
METHODOLOGY ARTICLE Open Access

Efficient test for nonlinear dependence of
two continuous variables
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Abstract

Background: Testing dependence/correlation of two variables is one of the fundamental tasks in statistics.
In this work, we proposed a new way of testing nonlinear dependence between two continuous variables
(X and Y).

Results: We addressed this research question by using CANOVA (continuous analysis of variance, software
available at https://sourceforge.net/projects/canova/). In the CANOVA framework, we first defined a
neighborhood for each data point related to its X value, and then calculated the variance of the Y value
within the neighborhood. Finally, we performed permutations to evaluate the significance of the observed
values within the neighborhood variance. To evaluate the strength of CANOVA compared to six other
methods, we performed extensive simulations to explore the relationship between methods and compared
the false positive rates and statistical power using both simulated and real datasets (kidney cancer RNA-seq
dataset).

Conclusions: We concluded that CANOVA is an efficient method for testing nonlinear correlation with
several advantages in real data applications.
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Background
Dependence is defined as any statistical relationship
between two random variables or sets of data, while
correlation describes any of a broad class of statistical rela-
tionships, including dependence. In practice, correlation
may be useful for indicating a predictive relationship of
interest and several methods exist that measure the degree
of correlation. The Pearson correlation coefficient is the
most commonly used correlation method; however, it
is only sensitive to linear correlations, while several
other methods tend to be more robust for non-linear
correlations [1–3].

The Pearson correlation coefficient (or Pearson’s r),
ranging from −1 to 1, was developed by Karl Pearson and
was founded on Francis Galton’s related idea [4–8]. Pearson
correlation coefficient is defined as the covariance of two
variables divided by the product of their standard devia-
tions. Despite the wide use of the Pearson correlation
coefficient, there are several negative effects associated with
its use, including a non-robust Pearson’s r sample statistic
[9], and potentially misleading values in the presence of
outliers [10, 11]. The alternative hypothesis for the Pearson
correlation test is the linear correlation between two vari-
ables X and Y.
The two most common non-linear rank based cor-

relation coefficients are Spearman’s rank correlation
coefficient and Kendall’s rank correlation coefficient.
Spearman’s rank correlation coefficient (or Spearman’s
rho), is a nonparametric measure of statistical de-
pendence between two variables. It is defined as the
Pearson correlation coefficient between the ranked
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variables [12]. The Kendall rank correlation coefficient
(or Kendall’s tau coefficient) is used to test the associ-
ation between two measured quantities [13]. The test
is non-parametric, since it does not rely on any as-
sumptions on the distribution of X or Y or (X, Y).
The alternative hypothesis for both the Spearman’s
correlation test and the Kendall rank correlation test
states that the correlation between two variables X
and Y corresponds to a monotonic function.
Several other commonly used methods measuring

the correlation between random variables include
distance correlation, Hoeffding’s independence test,
Maximal information coefficient (MIC), Hilbert-
Schmidt Information Criterion (HSCI) and Heller Hel-
ler Gorfine distance (HHG). The distance correlation
is a measure of statistical dependence between two ar-
bitrary variables or random vectors. Distance correl-
ation was introduced by Gabor J Szekely in 2005 to
address the deficiency of Pearson’s r (Pearson’s r can be
equal to zero for dependent variables) and the initial re-
sults on distance correlation were published in 2007
and 2009 [14, 15]. The distance correlation is zero if
and only if the random variables are statistically inde-
pendent. A distance correlation of one implies that the
dimensions of the linear spaces spanned by X and Y are
almost equal, and Y is a linear function of X. Hoeffding’s
independence test (named after Wassily Hoeffding) is a
test based on the population measure of deviation from
independence. A sample-based version of this measure (as
a test statistic) was described with a calculation under the
null distribution in 2008 [16]. If the continuous joint distri-
bution and marginal probability densities of two random
variables exist, then the Hoeffding’s independence test will
be efficient. MIC is a measure of the degree of linear or
nonlinear association between two random variables, X and
Y. This method is nonparametric and based on maximal in-
formation theory [17]. MIC uses binning to apply mutual
information to continuous random variables. Binning has
been used for applying mutual information to continuous
distributions, while MIC is a method for selecting the num-
ber of bins and finding a maximum over possible grids.
Despite the merits of MIC, there are some limitations of
this method as identified by the authors in a later study,
specifically that the approximation algorithms with better
time-accuracy tradeoffs should be used in computing MIC
[18]. The hypothesis of MIC contains a wide range of asso-
ciations. HSIC (proposed by Gretton et al.) was an inde-
pendence criterion based on the eigen-spectrum of
covariance operators in reproducing kernel Hilbert spaces
(RKHSs), consisting of an empirical estimate of the Hilbert-
Schmidt Independence Criterion [19]. HHG (proposed by
Heller et al.) is a powerful test that is applicable to all di-
mensions, consistent against all alternatives, and easy to im-
plement [20].

In this work, we focus on the alternative hypothesis
that “similar X values lead to similar Y values”, or for-
mally, Y = f(x) + e, e ~ N(0, s), s > 0, and f is a non-
constant smooth function. We propose a novel nonlin-
ear correlation measure method: Continuous Analysis
of Variance Test (CANOVA). The idea roots in the
traditional Analysis of Variance (ANOVA) of continu-
ous response with a categorical factor [21]. ANOVA
tests whether the variance within/between categories is
smaller/greater than random expectation. For conti-
nuous response with continuous factors, we need a
generalization of the “within category variance” in
ANOVA. In CANOVA, we first define a neighborhood
of each data point according to its X value, and then
calculate the variance of the Y value within the neigh-
borhood. Finally, we perform a permutation test for
the significance of the observed “within neighborhood
variance”. We first compare the performance of our
CANOVA with six other methods in a simulated data-
set. Then we analyze the false positive rate [22] and the
statistical power [23] of CANOVA and that of the six
other methods on both simulated and real datasets
(RNA-seq data on kidney cancer [24, 25]).

Methods
Given two random variables X and Y, we denote Xi and Yi

for the ith observation. We define the within neighborhood
sum square statistics as:

W ¼
X
i;j

Y i−Y j
� �2

; j < i; rank Xið Þ−rank Xj
� ��� �� < K ð1Þ

where K is an integer constant provided by the user.
Note that |rank(Xi) − rank(Xj)| < K defines the neigh-
borhood structure of the dataset. The hypothesis of
CANOVA is that “similar/neighbor X values lead to
similar Y values”. Thus when X and Y are correlated,
the W statistics tends to be smaller than random
expectation. To evaluate the significance of observed
W, we perform a permutation test [26]. When X has
equal values (tie), we randomly shuffle the rank of tied
X values in each permutation. In a tie situation, for
example, with the data: X = 1, 1, 2, 3; Y = 2, 1, 7, 4.
Since X has two ones, the sorting of data points is not
unique. The algorithm randomly chooses one of the
following sorting patterns: X = 1, 1, 2, 3; Y = 2, 1, 7, 4.
or X = 1, 1, 2, 3; Y = 1, 2, 7, 4. This algorithm is now
implemented by the CANOVA software in Linux
system (which is available at https://sourceforge.net/
projects/canova/). The CANOVA algorithm (pseudo-
code) is summarized as follows:
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While calculating W, we take advantage of the fact
that Xi is sorted. Therefore, the algorithm complexity is
O(nlogn + np), where n is the sample size and p is the
number of permutations. While testing many X variables
against one Y variable, we need to do only one permuta-
tion of Y and we can reuse the permutation results for
all X variables.

Simulation study
We simulated nine simple functions and added the
Gaussian noise (mean = 0, variance = 1) to the Y value

for each of them, as shown in Table 1. These included
constant functions (i.e. a linear function of the form y = b,
where b is a constant, and b = 0 in Table 1 accordingly), lin-
ear functions, quadratic functions, sine functions and
cosine functions. We varied the Gaussian noise levels
(mean = 0, variance = 1/9, 1/4, 4 and 9) in our simula-
tions and reported the power across noise levels
(shown in Additional file 1). We benchmarked six
methods including the Pearson correlation coefficient, the
Spearman’s rank correlation coefficient, the Kendall’s rank
correlation coefficient, the Distance correlation, the
Hoeffding’s independence test and the Maximal informa-
tion coefficient. The simulation was repeated 1000 times
to calculate the false positive rate and the statistical power.
We chose 50 as the sample size (N = 50), x as the inde-
pendent variable which was uniformly distributed in
(−1, 1) and y as the dependent variable. As K is the only
parameter of our CANOVA, we assign its value from the
positive integer collection (K = 2, 4, 8, 12). Notably, MIC
also has a bias/variance parameter (‘alpha’ parameter in the
minerva implementation): the maximal allowed resolution
of any grid [17]. Reshef et al. [18] also found that the differ-
ent parameter setting (α = 0.55, c = 5) is faster (than default)
and does not appear to significantly affect the performance.
For simplicity, here we just used the default parameters
(α = 0.6, c = 15) of MIC.

Applications on real dataset
We applied our proposed CANOVA method to a RNA-seq
kidney cancer dataset, and compared the results generated
by the other six methods. The kidney cancer data set con-
sists of 604 samples and 20,531 genes [24, 25]. We tested
the correlation between genotype data X (20,531 gene-
expression data) and phenotype data Y (kidney cancer or
not). The computing time of each method was documented
for comparison. The significance is preset as 2.435342e-06
(Bonferroni correction). We used an X-Y plot and a grid
search (Such as K = (10, 20, 30, 40, 50)) to choose the best
K (K = 30) for CANOVA by their corresponding statistical

Table 1 Simulation power in nine simple functions

N = 50, x ~ U(−1,1) CANOVA2 CANOVA4 CANOVA8 CANOVA12 Pearson Kendall Spearman Distance Hoeffding MIC

y = 0 + N(0,1) 0.051 0.048 0.048 0.050 0.047 0.048 0.049 0.039 0.059 0.051

y = x + N(0,1) 0.564 0.798 0.889 0.902 0.972 0.962 0.961 0.950 0.953 0.591

y = 0.5;*(x + 1)2 + N(0,1) 0.606 0.836 0.904 0.918 0.968 0.953 0.962 0.964 0.953 0.633

y = sin(Pi*x) + N(0,1) 0.758 0.941 0.966 0.962 0.936 0.918 0.930 0.969 0.969 0.829

y = sin(2*Pi*x) + N(0,1) 0.713 0.886 0.812 0.294 0.318 0.328 0.320 0.341 0.405 0.579

y = sin(3*Pi*x) + N(0,1) 0.677 0.796 0.254 0.076 0.178 0.192 0.199 0.186 0.219 0.423

y = cos(Pi*x) + N(0,1) 0.784 0.940 0.973 0.942 0.067 0.076 0.083 0.660 0.710 0.660

y = cos(2*Pi*x) + N(0,1) 0.738 0.891 0.754 0.142 0.045 0.054 0.053 0.100 0.129 0.548

y = cos(3*Pi*x) + N(0,1) 0.673 0.751 0.160 0.031 0.053 0.054 0.057 0.074 0.090 0.371

The bold means the first place result of all methods compared
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power). For simplicity, the other methods were used the
default parameters (especially for MIC, α = 0.6, c = 15). The
results and comparisons are shown in Table 2.

Results
Results from simulation study
As indicated in Table 1, when the constant function (y = 0)
was used, we compared the false positive rate of different
methods with alpha = 0.05 (significance level). CANOVA
with different K (CANOVA2, CANOVA4, CANOVA8 and
CANOVA12), the Pearson correlation coefficient, the
Spearman’s rank correlation coefficient, the Kendall’s rank
correlation coefficient and the Maximal information coeffi-
cient all show a false positive rate around 0.05, indicating
that the results are correct. Nevertheless, the Distance
correlation’s false positive rate is slightly lower than 0.05
and the Hoeffding’s independence test’s false positive rate is
a little greater than 0.05. Therefore, it is crucial to note that
the significant variables by the Hoeffding’s independence
test may be false positives and the true significant variables
could be not detected by the Distance correlation.
For power comparison on the non-constant correlations

shown in Table 1, we observed the following: (1) when the
correlation is linear, the Pearson correlation coefficient is
the most powerful. The CANOVA test is less powerful
than the Pearson correlation coefficient, but does not
fail (power >0.5); (2) In non-linear correlation case, the
CANOVA tests are the best, especially when the correl-
ation is highly oscillating/non-linear; (3) The power CA-
NOVA4 is the best single non-linear test, and it is more
powerful than MIC with sine and cosine functions.
For our power comparison on the non-constant corre-

lations shown in Additional file 1, we have the following
results: (1) when the Gaussian noise levels were low
(Gaussian variance = 1/9, 1/4), most methods had higher
power especially in simple linear relationships, and the
CANOVA (CANOVA2 and CANOVA4) are still among
the best methods with the highest power in most non-
constant functions; (2) when the Gaussian noise levels
were high (Gaussian variance = 4, 9), most methods had
lower power while the CANOVA4 had higher power
than other methods in complex sine/cosine functions.
Nevertheless, the Pearson correlation coefficient and
Hoeffding’s independence test presented higher power in
simple linear relationship functions. Therefore, when the
correlation between two random variables is linear, we
recommend using the Pearson correlation coefficient for

greater statistical power. When the correlation is nonlin-
ear or complicated, CANOVA with suitable parameter K
is a good choice to explore the correlation structure of
the data.

Results from the Kidney Cancer Study
The power comparison and computing time for kidney
cancer dataset [24, 25] is shown in Table 2. For the purpose
of computing time comparison, the number of permuta-
tions of CANOVA is set as 10,000,000 (Table 2). We pro-
vided in Table 3 the genes only detected by the CANOVA
method (that is not detected by other methods, the number
of permutations of CANOVA is 100,000,000 in Table 3).
For comparison, we also listed the genes only detected by
other methods in Additional file 2. To further explore the
relationships identified only by CANOVA, the Scatterplot
and probability density distribution of gene expressions be-
tween case and controls are shown in Fig. 1. All of our
CANOVA results were realized in the C++ [27] environ-
ment and the benchmarked six methods were calculated by
R package ‘energy’ [28], ‘Hmisc’ [29] and ‘minerva’ [30]. All
CANOVA results were parallelly (fully using all 8 CPU
cores) calculated using a desktop PC, equipped with an
AMD FX-8320 CPU and 32GB memory. Additionally
all of the R code was parallelly computed by the R
package ‘snow’ [31].
Using the kidney cancer RNA-seq data, we indicated

in Table 2 that the Spearman method detected the great-
est number of significant genes (α = 0.05/20,531), and
CANOVA was the fastest method using a desktop PC
(equipped with an AMD FX-8320 CPU and 32GB mem-
ory). To further explore the biological relevance of the
detected genes and to compare the features of each
method, we use the uniquely “significant” genes detected
from each method as the target gene set, and then
performed a literature review for validation of each gene.
The uniquely significant genes detected only by CANOVA
and the corresponding p-value of all methods are shown in
Table 3, and the genes reported in pubmed (simply indicat-
ing that there is an abstract in pubmed concerning a rela-
tionship with kidney cancer and the gene) are shown in
bold italics. Similarly, the uniquely significant genes of other
methods are shown in Additional file 2.
From the unique set of genes detected by CANOVA

(Table 3), a few were reported to be relevant to kidney
cancer/disease: FAH, MCM3 and UGT1A9. A defect in
FAH results in the accumulation of FAA that can lead

Table 2 Power comparison in kidney cancer dataset (The significance level α = 0.05/20531)

Kidney cancer dataset CANOVA Kendall Pearson Spearman Hoeffding Distance MIC

Significant gene number 5901 11569 8239 11629 4953 10946 8081

Computing time (seconds) 24 65 32 32 44 ~106 114

The bold means the first place result of all methods compared
“~” means about or approximately
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to oxidative stress and severe liver and kidney disease
[32, 33]. The MCM3 gene was found to be overexpressed
in various human cancers, including kidney cancer [34].
The UGT1A9 gene was identified as a major contributor
for glucuronidation in the human liver and kidney [35].
From Fig. 1 (MCM3 and FAH), it can be seen that if the

normal group distribution is bimodal, and the expression
level is mild; an individual is more likely to have kidney
cancer. For FAH (Fig. 1), the mean kidney cancer distribu-
tion approaches the normal group distribution, which
indicates that the linear relationship is almost zero (Pearson
R’s p-value is about 0.5 in Table 3). Even if the distribution
is not bimodal, CANOVA can provide sufficient power
if the two distributions have the same mean, but differ-
ent variances. For example if the control group has a
wider distribution (has lower peaks), then it will have
thicker tail at the left and right side. This means that
higher or lower expression induces protection from the
disease, such as in UGT1A9 (Fig. 1).
The only unique gene detected by the Distance

method (also reported in Pubmed), IGF1R, is identified

in Additional file 2. IGF1R was found to be indirectly
associated with kidney cancer tumor growth [36]. Only
one gene was detected by MIC (also reported in
Pubmed), GIPC2. The GIPC2 gene was reported to be
down-regulated in human primary kidney and colorectal
tumors [37]. The only unique genes detected by the
Pearson method (also reported in Pubmed) was EGR2.
The up-regulated EGR2 was found to be involved in
overexpressing human embryonic kidney cells, which
is indirectly associated with Wilms’ tumors [38]. The
only unique gene detected by the Spearman method
was COMT. The COMT polymorphism was reported
to be associated with renal cell cancer [39]. Alterna-
tively, the Hoeffding and Kendall methods did not de-
tect any unique genes.

Discussion
CANOVA can be viewed as an extension of ANOVA for
continuous variables. We define a neighborhood first and
calculate the within neighborhood variance, which is analo-
gous to ANOVA’s within treatment variance. The proposed

Table 3 Significant genes detected only by CANOVA and corresponding p-value of all methods in kidney cancer data (α= 0.05/20531)

CANOVA_gene CANOVA Distance Hoeffding Kendall Pearson Spearman MIC

ACY3|91703 0 4.00E-06 0.47918 0.286872598 0.002263414 0.287245869 0.189931316

AMD1|262 0 4.40E-05 0.08116 0.005927801 0.733642545 0.005833208 0.212586042

AMDHD1|144193 3.40E-07 8.00E-06 0.67325 0.030092326 0.000717698 0.029975253 0.170029851

C17orf37|84299 5.80E-07 5.20E-05 0.04005 3.61E-05 0.417383349 3.24E-05 0.219216883

C21orf57|54059 2.40E-07 4.00E-06 0.04784 6.30E-06 3.99E-05 5.38E-06 0.19141914

CRAT|1384 5.80E-07 8.00E-06 0.32615 0.000160458 3.77E-06 0.000149343 0.196028813

ETV5|2119 0 0.000172 0.42256 0.001755105 0.003401714 0.001702658 0.202086913

FAH|2184 0 0.000933998 0.48933 0.153797268 0.457070256 0.153962124 0.212691814

FAM105A|54491 0 2.00E-05 0.72088 0.005901803 7.68E-05 0.005807373 0.198623556

FTL|2512 0 0.002467995 0.4743 0.048315704 0.23060211 0.048231442 0.212746271

GDA|9615 1.60E-07 0.00025 0.48634 0.160122916 0.459724584 0.160300937 0.185681164

HSD17B14|51171 0 8.20E-05 0.19284 0.001051631 0.006799576 0.001012728 0.208298029

LOC100132111|100132111 1.00E-08 1.40E-05 0.08222 0.001103681 0.357830837 0.001063627 0.20892751

MCM3|4172 0 6.00E-06 0.50714 0.033769054 1.98E-05 0.033657199 0.197222887

MSL3L2|151507 5.00E-08 4.00E-06 0.0658 0.00022671 0.000309573 0.000212513 0.197191821

NPEPPS|9520 6.30E-07 1.80E-05 0.12107 0.006358039 0.294981611 0.006260864 0.193740442

RASEF|158158 4.00E-08 2.00E-05 0.15806 0.038695575 0.339964949 0.038592039 0.221013132

RASGRF1|5923 4.50E-07 0.000509999 0.29384 0.005697491 0.944454242 0.005604368 0.192676281

SLC9A3R1|9368 0 6.00E-06 0.2351 0.001772375 0.000600274 0.001719639 0.211044758

SRGAP2|23380 1.49E-06 1.60E-05 0.13479 0.00010228 0.00076986 9.43E-05 0.16085031

SYTL2|54843 9.40E-07 0.000357999 0.49524 0.156725188 0.013347293 0.156896177 0.197737514

UGT1A9|54600 5.00E-08 1.60E-05 0.5995 0.278490278 1.33E-05 0.278854528 0.18041022

ZNF280B|140883 6.80E-07 0.000431999 0.17067 0.073453284 0.259146202 0.073428429 0.203602346

ZNF577|84765 0 4.60E-05 0.13197 0.063783754 0.410213566 0.063735193 0.208902832

As the p-value of mic is calculated by table lookup, so we just list the MIC value (If MIC >0.22378, then the p-value of MIC < 2.435342e-06)
The genes reported in pubmed was shown in bold italics
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hypothesis (alternative hypothesis) of CANOVA is that
“similar X values lead to similar Y values”. By calculating
the variance of Y values of similar/neighbor X values, we
are able to test this hypothesis against the null hypothesis.
Local regression [40] is closely related to CANOVA, since

both estimate the local residual. Thus, the statistical power
would be expected to be similar. For instance, suppose we
take a moving average of every K point and then compute
the R2 between the estimated regression function and the
data. Under this condition, two issues would need to be
considered: (1) when K is an even number, we need a
special treatment of the regression expectation on each data
point. (2) On the boundaries data points, some special
treatment is required to calculate the unbiased regression
expectation. K nearest neighbor (kNN) regression [41] is
another type of local regression analogous to CANOVA.
CANOVA uses a parameter K to define the neighborhood
of data points, while kNN also uses a parameter K to define
the nearest neighbor of each data point. CANOVA tests the
fitness of the neighborhood model, which is similar to the
kNN model. Since Pearson’s correlation coefficient can be
viewed as the model fitness test of a linear regression
model, CANOVA can be viewed as an analogy of the model
fitness test of the kNN model. Using CANOVA, we can
conduct the permutation of one Y variable only and

perform association tests against many (eg. 20,000) X vari-
ables quickly, as the neighborhood structure is independent
with X variables. In the case of kNN, the neighborhood
structure generated by each X variable is different; there-
fore, we have to perform a permutation test on every com-
bination of X and Y, which may make kNN slower than
CANOVA. Furthermore, CANOVA has the unique advan-
tage of going directly independence testing rather than the
unnecessary regression step. Since, we do not need to ac-
curately estimate the regression function at the bound-
aries, our CANOVA is more theoretically simple and
elegant. Based on the aforementioned reasons, we pre-
fer the CANOVA style to local regression style.
The distribution of the W statistics is unknown to us.

In the simplest case, where K ¼ 2; YeN 0; 1ð Þ and
W2 = ∑i >1(Yi − Yi − 1)

2 we know that mean(W2) = 2N − 2
and var(W2) = 12N − 16 (calculated by Maple), where N
is the sample size. Thus, W does not follow any famil-
iar distribution. We had to use a permutation test to
assess its significance level. It takes only several sec-
onds for several hundred samples and 106 permuta-
tions on a desktop PC, equipped with an AMD FX-
8320 CPU and 32GB memory. It can be seen from
Table 2 that CANOVA is even faster than Pearson cor-
relation when testing correlation between thousands of

Fig. 1 The Scatterplot and probability density distribution of three gene expressions (FAH, MCM3 and UGT1A9) between kidney-cancer and
normal groups
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features and one response variable Y. The faster speed
is due to three reasons: (1) CANOVA is implemented
in efficient C++ code, while the Pearson correlation is
implemented in relatively slow R (2) CANOVA is par-
alleled and fully uses all CPU cores, which results in an
8X speed up on our AMD 8 core CPUs. (3) When test-
ing 20,000 X variables against one Y variables, we only need
to conduct one permutation test on the Y, and we then can
reuse the permutation results for all X variables. Thus, the
computational complexity is O(np+#Xnlog(n)), where p is
the number of permutations, #X is the number of X vari-
ables and n is the sample size. This makes our framework
potentially useful for big data.
CANOVA requires a parameter K before performing

the test. It is the user’s decision to pick a reasonable K.
A larger K has more power on slow-varying functions,
while a smaller K has more power on quick-oscillating
functions depending on the data. Thus, the user needs
some prior knowledge of the function being tested. An
X-Y plot will be useful before testing. We suggest a
choice of K = SampleSize/20. In practice, we first preset
a significant level (0.05/feature numbers), we then use a
grid search (such as K = (2, 20, 40, 80, 100, 200)) to
choose the best K by their corresponding statistical
power. On the other hand, one could also use other
methods such as Pearson and MIC to get a better feel of
a dataset and choose a reasonable K for CANOVA.
CANOVA and MIC can both be used to test nonlinear

correlation; however, CANOVA has its own advantages.
While MIC tests all types of non-random correlations,
CANOVA tests the alterative hypothesis that “similar X
values lead to similar Y values”. Formally, CANOVA’s
hypothesis is Y ¼ f Xð Þ þ e; eeN 0; sð Þ; s > 0 and f is
a non-constant smooth function. If the relationship of X
and Y can’t be written as Y = f(X) then CANOVA may
fail. For example, for a relationship X2 + Y2 = 1, CANOVA
fails and MIC still works. The major purpose of CANOVA
is to offer a test of independence. The maximal information
coefficient is primarily a measure of effect size, and gives
similar scores for relationships of similar strength regardless
of relationship type [17]. Measures of effect size can be
used to test for independence (using a null hypothesis of
zero effect size), but the reverse is not true. Nevertheless,
Justin B. Kinney & Gurinder S. Atwal indicate that MIC
does not have the property of “equitability”, and the re-
ported simulation evidences contain artifacts [42]. However,
Reshef et al. [43] and Murrell et al. [44] have called Kinney
and Atwal’s methodology into question. Their work led to
the better understanding of equitability and MIC and
allowed researchers in the area to move forward.
The CANOVA method is less powerful than the

Pearson’s correlation coefficient in the case of linear
correlation. This can be viewed as a trade-off between the
hypothesis space and statistical power. Pearson’s correlation

coefficient has a very narrow alternative hypothesis space
(linear correlation), while CANOVA’s alternative hypothesis
is more general: Y ¼ f Xð Þ þ e; eeN 0; sð Þ; s > 0. In
practice, many correlations are linear or approximately lin-
ear, which makes Pearson, Spearman or Kendall correlation
coefficient powerful.
The results of our kidney cancer correlation analysis

identified that (Table 3 and Additional file 2), although
CANOVA did not detect the largest number of signifi-
cant unique genes, it found the largest number (three) of
genes which were also identified as relevant to kidney
cancer in the literature.
The results of three gene expressions distribution

(FAH, MCM3 and UGT1A9) indicated that CANOVA
could exactly detect the special non-linear relationships
(Fig. 1 and Table 3), which other methods could not eas-
ily find. These three genes were also reported to be
involved in the kidney cancer development process in
the literature [32–36].
While each method has its own advantages, the results of

different methods can often be correlated. Our simulation
results indicate that using both linear correlation coefficient
(Pearson, Spearman or Kendall) and non-linear correlation
coefficient (CANOVA, MIC, Hoeffding, or Distance) could
increase the odds of detecting real biological signals. To
conclude, CANOVA appears to be efficient in testing non-
linear correlation and has its own advantages in real data
applications.

Availability of supporting data
The kidney RNA-seq dataset were downloaded from the
TCGA datasets (level 3 in TCGA datasets, http://cancer-
genome.nih.gov/).

Additional files

Additional file 1: The power comparison of simulation study across
Gaussian noise levels (mean = 0, variance = 1/9, 1/4, 4 and 9).
(XLSX 11 kb)

Additional file 2: The significant (associated with kidney cancer)
genes only detected by other methods (not including CANOVA).
(XLSX 56 kb)
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