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Abstract

Motivation: Single-molecule molecular inversion probes (smMIPs) provide an exceptionally cost-effective and
modular approach for routine or large-cohort next-generation sequencing. However, processing the derived raw
data to generate highly accurate variants calls remains challenging.

Results: We introduce SmMIP-tools, a comprehensive computational method that promotes the detection of single
nucleotide variants and short insertions and deletions from smMIP-based sequencing. Our approach delivered near-
perfect performance when benchmarked against a set of known mutations in controlled experiments involving DNA
dilutions and outperformed other commonly used computational methods for mutation detection. Comparison
against clinically approved diagnostic testing of leukaemia patients demonstrated the ability to detect both previous-
ly reported variants and a set of pathogenic mutations that did not pass detection by clinical testing. Collectively, our
results indicate that increased performance can be achieved when tailoring data processing and analysis to its
related technology. The feasibility of using our method in research and clinical settings to benefit from low-cost
smMIP technology is demonstrated.

Availability and implementation: The source code for SmMIP-tools, its manual and additional scripts aimed to foster
large-scale data processing and analysis are all available on github (https://github.com/abelson-lab/smMIP-tools).
Raw sequencing data generated in this study have been submitted to the European Genome-Phenome Archive
(EGA; https://ega-archive.org) and can be accessed under accession number EGAS00001005359.

Contact: sagi.abelson@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Sensitive and cost-effective targeted next-generation sequencing
(NGS) can enable a myriad of clinical applications, including screen-
ing of microbial populations (Deurenberg et al., 2017), non-invasive
prenatal testing (Gregg et al., 2014), and early cancer detection
(Karlovich and Williams, 2019). It can help evaluate drug efficacy in
clinical trials, improve routine diagnostic testing of tumours in mo-
lecular diagnostic laboratories and inform cancer treatment deci-
sions by longitudinal sequencing efforts to monitor emerging

©The Author(s) 2022. Published by Oxford University Press.

treatment-resistant clones (Karlovich and Williams, 2019). Despite
this immense potential, many NGS approaches being used for re-
search and clinical applications remain time-consuming, costly, and
incredibly difficult to scale.

Single-molecule molecular inversion probes (smMIPs) provide a
highly practical, cost-effective approach for multiplex-targeted gen-
omic capture (Mamanova et al., 2010). When compared with other
targeted sequencing techniques, these single-stranded oligos simplify
the creation of NGS libraries towards the discovery of genetic varia-
tions (Porreca et al., 2007; Turner et al., 2009). Molecular inversion
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probes have undergone a series of advances over the years allowing
researchers to investigate an increasingly large number of genomic
loci across many samples (O’Roak et al., 2012). Optimized proto-
cols resulted in the inclusion of unique molecular identifiers (UMIs)
in the oligo sequence to increase data accuracy (Hiatt et al., 2013),
and machine learning algorithms were developed to improve cover-
age uniformity across smMIPs (Boyle et al., 2014). These advances
have primarily addressed the technical aspect of upfront smMIP de-
sign and data production, yet little progress has been made with re-
spect to smMIP-data interpretation.

To date, a range of tools has been developed to detect somatic
mutations from NGS (Xu, 2018). Many of those tools perform well
in the experimental configurations for which they were designed.
However, they cannot be generalized to different experimental for-
mats and due to lack of specific functionalities, are expected to de-
liver sub-optimal results when smMIP sequencing is used. The need
for a single standardized method tailored for smMIP-data analysis
that efficiently provides accurate and reproducible results in a user-
friendly, readable format remains.

To address this underserved need, we developed SmMIP-tools.
Our method encases all the functionalities required for efficient and
effective analysis of smMIP-derived sequencing information within
a single software suite. Its only external dependency is on read align-
ment. Our approach to detect somatic variants comprises multiple
features distinct from other variant callers and unlike other NGS
error suppression techniques; it eliminates the need to sequence large
experimental control cohorts to precisely define allele-specific error
rates. The fidelity of error-corrected mutation calling is dramatically
enhanced by analysing data from each read derived from sequencing
read pairs, overlapping smMIPs and smMIP-library technical repli-
cates when available. SmMIP-tools also outputs comprehensive vari-
ant annotations and include a unique variant flagging system to
assist with ranking and prioritizing mutations associated with phe-
notypes of interest.

To demonstrate the real-world applicability of SmMIP-tools in
genomic research, we chose to investigate genomic loci associated
with both clonal haematopoiesis and myeloid malignancies. Clonal
haematopoiesis is an age-related phenomenon defined by the expan-
sion of blood cells with somatic mutations (Jaiswal et al., 2014). It
has been associated with an increased risk of all-cause mortality
(Genovese et al., 2014; Jaiswal et al., 2014) cardiovascular disease
(Jaiswal ez al., 2017) and the future development of leukaemia
(Abelson et al., 2018; Desai et al., 2018). To establish these associa-
tions, previous studies required both labour-intensive and costly
sequencing efforts. Instead, here we interrogated a similar genomic
space using low-cost smMIP sequencing in conjunction with
SmMIP-tools to benchmark and validate its performance
(Supplementary Fig. S1).

2 Materials and methods

2.1 SmMIP-tools overview

SmMIP-tools effectively processes and analyses NGS data to report
single nucleotide variants (SNVs), insertions and deletions (Indels)
using several easy-to-execute steps. These steps principally rely on
proper smMIP design and subsequent sequencing (Supplementary
Fig. S2 and Supplementary Methods). Our method takes as input a
read-alignment BAM file and a smMIP design file (Fig. 1a). The lat-
ter can be easily generated by MIPgen (Boyle ef al., 2014) or pre-
pared manually. SmMIP-tools uses information concerning each
probe and its target sequence to apply a set of filters and discard
hard-clipped reads, reads with low mapping quality, paired reads
with an unexpected insert size or improper alignment orientations
(Fig. 1b). To confirm the proper structure of the remaining reads
and to identify corrupted UMI sequences, linkage between reads and
their precise probe-of-origin are generated. The final output con-
tains quality control summary files concerning raw and consensus
reads (Fig. 1c) and a BAM file with the remaining high-quality
reads. UMI sequences and smMIP-of-origin identifiers are then
included in each read’s header. In the following steps, SmMIP-tools

uses the processed BAM file to generate probe-level base call sum-
maries (i.e. pileups) that are subsequently refined by the software’s
error-aware variant detection algorithm. Base call summaries for
single-stranded consensus sequences (SSCS) are also generated
simultaneously.

To call mutations, a multi-layered probabilistic approach is
used to conduct allele-specific frequency comparisons between
each sample of interest and either a single control or a cohort of
control samples. Alternatively, SmMIP-tools can also precisely esti-
mate allele-specific error rates without using dedicated controls by
comparing a sample of interest to the remainder of the experimen-
tal cohort (Fig. 1d). Thus, SmMIP-tools can accommodate various
user-defined experimental configurations to suppress errors. Prior
knowledge concerning the location of common cancer mutations is
also used to increase the sensitivity of detecting recurrently
mutated alleles. To improve specificity, non-reference alleles are
evaluated separately in each of the paired sequencing reads, in
reads derived from overlapping smMIPs, and in technical replicates
when available (Fig. 1e). The final output is a comprehensive re-
port that includes the detected mutations, key variant annotations,
information concerning consensus reads’ support, sequencing
batch summaries and mutation flags, all of which are valuable for
ranking and prioritizing variants (Fig. 1f and Supplementary
Methods).

A high-level comparison matrix emphasizing capability differen-
ces between SmMIP-tools and other existing software for processing
and analysis of NGS-derived data is included in Supplementary
Table S1.

2.2 Creation of read-smMIP linkages

To determine the probe-of-origin for every sequenced read pair,
SmMIP-tools first searches for smMIPs whose targeted genomic
loci, including the extension and ligation arms, substantially overlap
with the genomic loci determined by the paired reads’ alignment to
the genome (default 0.95, user-defined parameter). Once smMIP
candidates are selected, the algorithm proceeds with the local align-
ment of each smMIP’s extension and ligation arms to the reads. The
exact probe-of-origin is determined when both of its arms align in
their expected positions (here, 4 nt from the reads’ extremes based
on the length of UMIs). The location of UMI bases in each read of
the pair (i.e. in the 5’ or 3’ end) is determined by the reads’ SAM
flags. The number of UMI bases in each read is automatically deter-
mined from the user-provided panel design file. When the above
alignment expectations are not met, the UMI will be considered un-
reliable, and the paired reads will not be used for further analysis
concerning SSCS (Supplementary Methods).

2.3 Probabilistic modelling of error rates

SmMIP-tools uses the pbinom R function to calculate, for each
observed allele in a sample of interest, a P-value reflecting the
probability of obtaining a number equal to or higher than the
observed number of non-reference supporting reads for the identi-
cal allele in a single matched control, a larger control cohort or
with no controls. If the latter option is chosen, SmMIP-tools uses
the entire cohort except for the sample of interest (and its technical
replicate, if available) to estimate error rates. Sequenced alleles are
annotated using the cellbaseR R package (Abdallah, 2020), and in-
formation concerning recurrent cancer mutations is leveraged to
increase sensitivity at those positions. Accordingly, values of vari-
ant allele frequency (VAF) > 0.05 (user-defined parameter) in re-
currently mutated alleles are removed from error rate estimation.
The allele frequency in all the other samples is set to their median
value. To derive binomial probabilities, allele-specific error rates
are determined as the sum of all the non-reference supporting reads
in all the controls divided by the total number of reads covering the
allele. In the event where there are zero non-reference supporting
reads in the control sample(s) chosen, a pseudocount of one sup-
porting read is added. This value is then evaluated against the num-
ber of non-reference supporting reads and the allele’s coverage in
the sample of interest. If any allele is observed in both Read1 and
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Fig. 1. SmMIP-tools overview. (a) SmMIP-tools accepts single BAM files and a smMIP design file as inputs to assign reads to their probe-of-origin and filter problematic
reads. (b, ¢) Following processing, SmMIP-tools outputs BAM files corresponding to filtered reads and reads that are appropriate for subsequent analysis. The output
also includes three relevant summary files for the evaluation of sequencing library quality, coverage uniformity across smMIPs, and the number of unique molecules
sequenced. (d) SmMMIP-tools generates smMIP-level base call summaries (i.e. pileups) for SSCS and raw reads to determine non-reference alleles and their read support.
These base call summaries serve as an input for the mutation calling algorithm. Error rates can be estimated from a single control, a larger cohort of controls or from the
experimental cohort alone, without the need for additional control sample sequencing. (e) Allele-specific error rates are estimated by information derived from each
strand, and overlapping smMIPs and technical duplicates when available. Let ‘v’ be the investigated allele’s fraction in the control cohort. Then, the P-value of seeing at
least ‘’ reads supporting the non-reference allele out of ‘#’ total coverage in the investigated genomic position in the sample of interest is Pz, t=1 — BinomCDF(n—1, ¢,
v), where BinomCDF denotes the binomial cumulative distribution function. (f) The final output is a comprehensive report including the called variants as well as various

annotations and flags that can be used to further prioritize mutation calls

Read2 it receives the higher P-value of the two models. This pro-
cess is repeated for alleles that are covered by overlapping smMIPs
and technical replicates

(all the other methods used in this study are provided as
Supplementary Material).

3 Results

3.1 SmMIP-tools accurately links reads to their probe-

of-origin to improve downstream data analysis
Identifying the correct smMIP arm sequences and validating their
expected position in the sequenced read pairs is a critical processing
step SmMIP-tools employs to improve downstream analysis of
smMIP-derived data. Specifically, linking each sequencing read to
its precise probe-of-origin (termed here, read-smMIP linkages) is es-
sential to pinpoint self-annealed probes that lack target sequences
and eliminate chimeric inserts generated by partially overlapping
probes (Fig. 2a). Furthermore, read-smMIP linkages can help pre-
vent mutation calling outside the target region of individual
smMIPs, eliminate errors based on ambiguous calls in regions with
overlapping smMIPs (Fig. 2b), and validate the UMIs’ sequence in-
tegrity in the expected insert layout (Fig. 2c).

To evaluate the performance of SmMIP-tools to correctly gener-
ate read-smMIP linkages, we sequenced 16 cord blood samples using

smMIPs. We next interrogated the sequencing data considering the
284 real smMIPs used to generate it, together with a set of addition-
ally designed simulated smMIPs (n =22 299) that cover the same
genomic loci (Supplementary Table S2) yet were not used during
sequencing. The simulated probes were designed to include arms
and target loci of variable length that can either partially overlap
with those of the real smMIP, are fully encased within a real
smMIP’s genomic insert, or extend beyond the real smMIP’s 3’ and/
or 5’ end (Supplementary Fig. S3a). The entire set, including both
the real and simulated smMIPs was designated as RO. From R0, we
then generated additional smMIP subsets (R1-RS5) by restricting the
inclusion of simulated smMIPs based on how far their start and end
position are from those of an overlapping real smMIP. Therefore,
subset R1 retains only simulated smMIPs with a start and end that
are at least 1 bp apart from the start and end of a real smMIP while
excluding those with a distance <1 bp. The cumulative exclusion of
simulated smMIPs continues for subsets R2-RS (Supplementary Fig
S3b). Based on these restriction criteria, the task of accurately
assigning the correct probe-of-origin to each read and differentiating
between real and simulated smMIPs is expected to be the most chal-
lenging for RO and least challenging for subset RS.

A total of 25 353 671 read pairs generated from the 16
sequenced cord blood samples were subjected to read-smMIP link-
age performance analysis using the algorithm embedded in SmMIP-
tools’ code. On average, 6.1% of the reads could not be linked to
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any smMIP (real or simulated) and were considered ‘off-target” due
to insufficient overlap with the targeted loci (Fig. 2d). From the
other 93.9% ‘on-target’ reads, SmMIP-tools assigned the correct
probe-of-origin to 89.72% of the reads in RO (Fig. 2e). In this set,
8.79% of the reads could equally be associated with more than one
smMIP, and 0.04% were falsely assigned to a simulated smMIP
(Fig. 2f). Performance was significantly improved when simulated
smMIPs that start or end at an identical genomic base as real
smMIPs were omitted (i.e. R1). In subset RS, 98.51% of the on-
target reads were correctly assigned to a single real smMIP, and a
negligible percentage of the reads were falsely assigned to a simu-
lated smMIP (0.0009%). We noticed that sequencing and library
amplification errors confound ambiguous or inaccurate assignment
of reads to their probe-of-origin. On average, 1.47% of the on-
target reads showed considerable overlap with the target locus yet
due to errors failed validation. SmMIP-tools was designed to salvage
such reads. Nevertheless, since their UMI sequence integrity might
be compromised (Fig. 2c), such reads are flagged and not included in
downstream analyses that consider SSCS.

Taken together, these results indicate that SmMIP-tools is
capable of accurately constructing linkages between reads and
smMIPs to address the technology’s constraints and prepare data
derived from highly complex target panels, including those contain-
ing highly overlapping smMIPs, for more efficient and accurate
downstream analyses.

3.2 SmMIP-tools deploys multiple layers of error-
suppression techniques to enable highly accurate vari-

ant detection

SmMIP-tools incorporates multiple error-suppression techniques
(Fig. 1d—f) to distinguish real mutations from NGS-associated errors
and suppress false-positive calls. To benchmark their use, we first
constructed high confidence lists of true and false-positive mutations
by bulk sequencing of eight blood cancer cell lines (Supplementary
Methods and Table S3). DNA from the different cell lines was then
mixed to generate six separate pools containing varying concentra-
tions of each cell lines” genomic material (Supplementary Table S3).
Each mix was sequenced twice to enhance error suppression through
the use of information derived from technical replicates. In each of
the 12 sequenced libraries, we counted the number of error-free
positions, defined as positions in the interrogated genomic space
represented exclusively with reference alleles, before and after apply-
ing error suppression techniques. Both the consensus reads assembly
(Supplementary Methods) and the probabilistic error rate modelling
techniques (Supplementary Fig. S4), delivered significant levels of
error suppression as indicated by the sole presence of reference
alleles in 72.83% and 98.47% of the investigated genomic positions,
respectively, compared with an average of 1.22% before error cor-
rection (Fig. 3a). Error suppression using the error rate modelling
approach was further augmented when information derived from
separate read-strands or technical replicates was incorporated
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Fig. 3. SmMIP-tools uses multiple approaches to suppress NGS-associated errors and accurately detect real mutations. (a) Percentage of error-free positions across the targeted
genomic space before and following error suppression by SSCS assembly or by probabilistic error rate modelling. The average error background in the cell line DNA mixes is
shown for comparison. (b) Percentage of error-free positions following probabilistic error rate modelling and consideration of information derived either from paired reads or
technical replicates. (c) Percentage of error-free positions following probabilistic error rate modelling alone versus the additional consideration of overlapping smMIPs. Here,
positions covered by overlapping smMIPs were considered to derive the percentage of error-free positions. (d) Receiver operating characteristic curve indicating the perform-
ance of SmMIP-tools to detect real mutations among the high background of NGS-associated errors. (e) Accuracy (precision, sensitivity and F1 score) is shown across different
VAF ranges. Coloured lines represent the results obtained when the core algorithm was set to achieve maximum F1, maximum precision or when the default P-value cut-off
(0.05) was used. (f-i) Performance evaluation of mutation calling methods. Bars represent median values obtained following mutation calling with each of the 16 cord blood
samples used separately as controls. Error bars represent the maximum and minimum obtained values. Mann-Whitney test for the selected comparisons: ***P < 0.001

(Fig. 3b). Significantly improved error suppression was also
observed when alleles covered by overlapping smMIPs were eval-
uated against error models derived from each smMIP independently
(Fig. 3c). Next, we evaluated SmMIP-tools’ performance in differen-
tiating between real mutations and errors after intersecting all of the
error suppression techniques mentioned above. We required at least
one SSCS in each strand, and for error rate modelling, we used data
derived from separate read-strands, overlapping smMIPs and tech-
nical replicates. SmMIP-tools accurately identified the real muta-
tions among the high background of NGS-associated errors, as
evident by a near-perfect trade-off between sensitivity and specificity
(Fig. 3d). Sensitivity and precision remained high down to a VAF of
0.0035, only decreasing to a lower limit of 9.1% sensitivity and 50%
precision for mutations detected in the 0.001 < VAF < 0.005 range
(Fig. 3e).

Finally, we sought to compare the performance of SmMIP-tools
with other established variant callers that are also capable of both
SNV and Indel detection. Somatic mutations (n=24) that were
detected in the bulk cell line sequencing served as the ‘ground truth’
against which we evaluated performance (Supplementary Table S3).
SmMIP-tools, VarDict (Lai et al., 2016) and Strelka2 (Kim et al.,
2018) were all tested using their default settings (Supplementary
Methods). Both VarDict and Strelka2 demonstrated inferior results
across multiple VAF ranges as compared with SmMIP-tools
(Fig. 3f). Interestingly, these results originated from a different sub-
optimal balance between false-positive (Fig. 3g), true-positive
(Fig. 3h) and false-negative calls (Fig. 3i). Most notable was
VarDict’s increasing number of false-positive calls. On the other
hand, Strelka2 successfully eliminated false-positive calls yet failed
to report many true-positive mutations below VAF of 0.02.
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Fig. 4. SmMIP-tools enables high confidence detection of pathological variants. (a) Venn diagrams representing the number of mutations called by two different approaches
for error rate modelling and their overlap. (b) Venn diagrams for SNVs and Indels illustrate the number of mutations that are shared between SmMIP-tools output and the clin-
ical genetic reports for overlapping panel regions, as well as the number of mutations that differ between the two sources. (c) Validation by ddPCR of 17 high confidence muta-
tions identified by SmMIP-tools yet did not pass detection using clinical diagnostic testing. White background indicates that the variant was not reported while light grey
background indicates the variant was detected above the ddPCR detection limit (VAF > 0.001). Dark grey bars represent the VAFs. X, not tested. (d) Scatterplot showing a
strong linear correlation (Pearson 7= 0.996, P-value = 9.81 x 10~7) between VAFs calculated by ddPCR and those derived from the SmMIP-tools output for the high confi-

dence SNVs interrogated in the test samples and positive controls

Consequently, the overall accuracy, measured as Fl-scores, of the
reports generated by the two other commonly used methods, signifi-
cantly suffered compared with that of SmMIP-tools (Fig. 3f).

Errors are key confounding factors for sensitive detection of low-
frequency variants by deep sequencing (Abelson et al., 2020; Ma
et al., 2019). These analyses show that SmMIP-tools’ multi-layered
error suppression techniques enable accurate differentiation between
real mutations and abundant NGS acquired noise across a wide
VAF range.

3.3 SmMIP-tools detects new deleterious mutations in a

comparative analysis with diagnostic test results

To test the performance of SmMIP-tools in a real-world, clinically
relevant cohort, we undertook comparative analysis between
SmMIP-tools output and clinical genetic testing in patients diag-
nosed with myeloid malignancies. Re-sequencing of 168 samples
from 162 patients using smMIPs was conducted in technical dupli-
cates. Clinical reports were available for 135 of the patients
(Supplementary Table S4). We first tested the performance of
SmMIP-tools using either a dedicated cohort of controls for error
rate modelling or alternatively, using only the sequencing data
derived from the patient samples in the experimental cohort itself.
Two mutation categories termed ‘High Confidence’ and ‘Lower
Confidence’ were evaluated based on SmMIP-tools’ generated flags
(Supplementary Methods); both showed highly reproducible results
between the two error rate modelling approaches (Fig. 4a).

By leveraging information concerning the reads’ smMIP-of-
origin, their duplication level (i.e. family size), and UMI sequences,
we found that sample index-misassignment (also termed as ‘index-
hopping’) is a likely source of several potentially stochastic errors
(Supplementary Table S5). Importantly, these included high VAF,
clinically relevant mutations that passed detection by probabilistic
error rate modelling (Supplementary Fig. S5). Yet, these potentially
false-positive variants were detected only by single reads (i.e. single-
tons with SSCS family size =1). Moreover, all of the singletons’
UMIs pointed to identical reads represented in multiple other sam-
ples in the sequenced cohort. Further supporting index-hopping,
nine of the 23 variants flagged by SmMIP-tools are common single
nucleotide polymorphisms suggesting an abundant source of reads
that were potentially misassigned. These nine variants were detected
with atypical VAF far below the expected ~50% for germline
mutations.

For comparison between the patients’ clinical genetic testing and
SmMIP-tools’ output, we used the experimental cohort for error
rate modelling and considered only genomic loci covered by both
sequencing panels (Supplementary Table S2). Overall, 95.6% of the
somatic SNVs and Indels detected using the clinical pipeline were
also detected by SmMIP-tools (Fig. 4b and Supplementary Table
S4). Of these, 97.7% were in the ‘High Confidence’ category.
Technical issues unrelated to SmMMIP-tools were identified to be the
primary reason for the 28 variants that were missed (Supplementary
Table S4). These include, e.g. deletions that failed recognition by the
external read-alignment algorithm used (Supplementary Fig. S6). It
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is possible that slightly modified smMIP design or using other align-
ment tools that better support gapped alignment might improve de-
tection of some Indels, such as those reported here. Importantly,
SmMIP-tools detected an additional 111 high confidence SNVs
(additional 25.2%) and 30 Indels (additional 15.6%) that did not
pass detection by clinical testing (Fig. 4b and Supplementary Table
S6). The 111 newly discovered SNVs had an average scaled
Combined Annotation Dependent Depletion score (Rentzsch ez al.,
2019) of 29.7, indicating a striking enrichment for mutations pre-
dicted to be deleterious. A subset of these newly detected high confi-
dence deleterious SNVs was validated by digital droplet PCR
(ddPCR), with a 100% success rate (Fig. 4c and Supplementary
Methods). A significant correlation was observed between the VAFs
obtained by smMIP sequencing and the ddPCR results (Fig. 4d).

These analyses shows that sequencing of healthy control samples
for error suppression may not be necessary when large patient
cohorts are sequenced and collectively emphasize the potential of
using SmMIP-tools in conjunction with low-cost smMIP sequencing
for clinical testing.

4 Discussion

In this article, we present a computational method designed to ease,
improve and standardize the necessary steps involved in smMIP-
derived data analysis. SmMIP-tools is specifically tailored to address
the high error rates associated with amplicon-based sequencing and
support the implementation of cost-effective molecular inversion
probes-based NGS.

By linking each sequence read to its probe-of-origin, SmMIP-
tools can identify and filter error-prone reads, such as chimeric reads
or those derived from self-annealing probes that are uniquely associ-
ated with smMIP-based sequencing. Prevention of mutation calling
outside of the smMIP target region and identification of corrupt
UMI sequences are two other essential deliverables of read-smMIP
linkages. Conclusively, we observed a significant contribution of
read-smMIP linkages for NGS-error suppression. We further inform
best practices for smMIP panel design by demonstrating SmMIP-
tools’ ability to resolve complex datasets consisting of highly over-
lapping smMIPs.

Defining the absolute ground truth is a major challenge when
reporting mutations from NGS data (Koboldt, 2020). Errors that
arise during library preparation and sequencing are abundant and
can easily obscure real mutations. Following data processing,
SmMIP-tools implements a versatile error rate modelling approach
to calculate a P-value for every non-reference allele observed in the
data to reflect the probability of a false observation. Error suppres-
sion is enhanced by comparing observations derived from separate
sequencing read pairs, overlapping smMIPs and technical replicates.
Moreover, SmMIP-tools error-modelling approach is versatile com-
pared with many other variant callers that are capable of addressing
only a single experimental configuration. We show that SmMIP-
tools can derive remarkably comparable results using either a dedi-
cated cohort of controls or by leveraging data across the experimen-
tal cohort itself for probabilistic modelling. This unique capability
enables prospective users to reduce the cost and labour associated
with control cohort sequencing. Using a single control sample is also
a viable option. However, in such experimental design, applying
more stringent analytic parameters, such as lower P-value and
higher VAF cut-offs are recommended to better control for the large
number of observed stochastic NGS errors. It is important to note
that while SmMIP-tools supports the use of consensus sequences,
some errors such as those derived from oxidative DNA damage at
guanine nucleotides are better suppressed using double-stranded
sequencing (Salk et al., 2018). By using smMIPs and intersecting
multiple layers of error-suppression, our analysis with known
ground-truth mutations demonstrated a near-perfect performance
down to VAF of 0.005.

Since smMIP sequencing often involves large cohorts
(Mamanova et al., 2010), we designed a comprehensive variant flag-
ging system to support the authenticity of variants by leveraging in-
formation derived from the entire sequencing run. In addition to P-

values, SmMIP-tools analyses batch-related information, including
the VAF of the called alleles in other samples, the number of instan-
ces in which the identical alleles were observed with a higher VAF
and the number of additional samples in which the allele was
detected above the background sequencing noise. The unique ability
of SmMIP-tools to leverage batch information help to identify sub-
optimal error rate modelling events for specific alleles, at positions
with elevated error rates that may require further validation by or-
thogonal methods. Another type of data that is critical to prioritize
mutation calls is batch-related UMI information. Conventionally,
UMIs are used to identify PCR duplicates to generate consensus
sequences with lower error rates. In addition to the creation of
SSCS, here we provide a novel in silico approach employing UMIs
to address mutation calls that potentially arose due to sample index
misassignment. It is important to note that unlike our strategy to
mitigate the negative consequences of index misassignment, the use
of non-combinatorial dual sample indexes can allow direct identifi-
cation and removal of swapped reads (Costello et al., 2018).
Nevertheless, sequencing with non-combinatorial dual-indexed
adapters substantially limits multiplexing capability which is a
major strength of smMIP-based sequencing.

The implications of cost-effective, highly accurate and sensitive
mutation detection are far-reaching (Karlovich and Williams, 2019).
To establish proof-of-principle for the utility of the high-quality ana-
lysis provided by SmMIP-tools, we used smMIPs to resequence a
large cohort of patients diagnosed with myeloid neoplasms. We
show the ability of SmMIP-tools to not only detect variants previ-
ously reported by clinical testing but also reveal, with high confi-
dence, additional deleterious variants. These findings illustrate the
potential utility of deploying SmMIP-tools in clinical settings as a
more cost-effective and sensitive alternative for genetic testing.
Furthermore, reliable variant discovery at low VAF enables subclo-
nal detection that when paired with longitudinal sequencing might
help to guide therapies in real-time where actionable targets exist.
Early detection with subsequent intervention may also be possible
and population-based association studies, such as those done for clo-
nal haematopoiesis, become more feasible.

Opverall, this study demonstrates the untapped potential of utiliz-
ing SmMIP-tools, in conjunction with smMIP-based sequencing, to
deliver superior and more accurate data at a fraction of the cost
compared with other more labour-intensive sequencing approaches.
We anticipate that SmMIP-tools will greatly facilitate broad applica-
tions of low-cost, targeted NGS, enabling the use of a single compu-
tational method instead of an alternative ensemble of unspecialized
software to easily derive accurate results from smMIP data.
Improving analytical accuracy and easing code execution will sig-
nificantly influence data quality and the accessibility of the technol-
ogy to computational and non-computational labs alike, pushing
large-scale genetic research and personalized medicine forward.
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