.001 0.997 0.968–1.027 0.848

Region

   Northeast (reference)

   North Central -0.387 -0.870 to 0.096 0.116 0.827 0.657–1.041 0.106

   South -0.403 -0.844 to 0.037 0.073 0.971 0.789–1.196 0.784

   West -0.387 -0.902 to 0.129 0.141 1.111 0.873–1.414 0.393

   Unknown 0.003 -1.056 to 1.063 0.995 1.123 0.685–1.840 0.645

Plan type

   Comprehensive (reference)

   EPO -0.901 -2.336 to 0.534 0.219 0.810 0.422–1.555 0.527

   HMO -0.531 -1.287 to 0.226 0.169 0.805 0.576–1.124 0.202

   POS -0.233 -1.067 to 0.601 0.583 0.739 0.507–1.078 0.116

   PPO -0.417 -1.054 to 0.221 0.200 0.674 0.512–0.887 0.005

   POS with capitation -0.142 -2.130 to 1.846 0.889 0.813 0.319–2.069 0.664

   CDHP -0.487 -1.461 to 0.487 0.327 0.812 0.517–1.277 0.367

   HDHP -0.628 -1.688 to 0.431 0.245 1.007 0.621–1.633 0.978

Tumor Classification

   Meningioma (reference)

   Spinal cord tumor 0.081 -0.285 to 0.447 0.666 1.239 1.034–1.485 0.020

   Metastasis -0.115 -0.969 to 0.740 0.793 1.263 0.873–1.828 0.214

   Other 0.447 -0.419 to 1.312 0.312 1.601 1.063–2.413 0.024

Tumor grade

   Benign (reference)

   Malignant 1.763 1.259 to 2.268 < 0.001 1.684 1.349–2.104 < 0.001

   Unknown 0.256 -0.149 to 0.661 0.215 0.955 0.780–1.169 0.652

Location

   Lumbar (reference)

   Cervical 0.645 0.239 to 1.050 0.002 1.993 1.629–2.438 < 0.001

   Sacral -3.367 -6.171 to -0.563 0.019 0.243 0.041–1.430 0.118

   Thoracic 0.502 0.140 to 0.864 0.007 2.456 2.047–2.945 < 0.001

Compartment

   Extramedullary (reference)

   Intramedullary 1.250 0.857 to 1.643 < 0.001 2.417 2.026–2.883 < 0.001

   Intradural, NOS 2.475 0.215 to 4.734 0.032 1.491 0.538–4.133 0.442

(continued)
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Characteristic
Hospitalization duration Nonhome discharge

B 95% CI p-value OR 95% CI p-value

Surgical approach

   Posterior (reference)

   Anterior 2.109 -0.803 to 5.021 0.156 1.030 0.284–3.741 0.964

   Combined 1.576 -4.406 to 7.557 0.606 3.203 0.166–61.69 0.441

Arthrodesis 0.233 -0.315 to 0.781 0.405 1.154 0.899–1.483 0.261

Operating microscope used -0.850 -1.169 to -0.531 < 0.001 0.740 0.637–0.861 < 0.001

Intraoperative neuromonitoring -0.212 -0.520 to 0.097 0.178 1.030 0.889–1.195 0.691

Comorbidities

Congestive heart failure 0.393 -0.487 to 1.273 0.381 1.025 0.700–1.502 0.899

Cardiac arrhythmia 0.354 -0.103 to 0.811 0.129 1.101 0.895–1.353 0.363

Valvular disease -0.184 -0.762 to 0.393 0.532 0.984 0.759–1.277 0.905

Pulmonary circulation disorders 1.501 0.365 to 2.638 0.010 1.874 1.158–3.032 0.011

Peripheral vascular disorders 0.120 -0.480 to 0.719 0.696 1.073 0.826–1.394 0.599

Hypertension uncomplicated 0.037 -0.322 to 0.395 0.840 0.971 0.820–1.150 0.736

Hypertension complicated -0.372 -1.163 to 0.419 0.356 1.185 0.844–1.664 0.326

Paralysis 1.898 1.218 to 2.578 < 0.001 2.558 1.918–3.413 < 0.001

Other neurological disorders 0.830 0.286 to 1.373 0.003 1.366 1.082–1.725 0.009

Chronic pulmonary disease -0.097 -0.517 to 0.323 0.649 0.826 0.677–1.008 0.060

Diabetes uncomplicated 0.479 -0.026 to 0.984 0.063 1.294 1.033–1.621 0.025

Diabetes complicated 0.735 -0.096 to 1.565 0.083 1.352 0.943–1.938 0.100

Hypothyroidism -0.311 -0.750 to 0.129 0.166 0.836 0.681–1.027 0.087

Renal failure 0.240 -0.677 to 1.156 0.608 0.949 0.634–1.421 0.799

Liver disease 0.248 -0.324 to 0.819 0.396 0.946 0.728–1.229 0.678

Peptic ulcer disease excluding bleeding -0.705 -2.257 to 0.847 0.373 0.742 0.342–1.608 0.449

AIDS/HIV -0.648 -4.611 to 3.314 0.748 2.815 0.566–13.99 0.206

Rheumatoid arthritis/collagen -0.103 -0.660 to 0.454 0.718 1.099 0.849–1.423 0.473

Coagulopathy 0.788 -0.121 to 1.697 0.089 1.469 0.995–2.169 0.053

Obesity -0.188 -0.726 to 0.350 0.493 0.989 0.769–1.273 0.934

Weight loss 0.928 0.050 to 1.805 0.038 1.336 0.904–1.975 0.146

Fluid and electrolyte disorders 1.260 0.693 to 1.827 < 0.001 1.054 0.817–1.361 0.686

Blood loss anemia 0.230 -1.237 to 1.696 0.759 2.147 1.133–4.070 0.019

Deficiency anemia -0.333 -1.008 to 0.342 0.333 1.196 0.885–1.617 0.244

Alcohol abuse -0.730 -2.134 to 0.674 0.308 0.601 0.296–1.220 0.158

Drug abuse -0.124 -1.403 to 1.154 0.849 1.021 0.558–1.868 0.947

Psychoses 1.193 -0.091 to 2.478 0.069 1.519 0.865–2.665 0.145

Depression 0.602 0.168 to 1.035 0.007 1.031 0.840–1.266 0.768

CI, confidence interval; OR, odds ratio; EPO, exclusive provider organization; HMO, health maintenance organization; POS, point-of-service; 
PPO, preferred provider organization; CDHP, consumer driven health plan; HDHP, high deductible health plan; NOS, not otherwise specified; 
AIDS/HIV, acquired immune deficiency syndrome/human immunodeficiency.

Supplementary Table 2. Regression models evaluating factors associated with hospitalization duration and discharge (continued)
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Supplementary Table 3. Logistic regression assessing factors associated with postdischarge readmissions (90 days)

Characteristic Odds ratio 95% CI p-value

Age at surgery 0.988 0.980–0.996 0.004

Sex

   Male (reference)

   Female 0.839 0.684–1.030 0.093

Year of admission 0.947 0.909–0.987 0.010

Region

   Northeast (reference)

   North Central 0.789 0.582–1.070 0.128

   South 0.703 0.532–0.929 0.013

   West 0.767 0.551–1.068 0.116

   Unknown 0.853 0.431–1.691 0.650

Plan Type

   Comprehensive (reference)

   EPO 1.216 0.435–3.399 0.709

   HMO 2.154 1.232–3.765 0.007

   POS 1.428 0.762–2.677 0.267

   PPO 1.712 1.034–2.837 0.037

   POS with capitation - - -

   CDHP 2.060 1.052–4.034 0.035

   HDHP 2.381 1.136–4.993 0.022

Tumor classification

   Meningioma (reference)

   Spinal cord tumor 1.023 0.792–1.320 0.863

   Metastasis 2.516 1.585–3.993 < 0.001

   Other 0.833 0.464–1.495 0.539

Tumor grade

   Benign (reference)

   Malignant 1.964 1.462–2.638 < 0.001

   Unknown 1.357 1.039–1.772 0.025

Location

   Lumbar (reference)

   Cervical 1.492 1.152–1.933 0.002

   Sacral 1.789 0.179–17.891 0.621

   Thoracic 1.038 0.811–1.329 0.765

Compartment

   Extramedullary (reference)

   Intramedullary 1.087 0.850–1.389 0.506

   Intradural, NOS 0.470 0.062–3.574 0.466

Surgical approach

   Posterior (reference)

   Anterior 2.425 0.240–24.513 0.453

   Combined - - -
(continued)
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Characteristic Odds ratio 95% CI p-value

Arthrodesis 0.882 0.615–1.263 0.493

Operating microscope used 0.798 0.649–0.982 0.033

Intraoperative neuromonitoring 0.931 0.760–1.140 0.488

Comorbidities

Congestive heart failure 0.930 0.540–1.601 0.792

Cardiac arrhythmia 1.307 0.981–1.742 0.068

Valvular disease 1.055 0.727–1.532 0.777

Pulmonary circulation disorders 1.489 0.794–2.792 0.215

Peripheral vascular disorders 0.677 0.441–1.041 0.076

Hypertension uncomplicated 1.304 1.030–1.651 0.028

Hypertension complicated 1.171 0.717–1.912 0.529

Paralysis 1.571 1.072–2.303 0.020

Other neurological disorders 0.859 0.600–1.230 0.408

Chronic pulmonary disease 1.063 0.807–1.401 0.664

Diabetes uncomplicated 1.225 0.891–1.685 0.211

Diabetes complicated 1.331 0.811–2.185 0.258

Hypothyroidism 0.696 0.508–0.953 0.024

Renal failure 0.862 0.479–1.553 0.622

Liver disease 0.896 0.615–1.307 0.570

Peptic ulcer disease excluding bleeding 1.048 0.386–2.842 0.927

AIDS/HIV - - -

Rheumatoid arthritis/collagen 1.094 0.756–1.581 0.634

Coagulopathy 1.967 1.220–3.170 0.005

Obesity 0.870 0.604–1.253 0.453

Weight loss 1.645 0.993–2.722 0.053

Fluid and electrolyte disorders 1.305 0.930–1.830 0.123

Blood loss anemia 0.945 0.380–2.349 0.903

Deficiency anemia 1.054 0.675–1.645 0.817

Alcohol abuse 0.751 0.304–1.860 0.537

Drug abuse 1.508 0.704–3.232 0.291

Psychoses 1.917 0.908–4.048 0.088

Depression 0.994 0.742–1.330 0.966

CI, confidence interval; EPO, exclusive provider organization; HMO, health maintenance organization; POS, point-of-service; PPO, preferred 
provider organization; CDHP, consumer driven health plan; HDHP, high deductible health plan; NOS, not otherwise specified; AIDS/HIV, ac-
quired immune deficiency syndrome/human immunodeficiency.

Supplementary Table 3. Logistic regression assessing factors associated with postdischarge readmissions (90 days) (continued)
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Supplementary Table 4. Logistic regressions assessing factors associated with postoperative paresis and surgical site infections

Characteristic
Paralysis or paresis Surgical site infection

OR 95% CI p-value OR 95% CI p-value

Age at surgery 1.011 0.999 to 1.022 0.066 0.986 0.971–1.000 0.054

Sex 0.707 0.537 to 0.932 0.014

   Male (reference)

   Female 0.707 0.537 to 0.932 0.014 0.933 0.655–1.328 0.699

Year of admission 0.944 0.893 to 0.998 0.042 0.866 0.804–0.933 < 0.001

Region

   Northeast (reference)

   North Central 1.310 0.848 to 2.024 0.223 1.126 0.650–1.950 0.671

   South 1.166 0.778 to 1.746 0.457 0.995 0.591–1.675 0.985

   West 1.236 0.777 to 1.967 0.371 0.863 0.460–1.620 0.647

   Unknown 1.969 0.877 to 4.422 0.101 2.226 0.896–5.529 0.085

Plan type

   Comprehensive (reference)

   EPO 0.977 0.254 to 3.766 0.973 0.235 0.028–1.943 0.179

   HMO 1.312 0.666 to 2.585 0.433 0.686 0.326–1.443 0.321

   POS 0.762 0.338 to 1.718 0.513 0.285 0.108–0.756 0.012

   PPO 1.257 0.701 to 2.255 0.442 0.444 0.236–0.836 0.012

   POS with capitation 1.603 0.386 to 6.666 0.516 - - -

   CDHP 1.170 0.481 to 2.847 0.730 0.282 0.076–1.041 0.057

   HDHP 1.937 0.772 to 4.862 0.159 0.840 0.298–2.365 0.741

Tumor classification

   Meningioma (reference)

   Spinal cord tumor 1.658 1.128 to 2.437 0.010 0.901 0.594–1.368 0.625

   Metastasis 2.297 1.203 to 4.388 0.012 0.488 0.168–1.423 0.189

   Other 2.236 1.061 to 4.710 0.034 0.859 0.303–2.436 0.775

Tumor grade

   Benign (reference)

   Malignant 1.618 1.114 to 2.351 0.012 1.621 0.980–2.682 0.060

   Unknown 0.959 0.661 to 1.391 0.825 1.064 0.662–1.709 0.798

Location

   Lumbar (reference)

   Cervical 2.765 1.825 to 4.192 < 0.001 1.279 0.813–2.011 0.286

   Sacral 0.894 0.050 to 15.892 0.939 0.437 0.024–7.825 0.574

   Thoracic 3.557 2.414 to 5.240 < 0.001 1.080 0.705–1.655 0.722

Compartment

   Extramedullary (reference)

   Intramedullary 2.721 2.006 to 3.691 < 0.001 1.136 0.738–1.748 0.563

   Intradural, NOS 1.415 0.182 to 11.024 0.740 1.854 0.236–14.549 0.557
(continued)
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Characteristic
Paralysis or paresis Surgical site infection

OR 95% CI p-value OR 95% CI p-value

Surgical approach

   Posterior (reference)

   Anterior 1.760 0.160 to 19.342 0.644 - - -

   Combined - - - - - -

Arthrodesis 1.085 0.675 to 1.744 0.737 1.597 0.947–2.693 0.079

Operating microscope used 0.911 0.687 to 1.207 0.515 0.760 0.533–1.085 0.131

Intraoperative neuromonitoring 1.189 0.901 to 1.568 0.222 1.388 0.971–1.986 0.072

Comorbidities

Congestive heart failure 0.801 0.376 to 1.706 0.565 2.219 0.951–5.179 0.065

Cardiac arrhythmia 0.952 0.638 to 1.421 0.809 0.334 0.159–0.700 0.004

Valvular disease 0.818 0.480 to 1.394 0.461 1.112 0.572–2.163 0.754

Pulmonary circulation disorders 1.546 0.657 to 3.642 0.319 0.791 0.174–3.591 0.761

Peripheral vascular disorders 0.754 0.437 to 1.303 0.312 1.137 0.580–2.229 0.708

Hypertension uncomplicated 0.646 0.464 to 0.897 0.009 1.274 0.844–1.923 0.249

Hypertension complicated 1.986 1.084 to 3.638 0.026 0.877 0.350–2.202 0.781

Paralysis - - - 1.002 0.482–2.082 0.996

Other neurological disorders 1.565 1.028 to 2.382 0.037 1.075 0.578–2.001 0.819

Chronic pulmonary disease 1.136 0.781 to 1.652 0.505 1.047 0.646–1.698 0.852

Diabetes uncomplicated 1.239 0.806 to 1.907 0.329 1.024 0.576–1.821 0.935

Diabetes complicated 2.113 1.125 to 3.968 0.020 1.905 0.835–4.347 0.126

Hypothyroidism 1.006 0.678 to 1.491 0.977 0.900 0.526–1.538 0.699

Renal failure 0.718 0.311 to 1.656 0.437 0.950 0.326–2.766 0.925

Liver disease 1.139 0.708 to 1.832 0.593 0.750 0.352–1.597 0.455

Peptic ulcer disease excluding bleeding 3.062 1.112 to 8.426 0.030 0.746 0.096–5.818 0.779

AIDS/HIV 4.367 0.498 to 38.290 0.183 8.101 0.786–83.57 0.079

Rheumatoid arthritis/collagen 1.084 0.648 to 1.813 0.759 0.808 0.382–1.713 0.579

Coagulopathy 1.706 0.892 to 3.263 0.106 1.194 0.444–3.212 0.726

Obesity 0.867 0.525 to 1.432 0.578 1.525 0.867–2.681 0.143

Weight loss 1.469 0.730 to 2.955 0.281 0.411 0.096–1.763 0.232

Fluid and electrolyte disorders 1.046 0.643 to 1.701 0.857 2.166 1.240–3.783 0.007

Blood loss anemia 1.260 0.401 to 3.959 0.693 0.965 0.117–7.947 0.974

Deficiency anemia 1.571 0.907 to 2.721 0.107 0.341 0.103–1.131 0.079

Alcohol abuse 0.167 0.021 to 1.327 0.091 2.020 0.564–7.235 0.280

Drug abuse 2.455 0.930 to 6.484 0.070 - - -

Psychoses 0.631 0.167 to 2.387 0.498 0.842 0.178–3.985 0.828

Depression 1.191 0.806 to 1.759 0.381 1.405 0.880–2.245 0.155

OR, odds ratio; CI, confidence interval; EPO, exclusive provider organization; HMO, health maintenance organization; POS, point-of-service; 
PPO, preferred provider organization; CDHP, consumer driven health plan; HDHP, high deductible health plan; NOS, not otherwise specified;   
AIDS/HIV, acquired immune deficiency syndrome/human immunodeficiency.

Supplementary Table 4. Logistic regressions assessing factors associated with postoperative paresis and surgical site infections 
(continued)
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Supplementary Fig. 1. LASSO logistic regression training data performance and shrinkage factor selection. Application of the 
nonhome discharge model to training data achieves an AUC of 0.765 (A) using a cross-validated shrinkage factor of 0.01 (B). 
The postdischarge readmission model achieved an AUC of 0.689 on training data (C) using a cross-validated shrinkage factor of 
0.01 (D). LASSO, least absolute shrinkage and selection operator; AUC, area under the curve.
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Supplementary Fig. 2. Calibration plots comparing predicted and empiric risk for LASSO logistic regression models. Both 
LASSO logistic regression models for non-home discharge (A) and postdischarge readmission (B) demonstrated good calibra-
tion. LASSO, least absolute shrinkage and selection operator.
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