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a b s t r a c t

By recognizing members in the tumor necrosis factor (TNF) receptor superfamily, TNF ligand proteins
function as extracellular cytokines to activate various signaling pathways involved in inflammation, pro-
liferation, and apoptosis. Most ligands in TNF superfamily are trimeric and can simultaneously bind to
three receptors on cell surfaces. It has been experimentally observed that the formation of these molec-
ular complexes further triggers the oligomerization of TNF receptors, which in turn regulate the intracel-
lular signaling processes by providing transient compartmentalization in the membrane proximal regions
of cytoplasm. In order to decode the molecular mechanisms of oligomerization in TNF receptor superfam-
ily, we developed a new computational method that can physically simulate the spatial-temporal process
of binding between TNF ligands and their receptors. The simulations show that the TNF receptors can be
organized into hexagonal oligomers. The formation of this spatial pattern is highly dependent not only on
the molecular properties such as the affinities of trans and cis binding, but also on the cellular factors
such as the concentration of TNF ligands in the extracellular area or the density of TNF receptors on cell
surfaces. Moreover, our model suggests that if TNF receptors are pre-organized into dimers before ligand
binding, these lateral interactions between receptor monomers can play a positive role in stabilizing the
ligand-receptor interactions, as well as in regulating the kinetics of receptor oligomerization. Altogether,
this method throws lights on the mechanisms of TNF ligand-receptor interactions in cellular
environments.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The tumor necrosis factor (TNF) receptor superfamily (TNFRSF)
is a major group of cell surface proteins recognizing the co-
stimulatory molecules which belong to the TNF superfamily [1–
3]. The specificity of binding between ligands and receptors in
these two superfamilies constitute a complex network of protein-
protein interactions that regulate different pathways of human
inflammation response [4–7]. Therapeutic targeting of TNFRSF sig-
naling therefore is a promising treatment for a wide variety of
autoimmune diseases such as rheumatoid arthritis and multiple
sclerosis [8,9]. The ligands in TNF superfamily generally adopt a
b-sandwich ‘‘jelly-roll” fold and further organize into a homo-
trimeric quaternary structure [10]. On the other hand, the ectodo-
mains of their receptors contain tandem repeats of cysteine-rich
domains (CRDs) [11]. For almost all trimeric ligands in TNF super-
family, the receptor binding interfaces are located at the interpro-
tomer grooves between every two adjacent subunits, leading into
the assembly of a basic unit of ligand-receptor complex with a
3:3 stoichiometry (Fig. 1d) [12]. It has been further found that
the formation of these complexes can trigger the receptor
oligomerization for different members in TNFRSF [13]. For
instance, highly organized oligomers on cell surfaces were
observed for death receptor 5 (DR5) after it binds to the TNF-
related apoptosis-inducing ligand (TRAIL) [14]. In another exam-
ple, experiments showed that interactions between the extracellu-
lar domains of receptor Fas and its ligand FasL are sufficient to
induce the formation of supramolecular clusters [15,16]. Moreover,
a specific extracellular region, called pre-ligand assembly domain
(PLAD), was identified to modulate the assembly between recep-
tors [17,18]. This region does not overlap with the ligand-
receptor binding interfaces [19] and is functionally conserved
across the TNFR superfamily [20]. These evidences indicate that
highly ordered spatial organization is a general behavior for recep-
tors in TNFRSF to carry out their functions of signal transduction,
and there is a universal mechanism underlying the clustering of
receptors in different systems. However, a mechanistic under-
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standing of this ligand-induced receptor oligomerization for
TNFRSF is so far still missing.

Detecting the dynamic process of receptor oligomerization
through super-resolution imaging [21] or electron tomography
(ET) [22] is currently limited by the spatial-temporal resolution of
these experimental techniques. In contrast, computational modeling
possesses of unique advantages that permit one to reach the condi-
tions that are infeasible in the laboratory. Molecule-based simula-
tion approaches have been used to study the dynamic properties
of specific membrane receptors [23–30]. For instance, molecular
dynamic (MD) or Brownian dynamic (BD) simulations were devel-
oped to study the interactions between proteins [31–33]. Unfortu-
nately, these methods are so far difficult to reach the time scale in
which a membrane receptor associates and dissociates with its
ligand, or deal with a system containing large amounts of receptors
that form complexes or clusters. On the other hand, there are a vari-
ety of computational modeling approaches incorporating spatial
information on the subcellular level [34–43], such as partial differ-
entiation equations (PDE) and lattice-based simulations. These mod-
els aimed to describe how collective behaviors of membrane
receptors lead to spatial patterning on cell surfaces or at cellular
interfaces. Due to the coarse-grained features of these models,
molecular details of ligands and receptors, as well as the energetics
of their interactions, are rarely included. Only qualitative picture can
be derived from these models. Therefore, it is highly demanding to
develop new simulation methods that can compensate the limita-
tions between molecule-based and lower-resolution models, and
further applied them to the specific biological systems.

Top tackle the problem, we present a new computational method
in this article to unravel the molecular mechanisms of oligomeriza-
tion for receptors in TNFRSF. A domain-based representation is con-
structed to delineate the basic structural information of TNF ligands
and receptors. The trans-binding interface between ligand and
receptor, as well as the cis-binding interface between two receptors,
are also defined based on the structural evidences. Multiple copies of
these receptors and ligands are included in the simulation system, in
which their diffusion and binding are guided by a kinetic Monte-
Carlo algorithm. We first found that the initial spatial organization
of TNF ligands as homotrimers can promote their ability to bind
more receptors, revealing the function of binding avidity in multiva-
lent TNF ligands. Moreover, our simulations show that the spatial
patterns formed by TNF ligand-receptor complexes are highly
dependent not only on the molecular properties such as trans and
cis binding affinities, but also on the cellular factors such as the con-
centration of TNF ligands in the extracellular area or the density of
TNF receptors on cell surfaces. An interesting discovery is that strong
cis-interactions between complexes or high surface density of TNF
receptors prevent the systems from forming large-size oligomers
through kinetic trapping and local crowding effect. Finally, the
results suggest that the lateral interactions between TNFR mono-
mers without ligands can kinetically affect the oligomerization of
ligand-receptor complexes. In summary, our computational model
is a useful addition to a suite of existing experimental techniques
to compare oligomerization of different receptors in TNFRSF and fur-
ther understand their functions in regulating the downstream sig-
naling events. At the same time, the modeling strategy and
simulation algorithm can be potentially generalized to study the
spatial organization of other membrane receptor systems.
2. Model and methods

2.1. Construction of a domain-based coarse-grained model

The extracellular regions of membrane receptors usually consist
of multiple domains [44], while their ligands are normally
organized into multimeric complexes [45]. TNF and TNFR super-
families are typical examples, as we mentioned in the introduction.
In order to take account of these details into our simulations, we
constructed a new domain-based coarse-grained model to describe
the structural arrangement of TNF ligands and receptors. In speci-
fic, each subunit in a TNF ligand trimer is represented by a rigid
body with a radius of 3 nm. The rigid bodies in a ligand are spa-
tially aligned together with a three-fold symmetry (Fig. 1a). Con-
sidering a receptor in TNFRSF normally contains tandem repeats
of one to six CRD domains, a standard model with four domains
is adopted, which is also the most frequently observed in TNFRSF.
Correspondingly, each CRD domain in a receptor is coarse-grained
into a rigid body with a radius of 2 nm. The rigid bodies in a recep-
tor are spatially aligned into a rod-like shape (Fig. 1a).

The extracellular domains of TNF receptors are further dis-
tributed on the plasma membrane, which is represented by the
bottom surface of a three-dimensional simulation box. The space
above the plasma membrane represents the extracellular region,
where TNF ligands are placed (Fig. 1f). On the surface of each ligand
subunit, we further assigned a trans-binding site (yellow dots), so
that it can bind to a receptor. The trans-binding site for a receptor
is located at the surface of the second N-terminal domain (yellow
dots). Through the trans-interactions, the ligand trimer can simul-
taneously bind to three receptors and form a basic unit of signaling
complex (Fig. 1b). Moreover, in a recently solved X-ray structure
[19], receptors were found to be in a parallel dimer that is con-
nected by a cis-binding interface (Fig. 1e). The ligand-binding inter-
face is on the opposite side of the receptor in this dimer, which
provides the possibility for ligand-receptor signaling complexes
to further form higher-order oligomers [46]. We also integrated
this structural evidence of cis-interaction between receptors into
our model. As a result, a cis-binding interface (blue dots in Fig. 1)
is assigned on the surface of the N-terminal domains for each
receptor, so that upon ligand binding, two signaling complexes
can be laterally connected together (Fig. 1c).

2.2. Implementation of the kinetic monte-carlo simulation algorithm

Given the concentration and surface density of TNF ligands and
receptors, an initial configuration is constructed by randomly dis-
tributing receptors on the plasma membrane and ligands in the
extracellular region. Starting from this initial configuration, the
simulation of the dynamic system is then guided by a kinetic
Monte-Carlo algorithm. The algorithm follows a standard
diffusion-reaction protocol, as we developed earlier [47,48]. Specif-
ically, within each simulation time step, stochastic diffusions are
first selected for randomly selected molecules. Translational and
rotational movements of TNF receptors are confined on the surface
at the bottom of the simulation box, while TNF ligands are free to
make translational and rotational diffusions within the volume
above the surface. The amplitude of these movements within each
simulation step is determined by the diffusion coefficients of each
ligand and receptor. We applied the 2D periodic boundary condi-
tion to membrane-bound receptors. For free ligands, periodic
boundary conditions are imposed along X and Y directions of the
extracellular region. Along the Z direction, any ligand moving
beyond the top or below the bottom of the simulation box will
be bounced back.

After the diffusion scenario, the reaction of association for a
trans-interaction will be triggered by a given probability if the
binding criteria are satisfied between a receptor and an unbound
subunit from a ligand trimer. Similarly, the reaction of association
for a cis-interaction will be triggered by a given probability if the
binding criteria are satisfied between two receptors. Two types of
cis-interactions are specifically considered in this study: one is
between two monomeric receptors; while the other is between



Fig. 1. A coarse-grained model was constructed to simulate the spatial-temporal
process of binding between TNF ligands and their receptors. (a) The trimeric TNF
ligand is represented by three rigid bodies that are spatially arranged into a three-
fold symmetry, while CRD domains in a TNF receptor are spatially aligned into a
rod-like shape. (b) Through the trans-binding sites (yellow dots) on the surface of
each ligand subunit and the second N-terminal domain of receptor, a ligand can
simultaneously bind to three receptors and form a basic unit of signaling complex.
(c) Furthermore, cis-binding site (blue dots) is assigned on the surface of the N-
terminal domains in TNF receptors so they can be laterally connected together. (d)
The x-ray crystal structures of ligands and receptors that form trans-interactions.
(e) The x-ray crystal structures of two receptors that form cis-interactions. (f)
Finally, a kinetic Monte-Carlo algorithm is applied to simulate the system, in which
TNF receptors are distributed on the plasma membrane represented by the bottom
surface of a three-dimensional simulation box. The space above the plasma
membrane represents the extracellular region, where TNF ligands are located. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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two ligand-bound receptor complexes. The probability of associa-
tion is directly calculated by multiplying the on rate of the reaction
with the length of the simulation time step. At the same time,
dissociations are triggered for any randomly selected trans-
interaction or cis-interaction with the probability that is calculated
by multiplying the off rate of the corresponding reaction with the
length of the simulation time step. If a ligand binds to a receptor, or
a receptor joins an incomplete ligand-receptor complex with
vacant receptor binding sites, they will move together on the sur-
face of the plasma membrane. If two complexes are connected
together with a lateral interaction, the entire assembly will then
stop diffusing and provides a seed for further oligomerization.
Finally, above procedure is iterated until the system evolves into
equilibrium patterns in both configurational and compositional
spaces.
2.3. Parameter determination in the coarse-grained simulations

The basic simulation parameters, including time step and bind-
ing criterion, were adopted from our previous study [49]. Specifi-
cally, the binding criterion (i.e. the distance cutoff to trigger
association between two proteins) is 2 nm, while the length of
each simulation tine step is 10 ns. The values of these parameters
were determined based on the benchmark tests in order to opti-
mize the balance between simulation accuracy and computational
efficiency. The length of each side in the square plasma membrane
surface is 1000 nm, along both X and Y directions, which gives a
total area of 1 mm2. Along the Z direction, the height of the simu-
lation box is 100 nm. In the simulation, we changed the number
of receptors on the membrane surface from 150 to 750, leading
to the surface density in the range of ~102mol/mm2. This surface
density of membrane receptors is within the typical range that
was experimentally observed in T cells [50]. Given the molecular
weight of the TNF ligand trimer, its diffusion constant was
obtained by fitting data calculated using a precise boundary ele-
ment method [51]. Consequently, the translational diffusion con-
stant of a soluble ligand trimer is taken as 72.6 lm2/s and the
rotational coefficient as 0.34� per ns. Relatively, the two-
dimensional diffusions of a monomeric receptor or a ligand-
bound receptor are much slower due to the restriction from the
surface of plasma membrane, with a translational constant of
10 lm2/s and rotational coefficient of 1� per ns. The values of
these parameters were derived from our previous simulation
results for the diffusions of a membrane receptor on the lipid
bilayer [52]. Moreover, the surface diffusions of a complex con-
sisting of a TNF ligand and more than one receptor are considered
as even slower, with a translational constant of 5 lm2/s and rota-
tional coefficient of 0.28� per ns. When more than two ligand-
receptor complexes form an initial seed for oligomerization, as
mentioned above, the entire assembly will stop diffusing for com-
putational simplicity.

The reaction parameters were chosen within the range that is
typical for the interactions between protein ligands and membrane
receptors. For instance, the on rates for trans and cis interactions
were calibrated to a reasonable value to make the simulation com-
putationally accessible. They are on the scale from 105M�1s�1 to
107M�1s�1, a typical range for the diffusion-limited rate constants,
in which association is guided by complementary electrostatic sur-
faces at binding interfaces [53]. On the other side, a wide range of
off rate, between 10�2s�1 and 104s�1, was used to test simulations
for dissociation of both trans and cis interactions. Therefore, our
tests cover the dissociation constants from millimolar (mM) to
nanomolar (nM), which is within the typical range for binding of
signaling receptors on the surfaces of immune cells [54].
3. Results

3.1. Characterize the general dynamics of TNF receptor oligomerization

Using the modeling scheme and simulation algorithm described
above, we first investigated how the spatial organization of a tri-
meric ligand affects its binding with TNF receptors. Specifically,
150 TNF trimeric ligands were randomly placed in the extracellular
region, while 450 TNF receptors were distributed on the surface
below. In order to focus on the binding effect of trimeric ligand
complexes, the lateral interactions between receptors were turned
off. The final configuration from the simulation was plotted in
Fig. 2a. In comparison, a control simulation was carried out, in
which each TNF ligand is represented by a monomer with single
binding site. As a result, ligand-receptor complex can only be
formed with a 3:3 stoichiometry. We placed 450 ligand monomers
in the control simulation to maintain the same level of possible
interactions as in the first simulation scenario. All other parame-
ters such as diffusion constant, rates of association and dissociation
between ligands and receptors remain unchanged. The final config-
uration from the control simulation was plotted in Fig. 2b. The total
number of ligand-receptor interactions formed during simulations
in the first system is plotted in Fig. 2c as red curve, while the black
curve shows the total number of interactions formed in the control
simulation.



Fig. 2. We investigated impacts of trimeric ligands on their binding with TNF
receptors using two comparative simulations. (a) In one scenario, 450 receptors
were distributed on the surface below the extracellular region. They interacted with
150 trimeric ligands. (b) In the other scenario, there were 450 ligand monomers in
the extracellular region to target receptors. All other parameters remain unchanged.
(c) The total number of ligand-receptor interactions formed during simulations in
the first scenario is plotted as red curve, while the black curve shows the total
number of interactions formed in the second scenario. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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Interestingly, Fig. 2c shows that although both systems contain
the same number of ligand binding sites (450), 250 binding sites
were occupied by receptors after equilibrium if ligands are mono-
mers. However, there were more than 400 ligand binding sites
were occupied by receptors in the trimeric ligand scenario. There-
fore, much more interaction can be formed if ligands are organized
into higher-order complexes. We suggest that this is due to the fol-
lowing fact. Binding of any binding sites in a trimeric ligand simul-
taneously brings other unbound binding sites in the ligand close to
cell surface. This increase of local concentration makes ligands
easier to find their target receptors. In another word, avidity
enhances binding by causing the coupling effects between differ-
ent binding sites in a ligand complex. Moreover, we also found that
the interactions between receptors and trimeric ligands show rel-
atively smaller fluctuations than monomeric ligands, indicating
that the system of trimeric ligands is more resistant to external
noises. This suggests that the formation of trimers is important
to increase the sensitivity of TNF-mediated signaling.

To further characterize the dynamic properties of receptor
oligomerization after ligand binding, we turned on the cis-
interactions between ligand-bound receptors. The cis-interactions
between unbound receptors were not considered at this stage to
avoid complexity in data analysis. This is based on the assumption
that the cis-interactions between unbound receptors could be
weaker than the cis-interactions between ligand-bound receptors
with several orders of magnitude, which have been demonstrated
in the clustering of classic cadherin [55]. To illustrate the effect of
cis-interactions, two systems were specifically simulated and
compared with each other. In the first system, two ligand-bound
TNF receptors can form a lateral interaction with the on rate of 105-
M�1s�1 and the off rate of 102s�1. In the second system, no lateral
interactions can be formed between receptors. All other parame-
ters such as ligand receptor concentrations, diffusion constant,
binding rates of trans-interactions between ligands and receptors
remain unchanged. As a result, the kinetics profiles in both systems
are plotted in Fig. 3a.

The total number of trans-interactions formed between ligands
and receptors formed along the simulation of the first system is
plotted by the black curve in the figure, while the total number
of trans-interactions formed in the second system is plotted by
the red curve. Although the binding constants of trans-
interactions in both systems are the same, the simulation results
show that the number of trans-interactions in the system with
cis-interactions grows more slowly but reaches a higher level with
lower fluctuations than the system without cis-interactions. This
interesting finding suggests that the cis-interactions between
receptors can affect the binding kinetics of trans-interactions.
Moreover, the ligand-receptor interactions can be stabilized by
forming lateral oligomers. In order to further assess the statistical
significance of obtained differences of trans-interactions between
these two systems, a two-sample student’s t-test was performed
to the data points among the last 108ns of two trajectories. The
comparison of these two data points along with the simulation
time is plotted in Fig. S1a, while their distributions are plotted as
histograms in Fig. S1b. As a result, the average number of trans-
interactions in the simulation without cis-interactions is 427.49
and the standard deviation of the distribution is 2.67. On the other
hand, the average number of trans-interactions in the simulation
with cis-interactions is 439.55 and the standard deviation of the
distribution is 1.41. The null hypothesis that no difference exists
between two sets was tested at a 95% confidence interval.
Consequently, the calculated t-score equals 196.0 and the
corresponding P-value is lower than 0.001. Therefore, the small
P-value for the t-test suggests that we can reject the null hypoth-
esis and accept the alternative hypothesis, i.e., the differences in
numbers of trans-interactions between the simulations with and
without cis-interactions are significant.

On the other hand, the total number of cis-interactions form in
the first system and the largest oligomer found along the simula-
tion are plotted by orange and blue curves in Fig. 3a, respectively.
Comparing with the trans-interactions, the number of
cis-interactions increases much slower and shows a linear growth
in oligomerization instead of the exponential growth in
trans-dimerization. This is partially due to the reason that
cis-interactions can only be formed after trans-interactions, while
the oligomerization is triggered only after the concentration of
ligand-receptor complexes in the system is high enough. Finally,
some representative snapshots of receptor clustering are plotted
along the simulation trajectory from Fig. 3b–e. The figures show
that after the formation of individual ligand-receptor complexes
(Fig. 3c), the small oligomers start to grow (Fig. 3d) and the spatial
organization of complexes as hexagonal lattice are finally clus-
tered, as described in previous studies [54]. The largest oligomer
that contains more than 100 proteins, including ligands and
receptors, is highlighted in the final configuration (Fig. 3e).

3.2. Explore the impacts of concentration and stoichiometry on
oligomerization

To illustrate the effect of concentration and stoichiometry
between ligands and receptors on oligomerization, we changed
the number of trimeric ligands in the extracellular region, as well
as the number of receptors on the surface below. In order to further
exclude other factors, we fixed the on rate and off rate for both



Fig. 3. We turned on the cis-interactions between ligand-bound receptors to characterize the dynamic properties of receptor oligomerization after ligand binding. (a) The
kinetic profiles of the simulation, including the number of trans-interactions (black curve), the number of cis-interactions (orange curve), and the size of the largest oligomer
(blue curve) are plotted. The number of trans-interactions is further compared with a control system (red curve) in which the cis-interactions between ligand-bound receptors
were turned off. (b) We show the initial configuration of the simulation. (c-d) Some representative snapshots along the simulation trajectory are also plotted. (e) The oligomer
with the maximal size formed at the end of the simulation is highlighted. In the oligomer, ligand-receptor complexes are clustered as hexagonal lattice. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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trans-interaction and cis-interaction at 107M�1s�1 and 102s�1 in all
systems, respectively. All simulations were terminated at the same
time (1 � 108ns). At the end of each simulation trajectory, we cal-
culated the number of ligand-receptor trans-interactions, the num-
ber of receptor-receptor cis-interactions, the average size of formed
oligomers, and the largest oligomer found in the system. The distri-
butions of our calculated results are plotted as histograms in Fig. 4.
Each bar in the figure was actually based on the average values cal-
culated from the data that were collected within the last 107ns of
the corresponding simulation trajectories. The simulations were
updated every 5 � 104ns. As a result, the height in the histograms
of Fig. 4 corresponds to the statistical average of the last 200 data
points along the simulations. All the raw data of the figures can be
found from Tables S1-1 to S1-4 in the supporting information.

The figure shows that overall the number of interactions are
positively correlated with the ligand concentration and surface
density of receptors. However, there is a threshold of ligand con-
centration above which the ligand-receptor interactions cannot



Fig. 4. We changed the number of ligands in the extracellular region and the number of receptors on the surface below to illustrate the effect of concentration and
stoichiometry on receptor oligomerization. TNF ligands are in their trimeric state. Simulations were carried out for all combinations of ligand concentrations and surface
densities of receptors. At the end of each simulation trajectory, we calculated and plot the histograms for the distributions of (a) the number of ligand-receptor trans-
interactions, (b) the number of receptor-receptor cis-interactions, (c) the largest oligomer found in the system, and (d) the average size of formed oligomers, respectively.
Given the same number of trimeric ligands (150), we found that the number of cis-interactions keeps increasing with the increasing density of receptors. In (e), we plot the
configuration with low surface densities of receptors (450). In (f), we plot the configuration with high surface densities of receptors (750). (g) Moreover, we plot the
configuration with a relative low ligand concentration (450 receptors, 75 ligands). (h) In comparison, we also plot the configuration with a relative high ligand concentration
(750 receptors, 1200 ligands).
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grow further (Fig. 4a). The value of this threshold depends on the
surface density of receptors. For instance, when there are 450
receptors in the system, the number of trans-interactions is
saturated after the number of trimeric ligands reaches 150. When
there are 750 receptors in the system, the number of trans-
interactions does not increase after the number of trimeric ligands



Fig. 5. In order to explore the mechanism in the dynamic process of oligomerization, we plotted the specific configurations for some representative oligomers under different
ligand concentrations and receptor densities. a) Given 450 receptors and 150 trimeric ligands in the systems, most oligomers are formed by complexes with an overall ligand-
receptor stoichiometry of 3:3. b) When the number of receptors in the system increased to 600, we found that ligand-unbound receptors presented at the edges of most
oligomers through the cis-interactions with ligand-bound receptors. Finally, c) when the number of ligands increased to 300, on the other hand, we found that some
oligomers are formed by incomplete complexes in the system.
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reaches 300. This threshold is resulted from the ligand-receptor
stoichiometry and similar phenomena also exist for receptors. On
the other hand, the distribution of cis-interactions is slightly differ-
ent and no threshold effects were observed (Fig. 4b). For an exam-
ple, when there are 150 trimeric ligands in the system, the number
of trans-interactions is saturated at the value around 450 after the
number of receptors reaches 450. In another word, almost all
ligands bind to receptors with the stoichiometry of 3:3, and no fur-
ther trans-interactions can be formed even if the number of recep-
tors further increase.

In contrast, given the same number of trimeric ligands (1 5 0),
the number of cis-interactions keeps increasing with the number
of receptors, as shown in Fig. 4b. There are 131 cis-interactions
attained in the system with 450 receptors, while the number of
cis-interactions became 270 in the system with 750 receptors,
although the same numbers of trans-interactions exist in both sys-
tems. The comparison of their configurations explains the differ-
ence. In the first system with 450 receptors, almost all receptors
are involved in the trans-interactions, leading into the formation
of all complete ligand-receptor complexes with a stoichiometry
of 3:3 (Fig. 4e). In the other system, much more receptors are
involved in the trans-interactions, leading into the formation of
many more incomplete ligand-receptor complexes extensively
distributed on the cell surface (Fig. 4f). As a result, more cis-
interactions are formed between the receptors in these incomplete
complexes. Additionally, since the formation of cis-interactions
between two receptors requires that at least one of them are
ligand-bound, while there are a large number of monomeric recep-
tors and incomplete ligand-receptor complexes under the condi-
tions of low ligand concentration and high receptor density, the
numbers of cis-interactions thus become sensitive to the number
of trans-interactions in these systems. For instance, as shown in
Fig. 4b, there are 178 cis-interactions attained in the system with
75 ligands and 750 receptors, while the number of cis-
interactions reached 269 in the system with 150 ligands and the
same number of receptors. Under the conditions of lower receptor
densities or higher ligand concentrations, on the other hand, the
formation of complete ligand-receptor complexes is saturated. In
these systems, the numbers of cis-interactions are not sensitive
to the number of trans-interactions, as well as the ligand
concentration.

In order to further quantify the spatial patterns of oligomeriza-
tion, the distributions of average and maximal size of clusters form
in different systems are plotted in Fig. 4c and d, respectively. Com-
paring with the positively correlation between concentrations and
numbers of interactions, the figures show very different patterns in
distributions of oligomer sizes. Specifically, Fig. 4c suggests that
large oligomers can form even in a very low ligand concentration.
For instance, a large oligomer containing around 50 proteins was
found in the system with 450 receptors and only 75 trimeric
ligands, the final configuration of which is shown in Fig. 4g. Sur-
prisingly, based on the measurement of largest and average size
of formed oligomers, our simulation results indicate that ligand-
receptor complexes cannot effectively organized into spatial pat-
tern under high concentrations, although the numbers of cis-
interactions between receptors are large in these systems. Based
on the final configuration system with 1200 trimeric ligands and
750 receptors (Fig. 4h), we speculate that after forming lateral
interactions, these ligand-receptor complexes are trapped in a
crowded environment. The high ligand and receptor concentra-
tions lead to slower diffusions and lower probability for association
and dissociation, which makes the oligomerization kinetically
inaccessible.

To further explore the mechanism in the dynamic process of
oligomerization, we analyzed the detailed structures of all
ligand-receptor complexes at the end of each simulation. The
specific configurations of some representative oligomers are plot-
ted in Fig. 5 under different ligand concentrations and receptor
densities. Given 450 receptors and 150 trimeric ligands in the
systems, our results indicate that most oligomers are formed by
complexes with an overall ligand-receptor stoichiometry of 3:3.
One typical example is shown in Fig. 5a. This is due to the specific
ratio between the concentration of ligands and the density of
receptors. When the density of receptors further increased, we
found that ligand-unbound receptors presented at the edges of
most oligomers through the cis-interactions with ligand-bound
receptors. One typical example is shown in Fig. 5b, with some
ligand-unbound receptors highlighted by dashed circles. We
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further found that these oligomers were able to keep growing
when more ligands formed trans-interactions with the receptors
at the edges. When the concentration of ligands reached to a high
level, on the other hand, we found that some oligomers are formed
by incomplete complexes in the system. One typical example is
shown in Fig. 5c, in which the incomplete ligand-receptor com-
plexes are highlighted by dashed circles. Some of these incomplete
complexes have ligand-receptor stoichiometry of 3:2, while others
have ligand-receptor stoichiometry of 3:1. These oligomers were
also able to keep growing when more monomeric receptors joined
through the trans-interactions. It is worth mentioning that incom-
plete complexes were experimentally observed in some systems of
TNF superfamily, such as the complex formed between TNF recep-
tor CD40 and its ligand CD154 [56]. Therefore, our simulation
results provide evidences that either ligand-unbound TNF recep-
tors or incomplete ligand-receptor complexes can be incorporated
into the process of oligomerization through different kinetic
pathways.

Taken together, these results suggest that oligomerization of
TNF receptors is a highly sensitive process which can be triggered
by introducing a low concentration of ligands. On the other hand,
the overexpression of TNF ligands or receptors plays a negative role
in regulating oligomerization.

3.3. Understand how binding energies at different interfaces regulate
oligomerization

In attempt to further understand how binding stability affect
the dynamics of ligand receptor interactions and patterns of
oligomerization, we fixed the ligand receptor concentrations and
turned the binding affinity into different values. In specific, the
binding constants were changed by keeping the on rates as con-
stant at 107M�1s�1 for both trans-interaction and cis-interactions.
The values of off rate for trans-interaction were adjusted within
the range from 102s�1 to 6 � 104s�1, while the values of off rate
for cis-interaction were adjusted within the range from 100s�1 to
5 � 104s�1. Simulations were carried out for all different combina-
tions of off rates. In all these systems, the number of trimeric
ligands was fixed at 150 and the number of receptors was fixed
at 450 to avoid further complexity. After the termination of these
simulation trajectories at the same time (3.6 � 108ns), we calcu-
lated the number of ligand-receptor trans-interactions, the number
of receptor-receptor cis-interactions, the average and maximal size
of formed oligomers. The distributions of our calculated results are
plotted as histograms from Fig. 6a–d. Each bar in the figure was
actually based on the average values calculated from the data that
were collected within the last 107ns of the corresponding simula-
tion trajectories. The simulations were updated every 5 � 104ns.
As a result, the height in the histograms of Fig. 6 corresponds to
the statistical average of the last 200 data points along the simula-
tions. All the raw data of the figures can be found from Tables S2-1
to S2-4 in the supporting information.

The distribution for the number of trans-interactions is shown
in Fig. 6a. The figure indicates that the number of trans-
interactions is largely determined by the strength of ligand-
receptor interactions. Stronger trans-interactions lead to more
binding between ligands and receptors. However, a closer look at
the data reveals the effect of cis-interactions on trans-
interactions. In detail, when trans-interactions are not very strong,
stronger cis-interactions result in slightly more interactions
between ligands and receptors. For instance, when the off rate of
trans-interaction equals 5 � 103s�1, there are on average 239 trans-
interactions under a weak cis-interaction (a corresponding high off
rate at 5 � 104s�1). Given the same off rate of trans-interaction
(5 � 103s�1), the average number of trans-interactions increases
to 265 when the cis-interaction becomes stronger (a corresponding
low off rate at 1 � 100s�1). Similarly, when the off rate of trans-
interaction equals 1 � 103s�1, there are on average 373 trans-
interactions under a weak cis-interaction (a corresponding high
off rate at 5 � 104s�1). Given the same off rate of trans-
interaction (5 � 103s�1), the average number of trans-
interactions increases to 382 when the cis-interaction becomes
stronger (a corresponding low off rate at 1 � 100s�1). On the other
hand, stronger cis-interactions lead to slightly less interactions
between ligands and receptors when trans-interactions are strong.
For instance, under the lowest off rate of trans-interaction
(1 � 102s�1), there are on average 429 trans-interactions under a
weak cis-interaction (a corresponding high off rate at
5 � 104s�1). Given the same off rate of trans-interaction, the aver-
age number of trans-interactions first increase to 436 when the cis-
interaction becomes stronger (a low off rate at 1 � 103s�1), but
then reduces to 404 when the cis-interaction becomes further
stronger (a lower off rate at 1 � 100s�1). This phenomenon is
resulted from the oligomerization of ligand-receptor complexes,
as we will discuss later.

The distributions for the number of cis-interactions and average
size of oligomers formed along simulations are shown in Fig. 6b
and c, respectively. These two figures show the similar patterns.
Only the systems with both high affinities of cis-interactions and
high affinities of trans-interactions obtained a large number of
cis-interactions (Fig. 5b). Similarly, the average sizes of oligomers
in these systems are also much larger than the systems in which
either cis- or trans-interactions are not strong (Fig. 5c). Moreover,
as shown in these two figures, almost no cis-interaction and oligo-
mer were observed under weak interactions (high values of cis and
trans off rates). However, a small drop in both cis and trans off rates
leads to the raise of cis-interactions and the appearance of oligo-
mers, indicating that oligomerization is a phase transition and
there are thresholds in both trans and cis interactions to trigger
the oligomerization. Interestingly, the distribution of the largest
oligomer formed along simulation shows a very different pattern
(Fig. 6d), comparing with the average size of oligomers. The figure
suggests that large oligomers cannot be derived from the strongest
cis-interactions. For instance, when the off rate of trans-interaction
equals 1 � 102s�1, we found a large oligomer containing around 90
proteins given the off rate of cis-interaction equals 1 � 103s�1.
However, given the same off rate of trans-interaction
(1 � 102s�1), the largest oligomer can be found in the system only
contain around 35 proteins when the cis-interaction becomes
stronger (a corresponding low off rate at 1 � 100s�1). The compar-
ison of final configurations between these two systems is shown in
Fig. 6e and f. Our results therefore suggest that the oligomerization
is kinetically trapped by the strong trans and cis interactions. Addi-
tionally, when the ligands are stuck in these small oligomers due to
the strong cis-interactions, they are less likely to encounter with
other unbound receptors when the trans-interactions are also
strong, which was observed earlier.

The binding affinities of trans-interactions between ligands and
receptors of many members in TNFRSF are on the level of nanomo-
lar (nM) [20]. In order to test the receptor oligomerization in this
biologically relevant scale, we further decreased the off rate of
trans-interactions down to 10�2s�1. Keeping the on rates as con-
stant at 107M�1s�1, this gave us a binding affinity of 1 nM. On
the other hand, the affinities of cis-interactions were thought to
be much weaker than the trans-interactions [19]. Therefore, simu-
lations were carried out for all different cis off rates from 100s�1 to
5 � 104s�1 in the system with 150 trimeric ligands and 450 recep-
tors. As a result, the numbers of cis-interactions and the average
sizes of oligomers under different off rates are shown in Fig. S2
and compared between two scenarios: the affinity of trans-
interactions equals 1 nM (trans off rate = 10�2s�1) and 10 lM (trans
off rate = 102s�1). As shown in Fig. S2a, under strong cis-affinities,



Fig. 6. In order to understand how stability of binding affects the dynamics of ligand receptor interactions and patterns of oligomerization, we turned the binding affinity into
different values by keeping the on rates of trans and cis interactions as constant and changing their values of off rate. TNF ligands are in their trimeric state. Simulations were
carried out for all different combinations. At the end of each simulation trajectory, we calculated and plot the histograms for the distributions of (a) the number of ligand-
receptor trans-interactions, (b) the number of receptor-receptor cis-interactions, (c) the average size of formed oligomers, and (d) the largest oligomer found in the system,
respectively. We found that large oligomers cannot be derived from the strongest cis-interactions. For instance, we compared the simulations between the weak and strong
cis-interactions, but with the same trans-interactions. (e) We plot the configuration with weak cis-interactions (off rate equals 1 � 103s�1). (f) Under the same trans-
interactions (off rate equals 1 � 102s�1), we plot the configuration with strong cis-interactions (off rate equals 1 � 100s�1).
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the system can obtain more cis-interactions when the trans-
interactions are strong (1 nM), relative to the system with weak
trans-interactions (10 lM). This result suggests that strong trans-
interactions can stimulate the formation of cis-interactions. On
the other hand, our simulation results suggest that the average oli-
gomer sizes in the system with strong trans-interactions are smal-
ler than the system with weak trans-interactions (Fig. S2b),
indicating that oligomers are kinetically trapped by the strong
trans and cis interactions. As a result, the tests on nM level of trans
binding affinity are consistent with our observations above. This
demonstrates that our simulations are predictive within the
biologically relevant range of ligand-receptor binding affinities.

In summary, the simulations illustrated that the spatial
organization of complexes between TNF ligands and receptors is
fine-tuned by the cooperativity between their trans and cis binding
stabilities. This correlation between binding energetics and spatial



Fig. 7. It has been found that some members of TNFR superfamily can pre-assemble
into dimers on cell surfaces prior to their ligand binding. In order to understand the
mechanism and functions of this pre-assembly, we turned on the cis-interactions
between ligand-unbound TNFR monomers in addition to the cis-interactions
between ligand-bound receptor complexes. As a result, three different binding
affinities of monomer cis-interactions were tested and all other parameters were
fixed in these three systems. In (a), we plot the number of trans-interactions formed
in these three simulation scenarios. In (b), we plot the number of cis-interactions
between monomeric receptors formed in these three simulation scenarios. In (c),
we plot the largest size of oligomer formed in these three simulation scenarios.
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patterns of oligomerization can be validated by measuring the TNF
ligand-receptor binding affinity using experimental techniques
such as surface plasma resonance (SPR) [57] and detecting the size
of TNFR oligomers using supra-resolution microscopy.

3.4. Investigate how cis-interactions of TNFR monomers regulate
oligomerization

In previous sections we focused on the oligomerization of
ligand-receptor complexes by turning off the cis-interactions
between ligand-unbound TNFR monomers. However, it has been
found that some members of TNFR superfamily, such as TNFR1
and TNFR2, can form dimers on cell surfaces through an additional
interface called pre-ligand assembly domain (PLAD) [58]. This pre-
assembly is independent of ligand binding, indicating that the lat-
eral interactions between TNFR monomers exist at least for some
members in TNFRSF [18]. However, the mechanism of the pre-
assembly and it function related to the ligand-receptor oligomer-
ization is not clear. Therefore, here we are tackling this problem
by turning on the cis-interactions between ligand-unbound TNFR
monomers in addition to the cis-interactions between ligand-
bound receptor complexes. In detail, three different binding affini-
ties of monomer cis-interactions were tested. The on rates of these
interactions were fixed at 107M�1s�1, while the values of off rates
were increased from 101s�1 to 103s�1. The number of trimeric
ligands was fixed at 150 and the number of receptors was fixed
at 450 among all three systems. All other binding parameters, such
as on and off rates of trans-interactions (106M�1s�1 and 102s�1), as
well as the cis-interactions between ligand-receptor complexes
(106M�1s�1 and 102s�1), were also set as the same values to avoid
further complication. As a result, the kinetics profiles of these three
simulation scenarios are plotted in Fig. 7.

Overall, the figure shows that the numbers of trans-interactions
in all three conditions increase and reach equilibrium after
3 � 108ns (Fig. 7a). The numbers of cis-interaction between
unbound receptor monomers, on the other hand, increase at the
very beginning of the simulations due to their higher on rate, but
then drop very fast before 1 � 108ns (Fig. 7b). At the meantime,
the oligomers grow with a much slower kinetics (Fig. 7c). By com-
paring the detailed kinetics among three systems, we further found
some more interesting behaviors. For instance, the numbers of
trans-interactions with the strongest monomer cis-interactions
(blue curve in Fig. 7a) grows more slowly at first, comparing with
the system with the weakest monomer cis-interactions (red curve
in Fig. 7a). However, the system with the strong monomer cis-
interactions can form larger number of trans-interactions after
equilibrium than the system with relatively weaker monomer
cis-interactions. Correspondingly, if the cis-interactions between
TNFR monomers are stronger, their number will drop more slowly
than the systems with weaker monomer cis-interactions, as shown
in Fig. 7b.

These results indicate the competition between trans-
interactions and monomer cis-interactions along the simulations.
Similar as the previous experimental observation, TNF receptors
are preassembled into dimers before they bind to their extracellu-
lar ligands. These cis-dimers between TNFR monomers are later
competed over by the ligand binding and the ligand-receptor com-
plexes start to form oligomers. Receptors with strong monomer cis-
interactions are more competitive against the trans-interactions.
Surprisingly, the simulation results suggest that the stronger com-
petition with the ligands can lead to a higher number of trans-
interactions. We speculate that this phenomenon is caused by
the fact that dimeric TNFR are kinetically less accessible to trimeric
ligands than the more mobilized monomeric TNFR, but thermody-
namically more stable after ligand binding. More interestingly,
Fig. 7c shows that the stronger monomer cis-interactions can not
only result in larger oligomer size, but also can accelerate the
kinetics of oligomerization. We assume the underlying mechanism
is that lateral interactions between monomeric receptors can serve
as the initial seeding for oligomerization.

Based on these simulation results, we thus propose that TNF
receptors can be pre-organized into dimers before ligand binding.
These lateral interactions between receptor monomers play a
positive role in stabilizing the ligand-receptor interactions, as well
as in regulating the kinetics of receptor oligomerization. Our com-
putational hypothesis can be experimentally justified by carrying
out mutagenesis studies on PLAD region in TNFR receptors and
testing the effect of these mutations on ligand binding and
oligomerization.
4. Concluding discussions

Members of proteins that belong to the TNF superfamily are
expressed predominantly by immune cells and function as a
cytokine [59]. They trigger the signaling pathways in diverse cell
functions, including inflammation, proliferation, and apoptosis,
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by recognizing the specific members of cell surface proteins in
TNFR superfamily [3]. Almost all TNF superfamily ligands exist as
homo-trimer and thus can simultaneously bind to three receptors
on cell surfaces [12]. By forming these ligand-receptor complexes,
it was found that they can further form oligomers using different
experimental techniques. Here we developed a new computational
model to simulate the dynamic process of TNF receptor oligomer-
ization and try to understand its underlying mechanisms. The
model is specifically designed for the biological system in which
each subunit in the TNF ligand trimer and each CRD domain in
the TNF receptor are spatially distinguishable to implant the basic
structural information in the simulations. Binding interfaces are
further assigned on the surfaces of each subunit in ligands or
domain in receptors to guide the trans-interactions between
ligands and receptors or cis-interactions between two receptors.
Starting from the initial configuration with a large number of
ligands and receptors randomly distributed in a subcellular envi-
ronment, the dynamics of the system can be evolved through a
diffusion-reaction simulation strategy. We explored a large variety
of simulation conditions such as concentration or binding energet-
ics, and showed that the ligand-receptor complexes under different
conditions can be spatial-temporally organized into distinctive
patterns, such as the average and maximal sizes of oligomers.
These spatial patterns play important functional roles in regulating
the intracellular signal transduction. For instance, after the cluster-
ing of the signaling complexes, they provide transient compart-
mentalization to the cytoplasmic domains of TNF receptors,
which greatly enhances the efficiency of intracellular signaling
processes due to the spatial proximity [60,61]. As a result, the dis-
tribution of oligomers in size and space quantitatively modulate
the kinetics and strength of signals transferred to the downstream
pathways. Therefore, our computational results give insights to the
cellular functions of protein-protein interactions in TNF and TNFR
superfamily.

Our study also sheds lights on the likely mechanism of interplay
between trans and cis-interactions in shaping the dynamics of TNF
receptor oligomerization. Under the same binding constants, we
compare the number of trans-interactions in the system with cis-
interactions between ligand-bound receptors with the systems
without cis-interactions. The statistical analysis of our simulation
results indicates that the number of trans-interactions in the first
system grows more slowly but reaches a higher level with lower
fluctuations than the second system. This dynamic behavior sug-
gests that the binding kinetics of trans-interactions is modulated
by the cis-interactions between ligand-bound receptors. More
specifically, we propose that through the formation of lateral oligo-
mers, the ligand-receptor interactions can be stabilized. Further-
more, after we turned on the cis-interactions between
monomeric receptors, we found that these receptors monomers
are preassembled into dimers before they bind to their extracellu-
lar ligands. Consequently, the stronger competition between trans-
interactions and monomer cis-interactions can not only result in
larger oligomer size, but also can accelerate the kinetics of
oligomerization. The mechanisms underlying these observations
have been proposed in the results.

On the other hand, the cis-interactions can also be affected by
the status of trans-interactions. As shown in the results, we started
our simulations of ligand-receptor oligomerization by only consid-
ering the cis-interaction between ligand-bound receptors. This
simplification is based on the assumption that the trans-
interactions between receptors and ligands can improve the asso-
ciation rate of the cis-interactions between receptors by eliminat-
ing the potential conformational fluctuations in the monomeric
receptors and thus decreasing the entropy loss upon the formation
of cis-interactions. The similar mechanism in which the cis-
interactions are enhanced by trans-interactions was also previ-
ously proposed in the cadherin-mediated junction formation
[55]. However, more quantitative estimations about the amplitude
of conformational fluctuations in the monomeric receptor and how
much flexibility will be eliminated after trans-interaction are
beyond the scope of this work. They will be carried out in the
future by implementing the higher resolution structure-based sim-
ulation methods, such as atomic level molecular dynamic simula-
tions [62]. Additionally, the binding parameters of trans and cis
interactions were taken from a wide range of rate constants with
biological relevance. To evaluate the kinetics of oligomerization
for a specific system in the future, these binding rates can be calcu-
lated by simulation methods with higher resolution. For instance,
physical-based scoring functions were used to simulate the associ-
ation between two proteins with residue-based representation in
our recently developed method [63]. The estimated binding rates
calculated from these methods can then be fed back into the cur-
rent model to guide the simulations of oligomerization [64].

In the current model, TNFs are presented as soluble ligands in
the extracellular area, while TNFRs are confined on cell surfaces.
This scenario is based on the fact that most TNF ligands are type
II transmembrane proteins and become functional by releasing
from the cell membrane after extracellular proteolytic cleavage.
Under certain circumstances, however, TNF receptors can be only
recognized by, or react differently to membrane-bound ligand tri-
mers. For instance, it was found that membrane-bound TNFa can
exert opposing effects on tumor growth from its soluble isoform
[65]. Similarly, it has been shown that some ligands in TNF super-
family, such as CD40L, don’t fully activate cells as soluble trimers at
any concentration [66]. These differences could be caused by the
fact that the differences in diffusions of TNF ligands on cell surfaces
from the diffusions of soluble ligands might lead to different
dynamics of receptor oligomerization. On the other hand, the
genes of some members in TNFRSF do not encode transmembrane
and cytoplasmic segments, and thus produce as soluble forms. For
an example, the decoy receptor 3 (DcR3) is secreted as a soluble
molecule and functions as a decoy to compete with other TNFRs
for ligand binding [67,68]. This decoy receptor is highly elevated
in patients with various tumors [69]. Different from normal
membrane-bound receptors with binding specificity, it can bind
to a wide spectrum of TNF ligands and prevent them from binding
to their own receptors, thus provide the opportunity that tumor
cells evade host immune surveillance. The simulations of these
special cases for membrane-bound TNF ligands or soluble TNF
receptors can be easily implemented in the future to understand
their biological implications.

The computational model developed for TNF and TNFR super-
family can be generalized to study the spatial organization in many
other membrane receptor systems. A common feature of these
receptors is that their extracellular regions can be divided into
multiple copies of different domains. The ligands of these recep-
tors, on the other hand, are usually organized into multivalent
complexes. As a result, ligand binding causes the assembly of
receptors into high-ordered molecular architecture on cell sur-
faces, as observed in various examples. One typical case is epider-
mal growth factor receptor (EGDR). Its extracellular region
comprises 4 domains, while its ligand epidermal growth factor
(EGF) is naturally dimerized [70]. Ligand binding further induces
EGFR oligomerization, which in turn organizes kinase domains of
the receptor into competent signaling platforms [71]. Another
example is the interactions between the multivalent binding sites
in extracellular matrix (ECM) and integrin, which results in its
clustering as a trigger for focal adhesion [72]. The domain-based
model developed in this study can be applied to these systems as
a natural extension. However, it was discovered that the ligand
binding can induce a large conformational change in the complex
of EGFR, comparing with its monomer [73]. The effect of conforma-
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tional dynamics between different domains in a receptor is not
considered in current model. Therefore, in the future, more specific
information about structural fluctuations in ligands and receptors
can be achieved by higher-resolution simulation methods such as
molecular dynamics simulations or Langevin dynamic simulation
[74]. These data can be fed into the current rigid-body based model
by the further development of a multi-scale framework.
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