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Abstract: This paper presents a wavelet analysis technique together with support vector machines
(SVM) to discriminate partial discharges (PD) from external disturbances (electromagnetic noise)
in a GIS PD measuring system based on magnetic antennas. The technique uses the Cross Wavelet
Transform (XWT) to process the PD signals and the external disturbances coming from the magnetic
antennas installed in the GIS compartments. The measurements were performed in a high voltage
(HV) GIS containing a source of PD and common-mode external disturbances, where the external
disturbances were created by an electric dipole radiator placed in the middle of the GIS. The PD were
created by connecting a needle to the main conductor in one of the GIS compartments. The cross
wavelet transform and its local relative phase were used for feature extraction from the PD and
the external noise. The features extracted formed linearly separable clusters of PD and external
disturbances. These clusters were automatically classified by a support vector machine (SVM)
algorithm. The SVM presented an error rate of 0.33%, correctly classifying 99.66% of the signals.
The technique is intended to reduce the PD false positive indications of the common-mode signals
created by an electric dipole. The measuring system fundamentals, the XWT foundations, the features
extraction, the data analysis, the classification algorithm, and the experimental results are presented.

Keywords: partial discharges; GIS; magnetic antenna; machine learning; feature selection;
wavelet analysis; noise separation; support vector machines.

1. Introduction

Nowadays, partial discharge (PD) measurements are essential for assessing the condition of
high-voltage equipment because of its intrinsic ability to detect incipient defects in the insulation
system. In general, the PD measurement systems are based on electrical techniques, in which the
PD are measured by electrical sensors such as coupling capacitors, ultra high frequency (UHF)
antennas, high frequency current transformers (HFCT), and magnetic sensors. PD measurements are
fundamental in the monitoring of high voltage (HV) GIS due to its high capabilities to detect in-service
failures related to defects in the insulation system [1].

Among all the methods to measure PD in HV-GIS, the system based on UHF antennas is the most
widely used because it is less affected by noise [1], that is mainly concentrated at low frequencies.
The UHF method uses capacitive couplers tuned at the ultra-high frequency range (300–3 GHz),
which are placed in the dielectric windows present in the GIS compartments. The UHF antennas
are shielded from external electromagnetic interferences because the GIS enclosure acts as a Faraday
cage. This shielding guarantees a low background noise and high sensitivity for the PD monitoring,
consolidating the application of UHF antennas as the standard method for on-line PD monitoring
in AC and DC GIS. However, the UHF measuring system is vulnerable to the noise coming from
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radio stations, mobile phone signals, and TV transmitters, and, in consequence, some UHF measuring
systems include an external gating (UHF antenna placed outside the GIS compartments) which helps
to identify this external noise.

In a GIS, at the UHF range, the PD signals suffer significant attenuation and distortion [2–7],
causing a substantial reduction of the PD detection sensitivity with the distance between the PD source
and the sensor. This disadvantage is solved by deploying several UHF along the GIS in order to
reliably monitor all the GIS components. Moreover, at the UHF range, the pulses measured and the
PD charge are uncorrelated, indicating that it is not possible to estimate the apparent charge in pC [1].

Due to the GIS dimensions, from kHz to hundreds of MHz, the PD current travels as in a
transmission line (transverse electromagnetic (TEM) mode of propagation), suffering significantly less
attenuation and distortion than at the UHF range. However, the PD measurements are strongly affected
by the noise coming from power electronics, the power grid, or, in general, external electromagnetic
disturbances. The advances in post-processing and acquisition techniques allowed us to develop a new
PD measuring system for HV GIS [8], in which the PD currents are captured by magnetic antennas
tuned at the high frequency and very high frequency (HF-VHF) range (1 MHz–300 MHz). The magnetic
antenna consists of two half-circle loops, producing two signal outputs per pulse measured [8].
The magnetic antennas are placed in the dielectric windows in such a way that a current signal,
traveling inside the GIS in the TEM mode, causes a symmetric response in the two magnetic antenna
loops. This new measuring system is capable of estimating the PD apparent charge, and detecting PD
pulses below 5 pC [9]. Nevertheless, the magnetic antennas are vulnerable to the ingress of external
disturbances, affecting the measuring system reliability. For instance, the common-mode signals,
represented in Figure 1, may affect the measuring system based on magnetic antennas, causing PD
false positives. The Vnoise represents a differential voltage that appears between the ground and the
GIS enclosure. Vnoise creates a common-mode current (inoise) that flows in the outer surface of the GIS
enclosure. The inoise reaches the dielectric window and could be picked up by a magnetic antenna
placed at the dielectric window.

Ground

Vnoise
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Dielectric 
window

Enclosure

Main 
conductor

Figure 1. Common-mode induction in the GIS.

A cross-section representation of the propagation of the common-mode signal can be seen in
Figure 2a, where the current flows in the GIS enclosure and the ground. In this parallel circle-plate
waveguide, the current does not flow homogeneously distributed in the surface of the enclosure,
and an electromagnetic wave travels in higher-modes of propagation (transverse electric (TE) or
transverse magnetic (TM)) than the TEM mode. In contrast, the PD pulses, shown in Figure 2b, travel
in a coaxial waveguide, which causes a homogeneous distribution of the current in the enclosure
and an electromagnetic wave that travels in the TEM mode in the frequencies below the UHF range.
Be aware that the parallel circle-plate waveguide presented is a particular example; therefore, different
waveguide configurations are expected for the common-mode signals. Due to this difference in the
propagation modes, a PD pulse causes a symmetric output in the two magnetic antenna loops because
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the PD current flows homogeneously distributed in the GIS enclosure and around the dielectric
window. On the other hand, a common-mode signal should produce an asymmetric output in the
magnetic antenna because the common-mode current does not necessarily travel homogeneously
distributed in the enclosure and around the dielectric window.
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Figure 2. Cross-section propagation: (a) common-mode signal, (b) partial discharge (PD) pulse inside
a GIS compartment.

For denoising PD measurements, the wavelet transform has been used in several studies [10–16]
because it is capable of transforming the signals in the time and frequency domain, helping
in the analysis of aperiodic signals with irregular and transition features, such as the PD [17].
However, these wavelet-based denoising techniques do not tackle the problem of pulse-type external
interferences, which are the primary source of noise contamination for the magnetic antennas.
In general, these external disturbances are pulse-shaped interferences from power electronics, external
corona discharges, electrical pulses from switching operations, lightings, etc. In [18–20], separation
techniques for pulse-type signals have been developed, in which the energy, waveform, and frequency
spectrum of the signals are used to build up clusters for the identification of the nature of the
signals. Nevertheless, noise pulses with time-frequency characteristics similar to the PD signals,
could be misclassified by these techniques. For external disturbances having waveforms similar to
the PD signals, the Phase Resolved PD (PRPD) pattern is a very effective tool to cluster PD and
noise contamination, but its application is limited to PD under AC, and, therefore, for PD under DC
additional tools for noise separation are needed.

In this study, a technique for separation of PD signals from external disturbances is proposed
for the magnetic antennas, where the external disturbances are created by an electric dipole radiator.
The technique uses the cross wavelet transform (XWT) analysis for the symmetry evaluation of the
signals measured by the magnetic antennas, where this evaluation results in a set of features which
are used to train support vector machine (SVM) classification algorithm for the automatic recognition
of PD signals and the common-mode external disturbances. The technique provides a tool for the
discrimination of common-mode external disturbances in PD measurements based on magnetic
antennas. The common-mode external disturbances were mimicked by an electric dipole radiator and
transmitted and picked up by the GIS acting as an antenna. In PD measurements, the common-mode
signals are usually unwelcome guests, which are caused by radiofrequency interferences such as
lightings, switching operations, radio, TV, radar systems, thermostat-controlled or motor-controlled
devices [21]. For building up the technique, PD measurements were performed in a HV GIS, in which
PD signals and external disturbances were recorded. The magnetic antenna, the XWT analysis,
the experimental test, the features extraction and analysis, the SVM algorithm, and the separation
results are presented.

The structure of the paper is described as follows: Section 2 briefly introduces the magnetic
antenna fundamentals. Section 3 shows the setup description and the experimental results. Section 4
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introduces the cross wavelet analysis and its application to the magnetic antenna signals. The feature
extraction technique using the cross wavelet transform and its analysis are presented in Section 5.
The SVM classifier, trained for the noise separation, is studied in Section 6. Finally, Section 7 presents
the conclusions of the paper.

2. Magnetic Antenna Fundamentals

A PD pulse propagates along the GIS compartments in the TEM mode, creating a surface current
in the GIS enclosure, as is shown in Figure 3a. This surface current iPD travels homogeneously
distributed in the enclosure until it reaches a dielectric window that causes a deviation of iPD around
the window. The deviation in the window produces a time-varying magnetic field in the surface
formed by the dielectric window [9]. A magnetic antenna was made up of two shielded loops to pick
up this time-varying magnetic field, as is shown in Figure 3b. Each loop is made of a coaxial cable
RG179 wound in a half-circle shape. The magnetic antenna is mounted in the dielectric windows
destined for the UHF couplers, and it is fixed to a conductive mounting plate that keeps the internal
Faraday cage capabilities of the GIS enclosure. Further details of the magnetic antenna dimensions
and its electrical circuit parameters can be found in [9]. The magnetic antenna loops (labeled as top
and bottom loop) measure both the magnetic field and the electric field produced by the PD pulse.
To get rid of the electric field and only measure the magnetic field, the outer loop of the coaxial cable
is grounded in one side and left floating in the other to prevent short-loop currents and to provide
electric field shielding. The inner conductor of the coaxial cable forms the measuring loop and is
connected to a parallel of 2 × 0.056 µF decoupling capacitors, which is connected to a commercial
transimpedance amplifier model Femto HCA-400M-5K-C. The decoupling capacitor blocks the DC
feedback loop between the amplifier and the magnetic antenna. The antenna loops are set in such a
way that a PD current traveling inside the GIS compartments ideally induce a voltage with the same
amplitude in each loop, but with opposite polarity.
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Figure 3. Magnetic antenna: (a) PD pulse propagation inside a GIS compartment. (b) Magnetic antenna.

3. Setup Description and Experimental Results

The test setup consists of a real HV GIS at the High Voltage Laboratory of TU Delft, a HV DC
source, three magnetic antennas, a PD defect to create PD pulses, an electric dipole radiator to produce
the common-mode external disturbances, and a digital oscilloscope as acquisition unit. The 380 kV GIS
has multiple spacers, a T-joint branch, a switchgear, a bushing, an L-branch connection, a disconnector
switch, and eight dielectric windows for PD monitoring. Three of the eight dielectric windows were
used by magnetic antennas at the locations highlighted in Figure 4, where each antenna was named as
MA1, MA2 and MA3.
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Inside the GIS, corona discharges were produced by a needle connected to the main conductor at
the compartment 1. To trigger the PD activity, −15 kV DC were applied to the GIS. The electric dipole
radiator consisted of two copper conductors of equal length (0.5 m each one) oriented in a horizontal
position to the ground plane (at 2 m above it). The electric dipole radiator was placed in the middle
of the GIS, and it was connected to a fast pulse generator to create the external disturbances which
were picked up by the PD measuring system. The signals measured by the magnetic antennas were
transmitted through identical coaxial cables to the digital oscilloscope, which was set at 1.25 GS/s.
Each signal was recorded individually in a frame with a record length of 2.05 µs. The three magnetic
antennas were simultaneously sampled by the oscilloscope.

Three tests were conducted, as is described in Table 1. In the first test, only PD signals were
acquired because the external disturbances were switched off. In the second test, the PD were absent,
and only external disturbances were collected. In the third test, both PD and external disturbances
were recorded by the measuring system.
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Figure 4. Test setup.

Table 1. Test overview.

Test Type of Signals Pulses Recorded

Test 1 Partial discharges 100
Test 2 External disturbances 100
Test 3 PD and External disturbances 1000 (81% are PD)

Figure 5a presents a PD pulse recorded by the magnetic antenna MA1 during Test 1. The magnetic
antenna signals show that the first peak of both loops appears around the same time (0.36 µs),
have opposite polarities, similar magnitudes, and a mirror-like symmetry. All the signals recorded
in Test 1 have the same traits described before. It is essential to consider that a perfect mirror-like
symmetry cannot be achieved due to manufacturing differences between loops and small antenna
misalignments with respect to the dielectric window.
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Figure 5. Signals measured by the MA1: (a) PD signal. (b) External disturbance.

Figure 5b shows an external disturbance acquired during Test 2. Unlike the PD signals, the external
disturbance does not have the mirror-like symmetry, and both signals start with the same polarity.
Once again, all the signals acquired in Test 2 do not have the mirror-like symmetry of the PD signals.
It shows that these external disturbances do not travel in the TEM mode inside the GIS.

4. Cross Wavelet Transform (XWT) Analysis

Taking into account that the magnetic antenna has two signal outputs, the combination of both
signals may provide useful information about the nature of the waveform recorded and, thus, it may
help to discriminate whether the signals come from a PD event or an external disturbance. For this
analysis, the correlation and the trend analysis can provide the significance of the relationships
between the two signals recorded. However, these tools may not detect a correlation between both
signals because they are set in opposite polarity (phase-shifted 180◦) and, then the signals may appear
uncorrelated [22]. The cross-correlation and the cross-spectral analysis can detect the phase shift,
but only in stationary signals. For analyzing aperiodic signals with irregular and transition features,
the most suitable tool is the cross wavelet transform (XWT) because it exposes regions with high
common power and reveals the local relative phase between both signals [23].

A wavelet is a small wave of limited duration that has zero mean. The sinusoids used in the
Fourier transform are periodic, smooth, predictable, and are the most suitable option at describing
constant-frequency signals (periodic signals) [24]. On the other hand, wavelets are irregular, of limited
duration, and non-symmetrical. Therefore, wavelets are the best option for analyzing signals with
anomalies, non-periodic signals, pulses, and, in general, events that start and stop within the signal [24].

The Fourier transform consists of decomposing a signal into sinusoidal waves of different
frequencies, the wavelet transform decomposes the signal into a shifted and scaled version of the
mother wavelet [12]. The continuous wavelet transform (CWT) of a signal xn (n = 1, . . . , N) is defined
as the convolution of xn with the scaled and normalized wavelet [25].

W x
n (s) =

√
δt
s

N∑
n′=1

xn′ψ0[(n′ − n)
δt
s
] (1)

where s is the scale, δt is the time step, and ψ0 is the mother wavelet. The CWT of xn is a s × N matrix of
wavelet coefficients, i.e., for each scale s there is a corresponding time series(n = 1, . . . , N). The mother
wavelet ψ0 is in general complex, and therefore the CWT is also complex [26]. The CWT can be seen as
a mathematical tool that transforms a time-domain signal xn into the time-scale domain. The CWT is
an appropriate tool for analyzing non-periodic signals, anomalies, or transients because it transforms
the signal to a time-frequency representation. However, when it comes to analyzing the correlation



Sensors 2020, 20, 3180 7 of 14

between two signals, the Cross Wavelet Transform (XWT) is the right tool for finding links between
two signals. The XWT is a measure of similarity between two waveforms [27], exposing regions with
high common power and revealing information about the phase relationship. The XWT of two signals
xn and yn is defined as:

W xy
n (s) = W x

n (s)W
y∗
n (s) (2)

where the W x
n and Wy

n are the CWT of xn and yn respectively, and the operator ∗ indicates the complex
conjugate. If the mother wavelet ψ0 is complex, the XWT is a complex matrix than can be decomposed
into amplitude and phase using the following equation:

W xy
n (s) = |W

xy
n (s)|e

j ·arg(W
xy
n (s)) (3)

where |W xy | is the XWT modulus (magnitude) and arg(W xy) denotes the XWT argument (phase).
The XWT modulus represents the cross-amplitudes of xn and yn [22], whereas the XWT argument
provides an estimation of the local phase difference ∆φxyn (s) between the two signals for each time-scale
coefficient [28]. In other words, ∆φxyn (s) is the local relative phase between both signals [25]. Another
useful tool is the wavelet coherence, which measures how coherent the cross wavelet transform is in
time-frequency space [28]. The wavelet coherence is defined in Equation (4).

R2
n(s) =

|S(W xy
n (s))|2

S(|W x
n (s)|2)S(|W

y
n (s)|2)

(4)

where S is a smoothing operator in time and scale. In [25], the smoothing operator is presented as:

S(W) = Sscale(Stime(Wn(s))) (5)

where Sscale represents the smoothing along the wavelet scales and Stime the smoothing in time.

XWT and the Magnetic Antenna

Section 3 shows that the PD pulses and the external disturbances both present a correlation
between the signals in the magnetic antenna loops. However, in the PD pulse, the correlation would
have a phase shift of 180◦ because the signals have opposite polarity. Keeping this in mind, the XWT
may check the correlation and its relative phase between the signals acquired by the magnetic antenna
loops. If a PD event is acquired by both loops, the XWT will show a high common power around
the PD event and a relative phase around 180◦. On the other hand, an external disturbance will also
present a high common power around the pulse, but with a different phase shift. To corroborate this
hypothesis, a wavelet analysis, consisting of four steps, is applied to signals measured by the magnetic
antennas. The analysis is illustrated using the signals plotted in Figure 5.

In the first step, the electrical pulse measured by both loops (x(t) and y(t)) are decomposed in the
time-frequency domain by the CWT, where the complex wavelet Morlet is chosen as mother wavelet.
Each signal has N = 2564 samples and a time step equal to δt = 1

1.25 GS/s = 0.8 ns. The signals were
decomposed in 89 scales, ranging from 1 MHz to 625 MHz. The CWT of each signal results in a
89 × 2564 matrix.

In the second step, the XWT is calculated using Equation (2). Then, using Equation (4) the wavelet
coherence is obtained and plotted in Figure 6a for the PD pulse in Figure 5a. Figure 6b shows the
wavelet coherence for the external disturbance depicted in Figure 5b. The wavelet coherence of both
signals shows that the signals have high common power along the pulses, but there is not a clear
distinction of the real nature of each signal. Therefore, further steps are needed to clear up the wavelet
coherence by adding the phase information.

In the third step, the local relative phase ∆φxyn (s) is computed. After this, the elements in the
∆φ

xy
n (s)matrix that have a relative phase higher than 160◦ are selected, whereas the elements having a
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relative phase lower than 160◦ are ignored, as is shown in Equation (6); it should be considered that
a “perfect” opposite polarity means 180◦ local phase, but because of the discretization of the signals,
the noise, and the manufacturing differences between loops, a lower local phase than 180◦ would
be expected.

ind∆φxyn (s) =

{
1 if ∆φxyn (s) ≥ 160◦

0 if ∆φxyn (s) < 160◦
(6)
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Figure 6. Wavelet coherence: (a) PD signal. (b) External disturbance.

In the final step, the ind∆φxyn (s) is multiplied (element-wise) by the wavelet coherence, as is
presented in Equation (7). In R1602

n(s) only the elements having a local phase higher or equal than 160◦

are kept, whereas the rest is annulled. The R1602
n(s) results in a 89 × 2564 matrix for each pulse event.

R1602
n(s) = R2

n(s) · ind∆φxyn (s) (7)

Figure 7a depicts the wavelet coherence R1602
n(s) for the PD pulse in Figure 5, which shows a

high and constant correlation between the signals along the PD duration; between 7 MHz to 70 MHz
and starting around 0.3 µs; there is a yellow stripe indicating a high correlation between both signals.
On the other hand, Figure 7b shows the R1602

n(s) for the external disturbance, which does not present
a clear and constant correlation along the signal duration.
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Figure 7. Wavelet coherence for a ∆φxyn (s) ≥ 160◦: (a) PD signal. (b) External disturbance.
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5. Features Extraction

When the local relative phase is higher than 160◦, the R1602
n(s) indicates how coherent the cross

wavelet transform is in the time domain for each wavelet scale. A way of weighting the coherence of
each scale is by computing the mean of each scale in R1602

n(s). By applying the mean to each scale,
the original data set goes from a 89 × 2564 matrix to a 89 elements vector, reducing the dimensionality
of the wavelet coherence R1602

n(s). In Equation (8), the mean of the wavelet coherence is defined.
The reduction in the dimension of the data helps us to analyze the features by using tools such as the
principal components analysis (PCA). Each signal measured by the magnetic antennas is represented
by a 89 elements vector or 89 features, containing the mean value of each scale in the wavelet coherence.

R̂(s) =
1
N

N∑
n=1

R1602
n(s) (8)

Equations (7) and (8) are computed for all the tests performed, resulting in three data sets. Data set
1 (300 signals × 89 scales) corresponds to the Test 1, Data set 2 (300 signals × 89 scales) to the Test 2,
and Data set 3 (3000 signals × 89 scales) to the Test 3. The Test 1 contains 100 pulses measured
simultaneously by three magnetic antennas, resulting in 300 signals recorded by the acquisition unit;
the same analysis applies for Tests 2 and 3.

Principal Components Analysis (PCA)

PCA is the process in which the principal components are computed, and the subsequent use
of these components in understanding the data (learning from the data) [29]. The PCA is used to
perform an exploratory analysis of the data by summarizing the data set with a smaller number of
representative variables, which collectively explain the variability of the original set [29]. The PCA is a
useful tool for displaying multidimensional data by reducing the data complexity.

In this study, the PCA is used to perform an exploratory analysis of the data by reducing its
dimensionality; the data sets have 89-dimensions, making impossible the visual representation.
The principal components of the Data sets 1 and 2 are computed, resulting in a 3-dimensional
representation of the data set which can be depicted in a 3D plot. It this PCA, the first three components
explain 89% of all the data set variability. The first three components are plotted in Figure 8, showing
the formation of four clusters. One cluster shows the PD signals in the MA1, the second cluster groups
the PD signals in the MA2, the third one represents the PD in MA3, and the fourth cluster shows the
external disturbances picked up by all the magnetic antennas.
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Figure 8. Principal components analysis (PCA) analysis to the Data sets 1 and 2.
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From the PCA, two conclusions pop up:

• The wavelet coherence (R1602
n(s)) and its mean value (R̂(s)) are appropriate tools to extract relevant

features that help us to separate the external disturbances from the PD signals.
• The cluster formation gives way to fit a supervised classifier such as the SVM to separate the PD

from the external disturbances automatically.

6. SVM Classifier

The support vector machine is a generalization of a simple and intuitive classifier called the
maximal margin classifier, which was developed in the 1990s [29]. SVM are intended for the binary
classification setting in which there are two classes [29], like the one in this study: partial discharge or
external disturbance. The support vector machine’s algorithm finds the optimal separation between
these two classes by computing a separating hyperplane. SVM algorithm presents low generalization
error (avoid over-fitting) [30], is computationally inexpensive, and its results are easy to interpret.
If the data is linearly separable, a linear SVM classifier is sufficient [30]. The data are linearly separable
if there are two groups of data, and the data points are separated enough that it is possible to draw a
straight line on the figure with all the points of one class on one side of the line and all the points of
the other class on the other side of the line [31]. This line is called a separating hyperplane, which is
a simple line in the 2D plane but evolves to a separating hyperplane in an N-dimensional plane.
The hyperplane plays the role of a decision boundary, where everything on one side belongs to one
class, and everything on the other side belongs to a different class [31].

Returning to the classification problem of this study, it is possible to infer that the data is linearly
separable because it forms two groups in each side of a hypothetical separating hyperplane, as is
illustrated in Figure 9, where the two first components of the PCA conducted in Section 5 are plotted.
The separating hyperplane was arbitrarily drawn in the middle of the two clusters, working as a
decision boundary in which all the data at the left might be considered noise, and all the data at the
right may be labeled as partial discharge. Further details of support vector machines can be found
in [29–31].
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Figure 9. Support vector machine (SVM) proof of concept applied to the first two components of the PCA.

In Section 5 it was found that the mean value of R1602
n(s) forms clear and separated clusters for

each category(class): PD and external disturbance. This shows that the mean value can be used as
a good clean input data for a supervised classification algorithm(classifier), which can predict the
class of a new input signal. The Data sets 1 and 2 are chosen as the training set to build/train the
SVM classifier. The PD in the MA1, MA2, and MA3 are merged in a unique class named partial
discharge, whereas the external disturbances in the three antennas are labeled as external disturbance.
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All the PD in the Data set 1 are labeled as partial discharge, and the external disturbances in the
Data set 2 are labeled as external disturbance. For the evaluation of the SVM classifier performance,
the Data set 3 is used as a validation set. The validation set contains 3000 pulses measured by the
three magnetic antennas, in which 2427 corresponds to PD pulses and the 573 remaining pulses to
external disturbances. The corresponding class of each element in this data set was manually verified.
A SVM classifier is built using the training set and the Gaussian kernel. The performance of the SVM
classifier is tested with the validation set, getting an error rate of 0.33 %. The confusion matrix is
depicted in Figure 10, indicating that 2427 PD were correctly classified as PD, 563 external disturbances
were successfully labeled, and 10 external disturbances were misclassified as PD. These results show
that the XWT based analysis, together with the SVM classifier, are useful tools to identify PD pulses
from external disturbances. However, the classifier uses 89 features for each pulse recorded, without
analyzing which of these 89 features are efficiently describing the input data and which ones are
irrelevant for the classification problem. In the next section, a feature selection analysis is performed to
analyze the relevance of the features

PD ext dis
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Figure 10. Confusion matrix.

Features Selection Using Pearson Correlation

Features selection techniques help to address the problem of reducing irrelevant and redundant
features, which are a burden for the classifier and the computing time [32]. In general, feature selection
helps in understanding the data, reducing computation requirements, and improving the predictor
performance [32]. The focus of this feature selection study is to select a subset of the 89 features
data which can efficiently describe the input data. One of these techniques is the Pearson correlation
coefficient which is defined as follows:

PCC(s) =
cov(R̂(s),Y )√

var(R̂(s)) ∗ var(Y )
(9)

where R̂(s) is described in Equation (8), Y is the output class label (PD or external disturbance), cov() is
the covariance, and var() is the variance. The Pearson correlation detects linear dependencies between
the features(variables) and the output class. The PCC2(s) is used as feature ranking criterion because it
enforces a ranking according to goodness of linear fit of individual features[33]. For the training set
(Data sets 1 and 2), the PCC2(s) is computed and plotted in Figure 11.
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Figure 11 shows that there is a strong linear correlation between the scales ranging from 35
to 75 and the output class, indicating that the scales subset from 35 to 75 efficiently describes the
input data. It means that all the scales outside this range are irrelevant for the classification problem.
This range of scales is equivalent to a frequency range from 3.7 MHz to 59 MHz. This scales subset has
41 features, implying a reduction of 48 features (less than half of the original features are needed to
build a classifier). This new subset is used to build a SVM classifier, resulting in an error rate of 0.33 %,
which is the same rate that the classifier got by using the original 89 features. However, the new subset
resulted in a reduction of 50% in computing time.

0 20 40 60 80
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Figure 11. Pearson correlation coefficient.

7. Conclusions

The cross wavelet transform and the SVM classifier have been proven to be useful tools to build
up a technique for the separation of PD pulses from common-mode external disturbances in a GIS
measuring system based on magnetic antennas. The results show that this technique succeeds in
the separation of PD signals from external disturbances because it presents an error rate of 0.33 %.
In the validation set (3000 signals), 2427 partial discharges and 563 external disturbances were correctly
identified by the SVM classifier, whereas only 10 signals were misclassified.

In the PD pulses measured by both loops in the magnetic antenna, the first peaks show a
mirror-like symmetry. On the other hand, the common-mode external disturbances does not present
such a symmetry. The XWT local relative phase has been proven to be an effective tool to evaluate the
mirror-like symmetry of a given signal. Therefore, the XWT relative phase can be used to discriminate
PD from some external disturbances.

The R1602
n(s)mean value is an appropriate tool to extract relevant features for the discrimination

of PD pulses and external disturbances in PD measurements based on magnetic antennas. Additionally,
the mean value reduced the dimension of the data from an 89 × 2564 matrix to a, 89 vector. The principal
components analysis showed that the PD and the externals disturbances form linearly separable
clusters, which gave way to deploy a SVM classifier.

The Pearson correlation indicated that the relevant scales for separating the signals are the scales
ranging from 35 to 75. In the frequency domain, this range corresponds to a bandwidth from 3.7 MHz
to 59 MHz.

A different source of noise could form a separate cluster that may not be easily separated by a
SVM classifier. Therefore, each different source of noise should be studied and characterized before
choosing the optimal classification algorithm.
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