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Granulocyte colony-stimulating 
factor (GCSF) fused with Fc Domain 
produced from E. coli is less 
effective than Polyethylene Glycol-
conjugated GCSF
Bich Hang Do1, Hyo Jeong Kang1, Jung-A Song1, Minh Tan Nguyen1, Sangsu Park1, Jiwon 
Yoo1, Anh Ngoc Nguyen1, Grace G. Kwon1, Jaepyeong Jang1, Mihee Jang1, Sunju Lee1, 
Seoungjun So1, Seongrak Sim1, Kyung Jin Lee2, Mark J. Osborn1,3 & Han Choe   1

Human granulocyte colony-stimulating factor (GCSF) is a well-known cytokine for neutropenia 
treatment. However, daily injections are required due to the short circulating half-life of the protein. To 
overcome this bottleneck, we fused GCSF with the Fc domain of IgG1 at the C terminus (GCSF-Fc) and 
with the maltose binding protein (MBP) tag at the N-terminus and expressed it as a soluble protein in 
the cytoplasm of E. coli. We also conjugated PEG aldehyde to GCSF to make PEG-GCSF. The bioactivities 
of GCSF-Fc and PEG-GCSF were similar to native GCSF using the mouse M-NFS-60 myelogenous 
leukemia cell line. The EC50 dose-response curves for GCSF, GCSF-Fc and PEG-GCSF were 37 ± 12 pM, 
75 ± 13.5 pM and 46 ± 5.5 pM, respectively. When the proteins were injected into neutropenic rats, the 
group injected with PEG-GCSF showed the highest and fastest recovery of neutrophils, followed by 
GCSF-Fc and GCSF. ELISA assay revealed the PEG-GCSF had the longest plasma circulation (>72 h), 
followed by GCSF-Fc (>48 h) and GCSF (~24 h), which is consistent with the in vivo activities of the 
proteins. In summary, the GCSF-Fc purified from E. coli was not as efficient as PEG-GCSF in treating 
neutropenic rats.

Human granulocyte colony-stimulating factor (GCSF) is a 19 kDa cytokine that is approved by the US FDA for 
the treatment of neutropenia patients due to its ability to control the production, differentiation and function 
of granulocytes1, 2. Although GCSF is an effective treatment for the patients, the protein has a short circulating 
half-life, 3.5–3.8 h3, which necessitates daily injections and is fiscally burdensome. To prolong the in vivo half-life 
of the GCSF, it has been conjugated with polyethylene glycol (PEG)3–5, human serum albumin6, 7, or fused with 
the Fc domain of IgG8, 9.

PEG is a polymer of ethylene oxide with some unique physicochemical properties. PEG has both hydropho-
bicity and hydrophilicity and tends to occupy a large volume in an aqueous environment by the chain flexibil-
ity and extensive hydration. Also, it shows inertness and acceptable toxicological characteristics10. As such, the 
covalent modification of proteins with PEGs has become a popular strategy in the biopharmaceutical industry 
to increase the serum half-life and reduce immunogenicity11–13. The PEG-GCSF has been shown to extend the 
circulating half-life up to 42 hours, which allows effective administration once per chemotherapy cycle5.

Generally, IgGs have a long circulating half-life (14–21 days) and the persistence of IgG involves the “pro-
tective” neonatal Fc receptor (FcRn). IgGs bind to the FcRn in acidic lysosomal compartments and are recycled 
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back into the bloodstream at physiological pH14. Consequently, the Fc region of IgG has been applied to extend 
the half-life of many target proteins. An example of this is Etanercept that is a fusion of the TNF receptor and Fc 
region that is approved for autoimmune disease15.

Previous studies showed the fusion of GCSF/IgG1-Fc which was produced in mammalian cells has a 5- to 
8-fold longer half-life than that of GCSF8, 9. In this study, we conjugated 20 kDa PEG to the N-terminus of puri-
fied GCSF by reductive alkylation method at pH 6. We also generated a fusion of the IgG1 Fc domain to the 
C-terminus of GCSF and purified the chimeric protein. To evaluate the in vitro bioactivity of PEG-GCSF and 
GCSF-Fc, the candidate proteins were cultured with mouse myeloblast M-NFS-60 cells. In addition, the phar-
macokinetic and granulocytic recovery capabilities of GCSF, PEG-GCSF and GCSF-Fc were also compared in a 
neutropenic rat model.

Materials and Methods
Materials.  Shuffle T7 Express cell was obtained from New England Biolabs (Ipswich, MA, USA). Isopropyl 
β-D-1-thiogalactopyranoside (IPTG) was purchased from Anaspec (Fremont, CA). Overlap clonerTM DNA clon-
ing kit and LR recombination enzyme were from Elpis-biotech (Daejeon, Korea). Protein A resin was obtained 
from Amicogen (Jinju, Korea). Superdex 200 26/60 gel filtration column, HiTrap SP HP cation exchange col-
umn, HisTrap HP column were purchased from GE healthcare (Piscataway, NJ). Protein-pak 300SW SEC. 
7.5 × 300 mm column was from Waters Corporation (Milford, MA). Dialysis membranes were from Viskase 
(Darien, IL). Amicon Ultra was from Merck Millipore (Darmstadt, Germany). Limulus Amebocyte Lysate 
(LAL) assay kit was from Lonza (Basel, Switzerland). Trypsin was obtained from Promega (Madison, WI) and 
the Zorbax 300SB-C18 column was purchased from Agilent Technology (Waldbronn, Germany). Twenty kDa 
methoxy polyethylene glycol aldehyde (mPEG-CHO) was from Nanocs (New York, NY). RPMI 1640, fetal 
bovine serum (FBS), β-mercaptoethanol, penicillin and streptomycin were purchased from Gibco (Grand Island, 
NY). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) was from Amresco (Solon, OH). 
Cyclophosphamide monohydrate (CPA) and dimethyl sulfoxide (DMSO) were obtained from Sigma (St. Louis, 
MO). GCSF ELISA kit was from R&D system (Minneapolis, MN). Sprague-Dawley rats were obtained from 
Orient Bio (Seongnam, Korea).

Construction of GCSF-Fc plasmid and expression test.  One hundred seventy-five amino acids of the 
human GCSF was optimized for the expression in E. coli16. IgG1 Fc domain was inserted into pDest-HMGWA 
destination vector17 at the position right after attB2 sequences using Overlap clonerTM DNA cloning kit. Then, 
optimized GCSF gene was subcloned into created vector by LR recombination cloning. A tobacco etch virus 
(TEV) protease recognition site (TEVrs; ENLYFQVG) was inserted between the tag and GCSF. The sequences of 
the clones were confirmed by DNA sequencing (Macrogen, Daejeon, Korea).

The expression plasmids were transformed into E. coli Shuffle T7 Express for expression. The transformed cells 
were grown in Luria Bertani (LB) broth containing 50 µg/mL ampicillin at 37°C in 200 rpm shaking incubator. 
When OD600 reached around 0.5, 0.5 mM isopropyl-b-D-thiogalactoside (IPTG) was added and cells were con-
tinued to incubate at different temperatures and time, 37°C for 3 h, 30°C for 5 h, 25°C for 8 h and 18°C for 16 h to 
induce protein expression.

Purification of GCSF-Fc.  The culture was scaled up to 1 liter with supplementary IPTG (0.5 mM) at 30°C for 
5 h. The collected cells were resuspended into 100 mL buffer containing 20 mM Tris, 5% glycerol (v/v), pH 8. The 
cells were homogenized by sonication using ultrasonic cell disruptor JY99-IIDN (Ningbo Scientz Biotechnology, 
Guangdong, China) on ice at 1,000 W for 40 cycles for 10 seconds, followed by intervals of 50 seconds for cooling. 
After homogenization, the supernatant was collected by centrifugation for 20 min at 27,000 g. Five mL equili-
brated protein A resin and TEV protease were added into supernatant. The whole solution was incubated at 4°C 
for 16 h with gently shaking. The GCSF-Fc was eluted by 0.1 M Glycine pH 3.5 and 1 M Tris pH 9.5 was used to 
neutralize the eluate. The GCSF-Fc dimer was separated from higher multimers by Superdex 200 26/60 gel fil-
tration column in Tris buffer containing 200 mM NaCl. Based on the chromatogram, the collected GCSF-Fc was 
analyzed by 10% SDS-PAGE. The endotoxin in final products was removed by TritonTM X-114 and measured by 
LAL assay.

Mass analysis of GCSF-Fc.  The half of the protein was reduced with 10 mM DTT for 30 min at 60 °C and 
alkylated with 55 mM IAA for 30 min in the dark, following by digested with trypsin. The digested peptides 
were resuspended in 0.1% TFA and loaded onto Zorbax 300SB-C18 75 μm i.d. × 15 cm column via a trap col-
umn (Zorbax 300SB-C18 300 μm i.d. × 5 mm column). Peptides were then separated in an acetonitrile gradient 
(buffer A – 0.1% formic acid; buffer B – 100% acetonitrile and 0.1% formic acid) at a flow rate of 200 nl/min with 
an Agilent 1100 nanoHPLC system (Agilent, USA) and applied on-line to an Q Star XL mass spectrometer (AB 
Sciex, USA). The gradient was increased from 5% to 40% solution B over 110 min, followed by an increase to 95% 
B over 1 min, and then 95% B isocratic for 15 min. MS spectra were collected in full scan mode (350–1400 Da) 
followed by three MS/MS scans of the most intense ions.

Plasmid construction and purification of GCSF from PDIb´a´-GCSF that used enterokinase pro-
tease for tag removal.  The expression vector containing PDIb´a´-GCSF with enterokinase recognition sites 
(EKrs), DDDDK between tag and target was constructed following the protocol of previous publication16. Then 
the expression vector was expressed inside E. coli BL21 under the supplementary of 0.5 mM IPTG at 18°C for 16 h.

This GCSF was purified following the preceding report16, except using enterokinase protease light chain (EKL) 
instead of TEV protease to separate tag from GCSF. The EKL was produced using E. coli by our laboratory (man-
uscript in preparation). The purity of purified protein was confirmed on SDS-PAGE.
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Conjugation and purification of PEG-GCSF.  Twenty mg recombinant human GCSF was prepared 
following the protocol of the previous report16. Twenty kDa PEG was conjugated to N-terminus of GCSF by 
the reductive alkylation method at low pH18. Briefly, the buffer of 4 mL GCSF at concentration of 5 mg/mL was 
changed into 0.1 M sodium phosphate buffer pH 6.0 by dialysis. This solution was added to a vial containing 
100 mg 20 kDa mPEG-CHO. When PEG was dissolved completely, 82 µL of 1 M sodium cyanoborohydride was 
added to the reaction mixture. The reaction mixture was gently stirred in dark at 4°C for 16 h. Then sample was 
diluted 20 times by 20 mM sodium phosphate buffer pH 4.0 and loaded onto 5 mL HiTrap SP HP cation exchange 
column pre-equilibrated with the same buffer. After washing with 10 column-volume of the same buffer, a linear 
gradient elution from 0 to 1 M NaCl of the sodium phosphate buffer pH 4 was applied to elute PEG-GCSF. The 
fractions were analyzed by SDS-PAGE.

Cell proliferation assay.  The M-NFS-60 cells were grown in RPMI-1640 medium containing 10% fetal 
bovine serum, 1X penicillin and streptomycin, and 0.05 mM β-mercaptoethanol at 37°C in a humidified atmos-
phere containing 5% CO2. The cells (5 × 103 cells/well) were seeded into 96-well plate containing growth medium. 
Simultaneously, different concentrations of GCSF, PEG-GCSF, and GCSF-Fc (0.001, 0.01, 0.1, 1, 10, 100 ng/mL) 
were added to each well in a final volume of 100 µL. Phosphate buffered saline (PBS) was used as control sample. 
After 72 h of incubation, 15 µL of 5 mg/mL MTT was added to each well and the cells were kept incubating at 37°C 
for further 4 h in dark. After draining the solutions, 100 µL of DMSO was added to each well to completely solu-
bilize the formed aggregates. The optical density of the solution was measured at 570 nm using an ELISA reader.

Protein dose-response proliferation was analyzed using following equation and Microsoft Excel software.

= + − +Re Bl Max Bl EC conc( )/(1 ( / ) ) (1)Hs
50

The abbreviation is as follows: Re, response of the cells; Bl, baseline at low concentration; Max, the maximum 
response; conc, concentration of the protein; and Hs, Hill coefficient of stimulation.

In vivo experiment on neutropenic rats.  The research protocol was approved by the Institutional Animal 
Care and Use Committee of the Asan Institute for Life Science, and mice were maintained in accordance with the 
Institutional Animal Care and Use Committee guidelines of the Asan Institute for Life Science. All experiments 
were performed in accordance with relevant guidelines and regulations. Seven weeks 220 g Sprague-Dawley rats 
were acclimatised for at least 7 days before experiments. Rats were randomly separated into 7 groups with 5 
rats in each group. Group 1 was used as control group. Six other groups received an intraperitoneal injection of 
100 mg/kg of CPA on day 0 to induce neutropenia. On day 1, these 6 groups received subcutaneous injections 
of phosphate buffered saline (PBS) (group 2), 100 µg/kg GCSF (group 3), 100 µg/kg PEG-GCSF (group 4), 50 µg/
kg GCSF-Fc (group 5), 100 µg/kg GCSF-Fc (group 6) and 300 µg/kg (group 7). More than 3 mL of blood were 
collected from day 0 to day 12 with heparinized syringe. 200 µl sample from the collected blood were analysed 
for complete blood count (CBC) using ADVIA 2120i Hematology System (Siemens Healthineers, Erlangen, 
Germany). The remaining bloods were centrifuged at 1,500 g for 15 min to collect plasma for ELISA assay. The 
GCSF serum levels on days 2, 3, 4 from group 3, 4 and 7 were quantitated using Quantikine human GCSF ELISA 
kits.

Statistical analysis.  All data are presented as the mean ± standard error (SE) of n ≥ 3 of 2 independent 
experiments. Statistical analyses were performed using the SPSS statistical software program (SPSS, version 18.0, 
Chicago, IL). A Student’s t-test was used to determine the statistical significance of group means. All tests were 
two-sided and p-values less than 0.05 were considered statistically significant.

Results
Expression of MBP-GCSF-Fc in E. coli and its purification.  The vector shown in Fig. 1A contain-
ing GCSF with an MBP tag at the N-terminus and IgG1 Fc domain at the C-terminus was generated for use. 
The expression kinetics of MBP-GCSF-Fc and PDIb´a´-GCSF-Fc in E. coli strain BL21 with 0.5 mM IPTG at 
18°C for 16 h is shown in Supplementary Fig. S1. During the isolation process the GCSF-Fc after TEV cleavage 
formed multimers and aggregates hampering further purification (data not shown). Therefore, MBP-GCSF-Fc 
and PDIb´a´-GCSF-Fc were expressed in Shuffle T7 Express. In our previous study, MBP-GCSF or PDIb´a´-
GCSF in BL21(DE3) was expressed well and highly soluble when incubated with 1 mM IPTG at 18°C for 16 h16. 
However, under the conditions of the present study, very few PDIb´a´-GCSF-Fc were expressed (data not shown) 
and MBP-GCSF-Fc was expressed in low amounts (Fig. 1B). To increase the expression level, several conditions of 
induction temperatures, 18°C, 25°C, 30°C and 37°C were tested for the expression of MBP-GCSF-Fc. As a result, 
the expression of protein at 30°C for 5 hrs showed the highest expression and solubility efficiency which were 
approximately 26.7% and 74.5% respectively (Fig. 1B).

After sonication, MBP-GCSF-Fc was present in the supernatant fraction because this protein was soluble 
after induction with IPTG. When the fusion protein was mixed with TEV protease and protein A resin beads 
simultaneously, GCSF-Fc was separated from the fusion protein and bound protein A resin. This target protein 
was eluted off of the beads by low pH buffer (0.1 M Glycine buffer pH 3.5). To prevent the aggregation of protein 
at this low pH, 1 M Tris buffer pH 9.5 with at a ratio of 1:10 was used to neutralize the eluate. Despite this, some 
proteins formed higher multimers and to remove these multimers, a gel filtration column was applied. As a 
result, approximately 90% of GCSF-Fc multimer was removed from GCSF-Fc dimers (Fig. 2C and D). Based on 
SDS-PAGE analysis, the GCSF-Fc dimer was highly pure (more than 95%) and endotoxin level in the product was 
less than 1 EU/µg after endotoxin removal by TritonTM X-114. Finally, approximately 1 mg GCSF-Fc was obtained 
from 1 L of E. coli cultured cells.

http://S1
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To confirm the identity of the purified protein and the disulfide bondings, the peptide was subjected to reduc-
ing (with DTT) and non-reducing (without DTT) conditions and then treated with trypsin and then analyzed 
by LC-MS/MS. The m/z peak lists of reducing and non-reducing samples were entered into the MASCOT search 
database. The result matched to the GCSF and Fc of gamma 3 chain in both reducing and non-reducing condition 
(Supplementary Fig. S2). Additionally, the m/z value of 780.517+ was observed in non-reducing condition only, 
confirming two inter-disulfide bonds of C197-C197 and C200-C200 in Fc region (Supplementary Figs S3 and S4).

PEGylation for GCSF.  PEG was conjugated to the N-terminus of GCSF using a reductive alkylation method 
with 20 kDa mPEG aldehyde at low pH. When the pH was lowered from 8 to 5, GCSF became unstable and 
formed aggregates (data not shown). To overcome this problem, we lowered the reaction pH to 6 and the pro-
tein was stable. After incubation of GCSF with mPEG-CHO and sodium cyanoborohydride, approximately 
50% of PEG was conjugated to GCSF (Fig. 3C). The PEG-GCSF was then separated from non-reacted GCSF 
and mPEG-CHO by a cation exchange column using a sodium phosphate buffer of pH 4, suggesting that the 
PEGylation increased the stability of GCSF at low pH. Two major peaks were observed (Fig. 3C), and SDS-PAGE 
analysis of the elution peaks showed that the earlier peak had a single band of approximately 50 kDa that cor-
responds to PEG-GCSF (Fig. 3B). The non-reacted mPEG-CHO did not bind to the column. Overall, 8 mg of 
PEG-GCSF was obtained from a starting yield of 20 mg GCSF.

Since the PEGylation efficiency was as low as 50% and the GCSF has one remaining N-terminal glycine res-
idue after TEV cleavage, we purified non-Gly GCSF from PDIb´a´-GCSF cleaved by enterokinase light chain 
(EKL) protease (Supplementary Fig. S5). This GCSF isolate was subsequently conjugated with mPEG-CHO using 
the same method as detailed above. As a result, more than 90% of GCSF was conjugated to PEG based on size 
exclusion chromatography (SEC)-HPLC (Supplementary Fig. S6).

In vitro activity of proteins.  The biological activity of the purified GCSF-Fc and PEG-GCSF was measured 
using a proliferation assay with the mouse myelogenous leukemia M-NFS-60 cell line. After incubation of cells 
with purified GCSF, GCSF-Fc and PEG-GCSF at different concentration for 3 days, the cell number and viability 
was measured using an MTT assay. These data showed that the number of cells increased dramatically after incu-
bation with all three proteins and followed a sigmoidal dose-response curves (Fig. 4). The EC50 of GCSF, GCSF-Fc 
and PEG-GCSF were highly similar with a range of: 37 ± 12 pM, 75 ± 13.5 pM and 46 ± 5.5 pM, respectively. The 
hill coefficient was approximately 1.5 for all cases, suggesting that fusion with Fc region or conjugation with PEG 
did not affect the biological activity of GCSF (Fig. 4).

In vivo bioactivity of proteins.  To evaluate the effects of the proteins in an in vivo setting, we injected rats 
with 100 mg/kg of cyclophosphamide (CPA) reagent on day 0 with follow on GCSF candidate protein injections 
on day 1. After CPA application, the level of neutrophils and total white blood cells (WBC) in the peripheral 
blood was sharply reduced and then began to rise after GCSF protein infusion (day 2) (Fig. 5A and B). On day 2, 

Figure 1.  Schematic representation of MBP fused GCSF-Fc construct (A) and expression of MBP fused 
GCSF-Fc at different temperatures (B). GCSF gene was fused with a C-terminal IgG1 Fc domain and an MBP 
tag at the N-terminus. The expression was controlled by the T7 promoter. Arrow between GCSF and MBP 
indicates TEV cleavage site. His6 is N-terminal to the MBP tag. MBP-GCSF-Fc expression was induced by 
0.5 mM IPTG at: 18°C, 25°C, 30°C or 37°C. Arrows indicate the target fusion proteins. The abbreviations are as 
follows: RBS, ribosome binding site, M, molecular weight marker; C, total cell protein before IPTG induction 
as a negative control; I, total cell protein after IPTG induction; P, pellet fraction after cell homogenization; S, 
soluble fraction after cell homogenization.
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the amounts of neutrophils and WBCs in rats injected with PEG-GCSF and GCSF-Fc were significantly higher 
than those in GCSF or the PBS treated group (Fig. 5C and D). Animals treated with PEG-GCSF showed the 
quickest recovery, followed by GCSF-Fc and GCSF, respectively. Of note, on day 6, neutrophils and WBCs of 
PEG-GCSF and GCSF-Fc treated groups were significantly higher than the corresponding values of GCSF treated 
group (Fig. 5C and D). The activity of GCSF-Fc compared to GCSF started to diminish on day 7 when the num-
bers of neutrophil and WBC in GCSF-Fc and GCSF groups equilibrated. The level of WBCs of the GCSF group 
was similar while the neutrophil levels were relatively higher than that of the PBS group. According to these data, 
both PEG-GCSF and GCSF-Fc were effective for resolving neutropenia with a single injection, but GCSF-Fc was 
less effective compared to PEG-GCSF (Fig. 5). Importantly, there was no obvious change in the number of red 
blood cells and platelets during the course of the experiments (data not shown).

Twenty-four, 48 and 72 hours after protein injection, the duration of proteins in the plasma was measured 
using a GCSF ELISA kit. Figure 6 shows that the elimination of GCSF was more rapid than GCSF-Fc and 
PEG-GCSF. Twenty-four hours after injection, GCSF was completely cleared compared to more than 48 h of 
GCSF-Fc and more than 72 h of PEG-GCSF. These data show that conjugation with PEG or fusion with Fc domain 
can significantly increase circulating levels of GCSF due to a prolonged half-life.

Discussion
In this study, we described in detail the soluble prokaryotic expression and simple purification of GCSF-Fc by 
fusion technology with an MBP tag and conventional chromatography. We demonstrate that IgG1 Fc and PEG do 
not appreciably affect GCSF activity as evidenced by the similarity in in vitro bioactivity. Our in vivo experiments 
in neutropenic rats revealed that PEG-GCSF was more effective than GCSF-Fc in neutrophil and WBC recovery 
as well as stability of the protein in plasma.

Recombinant proteins commonly form inclusion bodies when expressed in the cytoplasm of E. coli. Fusion 
technology with tags such as MBP, N-utilization substance protein A, or protein disulfide bond isomerase has 
been shown to be effective for enhancing protein expression as well as solubility16, 19. Because of its relatively small 

Figure 2.  Purification of GCSF-Fc from E. coli. (A) Schematic overview of the GCSF-Fc purification process 
using protein A resin and gel filtration chromatography. (B) SDS-PAGE (10% Tris-tricine gel) analysis of 
GCSF-Fc through different purification steps. M, molecular weight marker; lane 1, total cell extract before IPTG 
induction; lane 2, total cell extract after IPTG induction; lane 3, soluble fraction after cell homogenization; lane 
4, MBP-GCSF-Fc fusion protein was cleaved by TEV protease; lane 5, final GCSF-Fc after purifying by protein A 
resin and gel filtration column. The arrows indicate positions of fusion MBP-GCSF-Fc (87.8 kDa) and GCSF-Fc 
(43.8 kDa). (C) Chromatogram of superdex 200 26/60 gel filtration column after protein A resin step to separate 
homodimers from multimers. GCSF-Fc dimers were collected from 235 mL to 270 mL of retention volume. (D) 
SDS-PAGE of GCSF-Fc under reducing and non-reducing condition. Lane 1, reducing GCSF-Fc (43.8 kDa), 
lane 2, non-reducing GCSF-Fc shows the homodimer with the size of 87.6 kDa.
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Figure 3.  PEGylation process and purification of PEG-GCSF. (A) Schematic overview of PEGylation for 
GCSF and purification of PEG-GCSF. (B) SDS-PAGE analysis of GCSF and PEG-GCSF showed monoPEG was 
conjugated to 1 GCSF molecule. M, molecular weight marker; lane 1, GCSF before PEGylation (18.8 kDa), lane 
2, PEG-GCSF after PEGylation step with mPEG-CHO and purification through SP chromatography (38.8 kDa). 
(C) Chromatogram of HiTrap SP HP column to obtain pure PEG-GCSF. PEG-GCSF with higher negative 
charge was eluted before GCSF.

Figure 4.  Dose-response curves of purified GCSF-Fc, PEG-GCSF and GCSF on M-NFS-60 cell line. The 
number of cells was measured at OD570 following a standard MTT assay protocol. Data are represented as the 
mean ± SE of n ≥ 3 of 2 independent experiments.



www.nature.com/scientificreports/

7SCIenTIfIC RepOrTS | 7: 6480 | DOI:10.1038/s41598-017-06726-7

size, easy purification using MBP chromatography, and efficacy in supporting the expression as well as proper 
folding of target proteins in the reducing environment of E. coli cytoplasm, MBP is largely the tag of choice. For 
the expression of MBP-tagged GCSF-Fc, induction by 0.5 mM IPTG at 30°C for 5 h was the optimal condition for 
expression (Fig. 1B). Nearly 70% of this fusion protein was soluble and this maximized the purification process 
with only the protein A resin (Fig. 2A and B). When the Fc domain alone was expressed in E. coli BL21(DE3), 
multimer and soluble aggregates were formed (data not shown), which may be due to poor disulfide bond for-
mation. To overcome this, MBP-tagged GCSF-Fc was expressed in the Shuffle T7 Express system to support 
disulfide bond formation. Shuffle T7 Express is an engineered E. coli B strain that creates an oxidizing cytoplasm 

Figure 5.  Neutrophils (A and C) and white blood cells (B and D) counts in neutropenic rats received single 
injection of GCSF-Fc, PEG-GCSF and GCSF. On day 0, 5 rats in each group but the control group received 
100 mg/kg CPA to induce neutropenia. On day 1, neutropenic groups received injections of PBS, GCSF (100 µg/
kg), PEG-GCSF (100 µg/kg), or GCSF-Fc (50 µg/kg, 100 µg/kg and 300 µg/kg). Blood samples from the rat 
groups over 12 days were sent for complete blood count (CBC) analysis. Data are means ± SE of 5 rats/group. 
Statistical significance compared to GCSF treatment group: *p < 0.05, **p < 0.01.

Figure 6.  Protein level in plasma after administration of GCSF-Fc, PEG-GCSF and GCSF. The measurements 
were performed at 24 h, 48 h and 72 h after protein injection. Three groups of rats were utilized for plasma 
protein measurement, GCSF (100 µg/kg), PEG-GCSF (100 µg/kg) and GCSF-Fc (300 µg/kg). Data are given as 
means of ± SE of 3 rats/group. The data points at Day 0 were the amount of supplementary proteins, assuming 
that all proteins were diluted completely in rats’ body plasma.
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environment by deleting genes of glutaredoxin reductase and thioredoxin reductase combined with a mutation in 
the peroxiredoxin enzyme. Additionally, this strain continuously expresses the disulfide bond isomerase DsbC in 
the cytoplasm to promote the correction of mis-oxidized proteins into their correct form20. Under these defined 
conditions, the homodimer of GCSF-Fc protein was successfully purified (Fig. 2D).

PEGylation has several advantages for in vitro protein engineering including: protection the target protein by 
increasing stability, reducing renal clearance, and mitigating toxicity21. To date, numerous strategies for GCSF 
PEGylation have been applied, including conjugating PEG at the N-terminus, coupling PEG at cysteine 17 or 
lysine 41, and PEGylation in organic solvent18, 22–24. Covalent attachment of 20 kDa PEG at the N-terminus residue 
of GCSF by reductive alkyl conjugation using mPEG-CHO showed the best conjugation efficacy while remaining 
biologically active18, 25. These previous studies performed the reaction at pH 518, 25 therefore, we also lowered 
the pH to 5 and found that the purified GCSF was completely aggregated (data not shown). The calculated pI of 
GCSF was 5.65 and when we reduced pH from 8 to 5, the protein began to aggregate at pH of 5.65. Therefore, 
we performed the conjugation at pH 6 that allowed the PEGylation reaction to proceed. However, the efficiency 
was low compared to the high PEGylation yield of previous reports which reached 90% or higher18, 25. Our GCSF 
was obtained from MBP-GCSF using TEV protease for tag removal, resulting in a remaining glycine residue at 
the N-terminus (Gly-GCSF). To test whether the low PEGylation efficacy was caused by this N-terminal glycine, 
we purified non-Gly GCSF from PDIb´a´-GCSF fusion construct using EKL protease (Supplementary Fig. S5). 
The conjugation efficiency of this non-Gly GCSF was more than 90% (Supplementary Fig. S6), indicating that the 
remaining glycine from TEV protease cleavage at the N-terminus significantly reduced the conjugation efficiency 
of N-terminal, site-specific, mono-PEGylation of GCSF.

Upon cation exchange chromatography, the PEG-GCSF was eluted earlier than the unreacted GCSF, while 
neutral unreacted PEG did not bind to the column (Fig. 3C). This may be by cause of the PEG shields the surface 
charges of GCSF21. On SDS-PAGE, PEG-GCSF with high purity appeared at size of approximately 50 kDa which 
was higher than the reported molecular weight (Fig. 3B), and is likely caused by PEGs capacity to occupy a larger 
volume in an aqueous environment25.

In vitro proliferation experiment demonstrated that the conjugation of PEG at the N-terminus of GCSF did 
not negatively impact its biological activity (Fig. 4). However, others have reported a decrease of in vitro bioactiv-
ity when the protein was conjugated to PEG26–28. GCSF-Fc showed lower in vitro proliferation activity compared 
to GCSF, which is consistent with a previous report8.

According to previous pharmacokinetics experiments, GCSF-Fc produced in mammalian cells has 5- to 8- 
times longer half-life than GCSF8, 9. Despite this advantage, the eukaryotic production process can be both com-
plex and time consuming. Our study was designed to produce the therapeutic protein fused with the IgG1 Fc 
region in E. coli and to test the half-life and the effectiveness in vitro and in vivo. Our results show that GCSF-Fc 
can confer added benefits (e.g. stability) compared to native GCSF. While GCSF-Fc was more effective than GCSF, 
it was less effective than PEG-GCSF in our in vivo experiments. Our results are disparate from a previous report9 
that showed GCSF-Fc had similar activity to PEG-GCSF in vivo. The lessened effect of GCSF-Fc produced from 
E. coli may be due to the reduced stability of non-glycosylated Fc domain produced in E. coli compared to glyco-
sylated Fc domain29, 30. Or, the non-glycosylated Fc from E. coli might have lower affinity to the FcRn. In general, 
the fusion of GCSF-Fc was produced effectively in E. coli and it had an improved circulating half-life and hemato-
poietic properties compared to GCSF. Our study strongly suggests that, in order to be developed as a biodrug 
produced from a prokaryote in the future, the GCSF-Fc, especially the Fc domain, must be mutated or modified 
for higher stability or higher affinity to FcRn. Collectively, these data are important for cellular engineering of 
bioactive GCSF.
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