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Pathogenic pathways are activated in each
major cell type of the glomerulus in the Cd2ap
mutant mouse model of focal segmental
glomerulosclerosis

Fric W. Brunskill and S. Steven Potter

Abstract

Background: Mutations in several genes expressed in podocytes, including Cd2ap, have been associated with focal
segmental glomerulosclerosis in humans. Mutant mouse models provide an opportunity to better understand the
molecular pathology that drives these diseases.

Methods: In this report we use a battery of transgenic-GFP mice to facilitate the purification of all three major cell
types of the glomerulus from Cd2ap mutant mice. Both microarrays and RNA-seq were used to characterize the
gene expression profiles of the podocytes, mesangial cells and endothelial cells, providing a global dual platform
cross-validating dataset.

Results: The mesangial cells showed increased expression of profibrotic factors, including thrombospondin, Tgfb2
and Tgfb3, as well as the angiogenesis factor Vegf. They also showed upregulation of protective genes, including
Aldh1a2, involved in retinoic acid synthesis and Decorin, a Tgfb antagonist. Of interest, the mesangial cells also
showed significant expression of Wt1, which has generally been considered podocyte specific. The Cd2ap mutant
podocytes showed upregulation of proteases as well as genes involved in muscle and vasculature development
and showed a very strong gene expression signature indicating programmed cell death. Endothelial cells showed
increased expression of the leukocyte adhesion associated factors Vcam1 and Sele, as well as Midkine (promoting

Pathogenic pathways

angiogenesis), endothelin and many genes responsive to cytokines and interferons.

Conclusions: This study provides a comprehensive analysis of the changing properties of the three cell types of
the glomerulus in Cd2ap mutants, identifying activated and repressed pathways and responsible genes, thereby
delivering a deeper molecular understanding of this genetic disease.
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Background

The CD2-associated protein (CD2AP) is a widely expressed
adapter protein. In the kidney CD2AP is found in podo-
cytes at the slit diaphragm where it interacts with nephrin
and podocin [1, 2]. Mutations in Cd2ap have been associ-
ated with focal segmental glomerulosclerosis (FSGS) in
humans [3-5]. Mice with homozygous mutation of Cd2ap
develop severe nephrotic syndrome, with mesangial cell
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proliferation, extracellular matrix deposition, glomerulo-
sclerosis, extensive foot process effacement and die within
weeks of birth [1]. Mice with Cd2ap haploinsufficiency
show mesangial expansion and hypercellularity by 9 months
of age [5]. Transgene driven podocyte specific expression of
Cd2ap can rescue the Cd2ap homozygous mutant lethality,
showing that the podocyte is the primary site of essential
Cd2ap function in the kidney [6]. The Cd2ap mutant
mouse is therefore an excellent model system for the study
of podocyte dysfunction driven glomerulosclerosis.
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The glomerulus is primarily composed of three cell types,
the podocytes, mesangial cells and endothelial cells. While
the podocyte is often the primary site of injury, subsequent
changes in all three cell types can provide major contribu-
tion to glomerular disease progression. Mesangial expan-
sion, through proliferation or hypertrophy, as well as
increased extracellular matrix, is a common feature of pro-
gressive renal disease, including FSGS. Further, diseased
renal endothelial cells have been associated with increased
leukocyte recruitment [7] and can undergo de novo angio-
genesis, producing immature and leaky vessels [8]. It is
therefore clear that each of these cell types can contribute
to glomerular disease.

In this study we examined the altered gene expression
profiles of all three major cell types of the glomerulus in
Cd2ap mutant mice. We used MafB-GFP, Meisl-GFP
and Tie2-GFP transgene reporters to facilitate FACS
purification of the podocytes, mesangial cells and endo-
thelial cells, respectively, from the glomeruli of wild type
and Cd2ap~'~ mice. Gene expression patterns were de-
termined by both microarray and RNA-seq, thereby pro-
viding a global dual platform cross validating dataset. In
the mesangial cells we observed elevated expression of
pro-fibrotic growth factors including thrombospondin,
TgfP2 and TgfP3, as well as the angiogenesis factor Vegf.
Mutant mesangial cells also showed upregulation of the
protective genes Aldhla2, involved in retinoic acid syn-
thesis and decorin, a Tgfbeta antagonist. Surprisingly,
the mesangial cells, both wild type and mutant, also
showed significant expression of WtI, which has gener-
ally been thought to be podocyte specific. The mutant
podocytes showed upregulation of proteases as well as
genes involved in muscle and vascular development and
a very strong gene expression signature indicating pro-
grammed cell death. Endothelial cells showed upregula-
tion of Midkine (promoting angiogenesis), the potent
vasoconstrictor endothelin, many genes responsive to
cytokines and interferons and Vcaml and Sele, which
promote leukocyte adhesion. The results identify key
pathogenic and protective pathways activated in each of
these cell types as a result of the Cd2ap mutation.

Methods

Mouse strains

The Cd2ap mutant (B6.129X1-Cd2ap™'5"*¥/]) [9] and
Tie2-GFP (Tg[TIE2GFP]287Sato/]) [10] mice were
from Jackson Laboratory. MafB-GEP, Tg(Mafb-EGFP)
FT79Gsat and Meis1-GFP Tg(MeisI-EGFP)FO156Gsat,
were from GENSAT/MMRC (http://www.gensat.org/
MMRC_report.jsp).

Animal ethics
All animal experiments were carried out according to
protocols approved by the Cincinnati Children’s Medical
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Center Institutional Animal Care and Use Committee
(protocol title “mouse models of focal segmental glomer-
ulosclerosis”, number 3C04035).

Cell purification

Mice were sacrificed at 5 weeks of age. Average mutant
mouse BUN levels were elevated to 313 + 67 from wild
type levels of 19.8 + 5.3. Glomeruli were isolated as pre-
viously described [11] and then enzymatically dissociated
and FACS used to isolate the GFP positive cells, as pre-
viously described [12].

RNA purification and amplification

RNA was purified using Qiagen RNeasy Micro kits and
used for single round RIboSpia amplification using the
Nugen Ovation Pico V2 system and used for Affymetrix
Mouse Gene 1.0 ST array hybridization or Nextera
Tagmentation and Illumina HiSeq2500 sequencing, ~60
million reads per sample, single end 50.

Data analysis

Microarray and RNA-seq data was primarly analyzed
with GeneSpring 12.6.1-GX-NGS. A typical RNA-seq
workflow included filtering for minimum expression of 3
RPKM in at least one sample, Audic Claverie Test for
statistical significant difference (P <0.05) and fold
change screen as described in the Results and Discus-
sion. For microarray the workflow included filtering on
expression requiring minimum 100 raw signal, moder-
ated T-Test (P <0.05) and fold change screen as de-
scribed in the Results and Discussion. Genespring,
ToppGene (http://toppgene.cchmc.org/) [13], ToppClus-
ter (http://toppcluster.cchmc.org/) [14] and Cytoscape
(http://www.cytoscape.org/) [15] were used for func-
tional analysis and preparation of figures. Data is avail-
able at GEO (GSE63272).

Immunofluorescence validations

Immunofluorescent validations were carried out as previ-
ously described®®. Primary antibodies were all from Santa
Cruz Biotechnology (Santa Cruz CA) and secondary anti-
bodies were from Invitrogen (Carlsbad, CA), with all dilu-
tions according to manufacturer recommendations.

Results and discussion

Mesangial cells

The mesangial cell was first recognized as a distinct
glomerular cell type by Zimmerman in 1933 and mor-
phologically and functionally defined by Farquhar and
Palade in 1962 [16]. Mesangial expansion is a hallmark
of many glomerulopathies, with increased mesangial
cell proliferation and matrix production resulting in al-
tered gomerular basement membrane permeability and
blood flow.
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To better understand the possible involvement of mesan-
gial cells in the Cd2ap mutant mouse model of FSGS we
performed gene expression profiling using both microarrays
and RNA-seq. Mesangial cells from control and Cd2ap ™'~
mutant mice were isolated using a combination of sieving,
to first isolate glomeruli, followed by FACS purification of
mesangial cells, using the Meis1-GFP transgene, as previ-
ously described [17]. The quality of the resulting datasets
was confirmed using several metrics. First, we examined
the independent biological replicates for reproducibility.
Second, we analyzed the data for possible cell type contam-
ination. For example, we inspected the mesangial gene pro-
file for the expression of genes representing podocyte cell
markers, finding very low levels. In addition, by performing
the profiling with two independent technologies, RNA-seq
and microarray, the resulting datasets provided global
cross-validation.
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Analysis of the microarray data identified 176 genes
up-regulated (Additional file 1: Table S1) and 265 genes
down-regulated (Additional file 2: Table S2) in Cd2ap
mutant mesangial cells, with P <0.05 and fold change
(FC) > 1.5. Over 90 % of the differences called by micro-
array were confirmed by independent RNA-seq data
analysis (Additional files 1 and 2: Tables S1-S2). A more
stringent screen of the array data (raw signal > 500, FC > 2)
identified 30 of the most strongly differentially expressed
genes (Fig. 1).

The RNA-seq data (RPKM > 3, P < 0.05, FC > 2) identi-
fied significantly more differentially expressed genes,
with 580 up-regulated (Additional file 3: Table S3) and
420 down-regulated (Additional file 4: Table S4). This
RNA-seq/microarray discrepancy is commonly observed
and is the result, in part, of the higher background with
microarrays, which results in a fold change compression.
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Fig. 1 Heatmap of genes showing microarray based differential expression in Cd2ap ™~ mutant mesangial cells. Genes were filtered for moderate
to high expression (raw signal > 500) and Fold Change > 2. Red is high expression, blue is low expression and yellow is intermediate.
Reproducibility is high for the replicates. Differential expression was validated for all of these genes by independent RNA-seq analysis
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Perhaps surprising, however, many of the genes with
even the greatest fold change, as determined by RNA-
seq, were not confirmed by microarray. In most cases
this was the result of a failure of the microarray to detect
expression of the gene, even though the RNA-seq data
looked robust, with high numbers of properly aligned
reads for the gene of interest. This could be the result of
the microarray target amplification chemistry used and/
or array design.

Functional enrichment gene ontology analysis identi-
fied upregulation in mutants of many genes encoding
extracellular matrix components, including Fibrillin2,
which can regulate Tgfp bioavailability, six collagen
genes, fibronectin, which is involved in wound healing
and collagen deposition in osteoblasts, as well as elastin
and CD4, generally associated with immune cells
(Additional file 5: Table S5) (Fig. 2).
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Also up-regulated in mutant mesangial cells were the
Wnt signaling genes Frzb, Fzd2, Fzd5 and Fzd7 and sev-
eral cytokine/chemokine/growth factors, including the
chemokine Ccl2, associated with proliferative glomerulo-
nephritis [18], Ccl4, associated with idiopathic steroid
sensitive nephritic syndrome [19], Ccl17, Cxcll, Cxcl9,
Cxcl10, Bmp2, Bmp4 and another BMP family member,
Gdf6 (over 100 fold change), the potent vasoconstrictor
Ednl (endothelin), Tnfsf8, Tslp, Sppl (nephropontin,
with over 100 fold change), Ngf, Itga6 and Kdr (Vegf).

Also strongly up-regulated were 7Tgf32 and TgfB3,
likely of key importance given the strong causal relation-
ship established between Tgff and renal fibrosis [20].
Thrombospondin (7hbsl) was also dramatically up-
regulated, over ten fold, in mutants. Tgfp is secreted in
an inactive pro-cytokine form. Thbsl plays a key role in
TgfP activation, with the inflammatory phenotype of
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Fig. 2 Functional analysis of genes upregulated in mutant mesangial cells. Genes are red hexagons and molecular functions and biological processes are
rectangles. Differential expression was defined by RNA-seq. Key functional categories include extracellular matrix component, vasculature development,
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Thbsl mutants closely resembling that of 7gf mutants
[21]. Thbsl is also up-regulated in the mesangial cells of
mice with diabetic nephropathy [17].

This powerful cocktail of extracellular matrix and
growth factor genes upregulated in the mesangial cells
of the Cd2ap mutants demonstrates the important role
of these cells in disease progression.

One of the most strongly up-regulated genes in the
mutant mesangial cells was Aldhla2, which catalyzes the
synthesis of retinoic acid. The RNA-seq data showed an
up-regulation of 26 fold, with the RPKM going from 13
in wild type to 342 in mutants, indicating very strong ex-
pression. The microarray data showed this gene with the
greatest fold up-regulation, 8.7. There is an interesting
connection between retinoic acid and FSGS. Retinoic
acid has been shown to play an important role in the ac-
tivation of podocyte differentiation genes. In mice with
Adriamycin nephropathy, a model of human FSGS,
blocking the synthesis of retinoic acid resulted in ele-
vated proteinuria and exacerbated glomerulosclerosis,
while treatment with retinoic acid reduced proteinuria
and increased podocyte number [22]. The increased
Aldhla2 expression in Cd2ap~’~ mutants would there-
fore be viewed as a protective response, with increased
paracrine retinoic acid signaling to nearby podocytes.

It is also interesting to note that there was an approxi-
mate three fold increase in Pparg expression in mutant
mesangial cells, suggesting a possible retinoic acid re-
lated autocrine pathway. Pparg forms heterodimers with
retinoid X receptors (RXRs) to regulate transcription of
target genes. Pparg has been implicated in the pathogen-
esis of a variety of diseases and plays important roles in
regulating proliferation, fibrosis and inflammation. Ele-
vated Pparg in the mutant mesangial cells is likely pro-
tective, as agonists of Pparg have been shown to reduce
disease progression for renal fibrosis [23], cystogenesis
in embryonic Pkd1™~ and adult PkdI*'~ mice [24] and
in Pck rats [25].

Another likely protective gene expression change in
the mesangial cells of mutants was the strongly elevated
expression of Decorin (Dcn). Dcn can interact with
thrombospondin and Tgfp [26] and elevated Dcn expres-
sion reduces Tgfp induced fibrosis in model systems
[27]. Decorin deficiency results in a much more severe
diabetic nephropathy in mice with streptozotocin in-
duced diabetes [28]. It is interesting to note that Decorin
is also significantly up-regulated in mesangial cells of
mice with diabetic nephropathy [17].

The genes down regulated in the mutant mesangial
cells also revealed interesting functional pathways
(Additional file 6: Table S6). The most statistically sig-
nificant altered biological process was sterol biosyn-
thesis. Down regulated genes and encoded proteins
included: Fdftl, encoding the first specific enzyme in
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cholesterol biosynthesis, catalyzing the dimerization of
two molecules of farnesyl diphosphate to form squa-
lene; Fdps catalyzes the production of farnesyl pyropho-
sphate,a key intermiedatein cholesterol and sterol
biosynthesis; Sqle, drives the first oxygenation step in
sterol biosynthesis and is thought to be a rate limiting
enzyme; Dhcr7 catalyzes the conversion of 7-
dehydrocholesterol to cholesterol; Idil synthesizes a
precursor to farnesyl diphosphate; and Mvk, mevalo-
nate kinase, an early enzyme in cholesterol biosynthesis.
Also downregulated were genes involved in axogenesis,
suggesting changes in cytoskeletal architecture. The
muscle development gene expression signature was also
reduced, as were genes associated with vasculature de-
velopment, reflecting the changing character of the
mesangial cells in the Cd2ap mutants.

Of interest, we observed robust expression of W¢l in
mesangial cells, with RPKM values of 34 and 15 in con-
trol and mutant, respectively. This further confirms our
previous report of WtlI expression in mesangial cells
[17]. Wt1 expression is generally considered a podocyte
marker in the adult kidney. The observed WZI expres-
sion in mesangial cells was not the result of podocyte
contamination, as a number of other podocyte marker
genes, including Nphsl (RPKM 3), Nphs2 (RPKM 3),
Mafb (RPKM 5.6) and Sulfl (RPKM 3) showed very low
expression levels. The observed WtI expression level in
mesangial cells was nevertheless much lower (about 10
fold) than observed in podocytes, explaining the rela-
tively specific podocyte expression previously reported
using the poorly quantitative immunostain and in situ
hybridization techniques.

Podocytes

Although all three major cell types of the glomerulus
contribute to the FSGS disease pathology it is generally
agreed that perturbed podocyte function plays a central
causative role. This is certainly true for Cd2ap mutants.
We were therefore particularly interested in the per-
turbed gene expression profiles of the podocytes. We
used the MafB-GFP transgene reporter, coupled with
FACS, to isolate podocytes from wild type and mutant
mice, as previously described [29].

A relatively low stringency screen of the microarray data
(P <0.05, FC > 1.5) comparing wild type and mutant podo-
cytes identified 73 annotated genes with higher expression
in mutant podoctyes (Additional file 7: Table S7). Over
90 % (67 genes) were independently validated by RNA-seq.
Increasing the stringency of the screen to require a robust
raw expression level of 500, P < 0.05 and FC > 2 identified
only five genes with elevated expression and 22 genes with
reduced expression in mutant podocytes (Fig. 3).

The strongest up regulation was for Prss23, encoding a
serine protease of the trypsin family. This is of particular
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interest because a number of studies have connected
proteases to FSGS pathology [30-34]. Prss23 is also up
regulated in human FSGS patients, even when not
caused by Cd2ap mutation, suggesting it may be a com-
mon feature of FSGS pathogenesis [35].

Of interest, our data did not show altered expression
of another protease, cathepsin L, which has been previ-
ously strongly implicated in FSGS caused by Cd2ap mu-
tation. Our array data showed high cathepsin L level
expression (about 1500 raw signal) in both wild type and
mutant podocytes and the RNA-seq data showed ex-
tremely strong expression of 432 RPKM in wild type and
somewhat lower 325 RPKM for mutants. Again, this
is of particular interest because a previous report
concluded that mutation of Cd2ap results in an up-
regulation of cathepsin L by causing the nuclear accu-
mulation of the transcription factor dendrin [36]. The
actions of cathepsin were then proposed to result in a
reorganization of the podocyte microfilament system,
resulting in proteinuria and increased apoptotic suscep-
tibility to Tgfp1 [36]. The apparent discrepancy between
our data and the previous report suggested the possible
involvement of another cathepsin, previously mistaken

as cathepsin L, perhaps the result of imperfect antibody
specificity. In looking at other cathepsin genes, however,
most showed no change and a few showed modest
changes, in both directions, but with very low expression
levels compared to capthepsin L. In summary, contrary
to a previous report, our microarray/RNA-seq data did
not show up-regulation of cathepsin L in Cd2ap mutant
podocytes.

Surprisingly, microarrays showed one of the up-
regulated genes in mutant podocytes was renin (Fig. 3).
This was also seen with RNA-seq, which showed a dra-
matic up-regulation of Renl expression from 5 RPKM in
wild type to 190 RPKM in mutant. The significance of
this is uncertain, but it is interesting to note that cells of
the renin lineage have been previously reported to serve
as podocyte progenitors during glomerular disease [37].
Our expression data could therefore be interpreted as
supporting such a renin expressing precursor-podocyte
relationship.

As observed for the mesangial cells, the RNA-seq ana-
lysis (FC > 2) of the podocytes also identified more genes
with stronger differential expression than seen by micro-
array, with 919 genes up-regulated (Additional file 8:
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Table S8) and 760 down-regulated (Additional file 9:
Table S9) in mutants.

Functional enrichment gene ontology analysis iden-
tified many interesting molecular functions and bio-
logical processes up-regulated in the mutant
podocytes (Additional file 10: Table S10). Some of the
most interesting were: response to cytokine (55 genes),
extracellular matrix organization (32 genes), response
to interferon (15 genes), muscle development (21
genes), vascular development (46 genes) and positive
regulation of cell motility (28 genes) (Fig. 4). The mutant
podocytes also showed a striking up-regulation of 49 genes
associated with programmed cell death, including Bakl
(Bcl2 antagonist/killerl), Apafl (apoptotic peptidase
activating factor 1), Bok (Bcl2-related ovarian killer
protein), Bcl2l11 (Bcl2-like 11 (apoptosis facilitator),
Moapl (modulator of apoptosis 1), Pawr (PRKC, apoptosis,
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W1, regulator), Pcdc2 (Programmed Cell Death 2), Perp
(TP53 apoptosis effector) and many others, strongly sug-
gesting an apoptotic response in the podocytes.

Other up-regulated genes of interest included six Kif
transcription factor genes (6,9,10,11,15,16), fibronectin
and five collagen genes (12al, 5al, 543, 6al, 8al). There
was also a strong upregulation of Tgf32, Tgf33, tenascin
¢ and nidogen.

A number of interesting genes were also down regu-
lated in the mutant podocytes. Microarrays identified
311 annotated down regulated genes (P < 0.05, FC > 1.5),
of which 75 % were validated by RNA-seq (Additional
file 11: Table S11). RNA-seq, in turn, identified 760
down-regulated genes (Additional file 9: Table S9). Five
keratin genes are expressed in podocytes and all were
down regulated in the mutants. Keratins are fibrous pro-
teins that provide strength and resilience to epithelial
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Fig. 4 Functional analysis of genes upregulated in mutant podocytes. Genes are red hexagons and molecular functions and biological processes
are rectangles. Differential expression was defined by RNA-seq. Key functional categories include positive regulation of cell death, vasculature
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cells and their reduced expression likely reflects a dra-
matically altered character of the mutant podocytes.
In addition several integrins were down regulated and
Myosinld, which showed very strong expression in
wild type podocytes was reduced in expression in mu-
tants by about three fold.

Several growth factors showed reduced expression
in mutant podocytes. Pleiotrophin (Ptn) showed ex-
tremely strong expression in wild type (RPKM of 133)
compared to mutant (RPKM of 33). Pleiotrophin has
been implicated in driving neurite outgrowth, which is
interesting considering the neurite like projections of
the podocytes. Egf, Bmp6 and Nenf (neuron derived
neurotrophic factor) also showed reduced expression
in mutants.
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Endothelial cells

The third major cell type of the glomerulus, the endo-
thelial cell, also plays a major role in FSGS disease pro-
gression, through the production of growth factors and
cytokines, as well as the recruitment of macrophages
and leukocytes. A low stringency microarray screen (P <
0.05, FC>1.5) found 217 genes up-regulated in the
Cd2ap mutant endothelial cells (Additional file 12: Table
$12). All but five of the 211 annotated genes in this list
were validated with the independent RNA-seq ana-
lysis. Microarrays identified a smaller number of
down-regulated genes, 39, with all but four validated
by RNA-seq (Additional file 13: Table S13). A more
stringent screen of the microarray data (raw signal >
500, P<0.05, FC>2) identified 23 genes with the
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strongest microarray/RNA-seq cross-validated changes
in expression (Fig. 5).

Once again RNA-seq found many more genes with al-
tered expression. With a moderate stringency screen
(RPMK >3, P<0.05, FC>2), there were 355 up-
regulated (Additional file 14: Table S14) and 348 down-
regulated genes in the Cd2ap mutant endothelial cells
(Additional file 15: Table S15). A ToppGene functional
enrichment analysis found many of the up-regulated
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genes were related to response to cytokines and inter-
ferons (Additional file 16: Table S16). These included
the interferon inducible [fit1,2,3 ifihl, ifi27, 35 44,
47,204, ligpl, Isg20, Statl,2, Oasla, 1b 12, H2-Abl and
the GTPases Gbp2,3,4,5,6,7,8 and 9.

The potent vasoconstrictor endothelin was strongly up-
regulated, with its RPKM moving from 9 in wild type to 68
in mutant endothelial cells. In addition several growth fac-
tor encoding genes were strongly up-regulated, including
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Fig. 6 Functional analysis of genes upregulated in mutant endothelial cells. Genes are red hexagons and molecular functions and biological
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(See figure on previous page.)

Fig. 7 Immunostain validations of differential expression. Top panels show elevated expression of Frem1 in podocytes (MafB positive) cells of the
glomerulus. Arrows show two cells with higher Frem1 levels in mutants. Middle panels show elevated expression of Lmx1b in wildtype
podocytes. Arrows mark two cells with increased Lmx1b expression. Bottom panels show elevated expression of thrombospondin (Thsb1) in

mutant mesangial cells

Bmp4 (RPKM 7.4 in WT and 38 in mutant), Inhbb (RPKM
0.03 WT and 3.0 mutant), Mdk (RPKM 2.2 WT and 6.6
mutant), Pdgfa (RPKM 85 WT and 17 mutant), Pdgfb
(RPKM 38 WT and 75 mutant), Cxc/10 (RPKM 2 WT and
6.6 mutant), Cxc/12 (RPKM 1.1 WT and 5 mutant), Igf2
(RPKM 5.5 WT and 19 mutant), Ctgf (RPKM 8 WT and 32
mutant) and I/15 (RPKM 1.5 WT and 3.7 mutant).

Veaml and Sele were also up-regulated. These genes
encode cell surface molecules that mediate adhesion of
lymphocytes, monocytes, eosinophils and basophils to
endothelium. Also of interest, fibronectin was up-
regulated eight fold. A cytoscape showing some of the
up-regulated genes and associated functions is shown in
Fig. 6.

Functional enrichment analysis of genes down-
regulated in mutant endothelial cells found, similar to
that observed for mesangial cells, severe down-
regulation of genes involved in sterol/cholesterol biosyn-
thesis (Additional file 17: Table S17). It is also interesting
to note that eight genes (Nedd4!, Chrm3, Dmpk, Prkgl,
Calca, Gstm2, Ppplri2b, Pln) involved in the regulation
of muscle contraction were down-regulated.

Additional validations

The primary validations for this study are in the form of
dual global analysis of gene expression profiles with two
distinct technologies, microarray and RNA-seq. We ob-
served that typically over 90 % of genes called differently
expressed with microarray, even with a low stringency
screen of the data (FC > 1.5), were independently con-
firmed with RNA-seq. The reverse was not true, how-
ever, as many of the gene expression differences seen
with RNA-seq were not detected by microarray. The
double validated gene lists are therefore the most firm,
while the much larger RNA-seq gene lists are the most
inclusive.

We selected a few genes to further validate, using
immunostain to monitor levels of the encoded pro-
teins. Expression for Frem1 was elevated, while Lmxb1
was reduced in mutant podocytes. Thsbl showed
higher expression levels in the mutant mesangial cells
(Fig. 7).

Conclusions
In this study we defined the changing properties of the
three major cell types of the glomerulus in Cd2ap™'~

mutant mice. For each major cell type we observed both
potentially pathogenic as well as protective shifts in
gene expression. The mesangial cells showed dramatic
upregulation of a number of key genes, including
nephropontin, Vegf, endothelin, Gdf6, thrombospon-
din, TgfB2 and Tgfb3. There was also strong upregu-
lation of Aldhla2, involved in retinoic acid synthesis
and likely providing some disease protection. Simi-
larly, the elevated expression of decorin, an antagon-
ist of Tgfbeta, is probably protective. It was also
interesting that the mesangial cells were observed to
express significant levels of WitI, with RPKM of
about 30 in wild type. This is about one tenth of the
very high expression level observed in podocytes,
explaining why immunostains and in situ hybridiza-
tions generally define WtI expression as podoctye
specific.

In the podocytes we observed strong upregulation of
the protease Prss23, but not the previously reported
Cathepsin L [36]. Functional enrichment gene ontology
analysis showed a number of pathways with strongly associ-
ated gene upregulation, including muscle development,
vascular development, positive regulation of cell mo-
tility and programmed cell death. In addition all five
keratin genes normally expressed in podocytes were
strongly down-regulated, likely reflecting a dramatic-
ally altered podocyte character in the mutants. The
growth factor pleiotrophin, which has been implicated
in driving neurite outgrowth, also showed much lower
expression in mutants.

The endothelial cells showed a number of interesting
gene expression changes, including upregulation of the
vasoconstrictor endothelin (also upregulated in mesan-
gial cells), Bmp4, Midkine (which promotes angiogen-
esis) and many genes related to response to cytokines
and interferons. Veaml (vascular cell adhesion molecule
1) and Sele, which mediate leukocyte adhesion, were also
upregulated.

In summary, this study provides a global RNA-seq
analysis of the changing properties of the three major
cell types of the glomerulus in the Cd2ap mutant
mouse, identifying activated and repressed pathways
and responsible genes. Because Cd2ap mutations have
been associated with nephrotic syndrome and FSGS in
humans [3, 5], the results of this study translate to
a deeper molecular understanding of this genetic
disease.
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Additional files

Additional file 1: Table S1. Microarray defined genes upregulated in
Cd2ap mutant mesangial cells. Filtered for fold change > 1.5 and raw
signal > 100. Columns show gene symbol, fold change, gene description,
RNA-seq validation with P < 0.05, RNA seq validation fold change and
transcript cluster ID.

Additional file 2: Table S2. Microarray defined genes higher in wild
type mesangial cells compared to Cd2ap mutant. Filtered for fold
change > 1.5 and raw signal > 100. Columns show gene symbol, fold
change, gene description, RNA-seq validation with P < 0.05, RNA seq
validation fold change and transcript cluster ID.

Additional file 3: Table S3. RNA-seq defined genes upregulated in
Cd2ap mutant mesangial cells. Fold change > 2.0. Columns show gene
symbol, fold change, Gene ID, RPKM in mutant, RPKM in wild type and
gene position as determined by chromosome, start and end.

Additional file 4: Table S4. RNA-seq defined genes higher in wild type
mesangial cells compared to Cd2ap mutant. Fold change > 2.0. Columns
show gene symbol, fold change, Gene ID, RPKM in mutant, RPKM in wild
type and gene position as determined by chromosome, start and end.

Additional file 5: Table S5. Functional enrichment analysis of genes
with higher expression in Cd2ap mutant mesangial cells. Columns show
functional category (molecular function or biological process), name of
function, uncorrected P-value, FDR Benjamini and Hochberg corrected
P value, Hit count in gene list, Hit count in genome, Genes with hit in
gene list.

Additional file 6: Table S6. Functional enrichment analysis of genes
with higher expression in wild type mesangial cells. Columns show
functional category (molecular function or biological process), name of
function, uncorrected P-value, FDR Benjamini and Hochberg corrected P
value, Hit count in gene list, Hit count in genome, Genes with hit in gene
list. Note much lower P values compared to genes upregulated in mutant
mesangial cells.

Additional file 7: Table S7. Microarray defined genes upregulated in
Cd2ap mutant podocytes cells. Filtered for fold change > 1.5 and raw
signal > 100. Columns show gene symbol, fold change, gene description,
RNA seq validation fold change and transcript cluster ID.

Additional file 8: Table S8. RNA-seq defined genes upregulated in
Cd2ap mutant podocytes. Fold change > 2.0. Columns show gene
symbol, fold change, Gene ID, RPKM in mutant, RPKM in wild type and
gene position as determined by chromosome, start and end, gene
description.

Additional file 9: Table S9. RNA-seq defined genes higher in wild type
podocytes compared to Cd2ap mutant. Fold change > 2.0. Columns show
gene symbol, fold change, Gene ID, RPKM in mutant, RPKM in wild type
and gene position as determined by chromosome, start and end, gene
description.

Additional file 10: Table $10. Functional enrichment analysis of genes
with higher expression in Cd2ap mutant podocytes. Columns show
functional category (molecular function or biological process), name of
function, uncorrected P-value, FDR Benjamini and Hochberg corrected

P value, Hit count in gene list, Hit count in genome, Genes with hit in
gene list.

Additional file 11: Table S11. Microarray defined genes higher in wild
type podocytes compared to Cd2ap mutant. Filtered for fold change >
1.5 and raw signal > 100. Columns show gene symbol, fold change, gene
description, RNA seq validation fold change and transcript cluster ID.

Additional file 12: Table S12. Microarray defined genes upregulated in
Cd2ap mutant endothelial cells. Filtered for fold change > 1.5 and raw
signal > 100. Columns show gene symbol, fold change, RNA seq
validation fold change and transcript cluster ID.

Additional file 13: Table S13. Microarray defined genes upregulated in
Cd2ap wild type endothelial cells compared to Cd2ap mutants. Filtered
for fold change > 1.5 and raw signal > 100. Columns show gene symbol,
fold change, gene description, RNA seq validation fold change and
transcript cluster ID.

Page 12 of 13

Additional file 14: Table S14. RNA-seq defined genes upregulated in
Cd2ap mutant endothelial cells. Fold change > 2.0. Columns show gene
symbol, fold change, Gene ID, RPKM in mutant, RPKM in wild type and
gene position as determined by chromosome, start and end. And gene
description.

Additional file 15: Table S15. RNA-seq defined genes higher in wild
type endothelial cells compared to Cd2ap mutant. Fold change > 2.0.
Columns show gene symbol, fold change, Gene ID, RPKM in mutant,
RPKM in wild type and gene position as determined by chromosome,
start and end, gene description.

Additional file 16: Table S16. Functional enrichment analysis of genes
with higher expression in Cd2ap mutant endothelial cells. Columns show
functional category (molecular function or biological process), name of
function, uncorrected P-value, FDR Benjamini and Hochberg corrected

P value, Hit count in gene list, Hit count in genome, Genes with hit in
gene list.

Additional file 17: Table S17. Functional enrichment analysis of genes
with higher expression in wild type endothelial cells compared to Cd2ap
mutant. Columns show functional category (molecular function or
biological process), name of function, uncorrected P-value, FDR Benjamini
and Hochberg corrected P value, Hit count in gene list, Hit count in
genome, Genes with hit in gene list.
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