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ABSTRACT

We have greatly expanded the Alternative Splicing
Annotation Project (ASAP) database: (i) its human
alternative splicing data are expanded �3-fold over
the previous ASAP database, to nearly 90 000 distinct
alternative splicing events; (ii) it now provides
genome-wide alternative splicing analyses for 15
vertebrate, insect and other animal species; (iii) it
provides comprehensive comparative genomics
information for comparing alternative splicing and
splice site conservation across 17 aligned genomes,
based on UCSC multigenome alignments; (iv) it
provides an �2- to 3-fold expansion in detection of
tissue-specific alternative splicing events, and of
cancer versus normal specific alternative splicing
events. We have also constructed a novel database
linking orthologous exons and orthologous introns
between genomes, based onmultigenome alignment
of 17 animal species. It can be a valuable resource for
studies of gene structure evolution. ASAP II provides
a new web interface enabling more detailed explora-
tion of the data, and integrating comparative
genomics information with alternative splicing data.
We provide a set of tools for advanced data-mining of
ASAP II with Pygr (the Python Graph Database
Framework for Bioinformatics) including powerful
features such as graph query, multigenome align-
ment query, etc. ASAP II is available at http://www.
bioinformatics.ucla.edu/ASAP2.

INTRODUCTION

Alternative splicing plays an important role in protein divers-
ity and gene regulation (1–3). Recent studies on alternative
splicing estimate that 40–70% of human genes are alterna-
tively spliced (4–6). Moreover, many splice variants alter
the function of the protein product, and are involved in
human diseases (7). Thus, alternative splicing is an important

medical target for development of novel diagnostics and
therapeutic drugs (8).

Genome-wide analyses of alternative splicing are mainly
based on publicly available sequence databases such as
GenBank (9) and Swiss-Prot/TrEMBL. HOLLYWOOD (10)
and ASD (11) give comprehensive analyses of alternative
splicing for human and mouse. Notably, those two databases
provide with comparative studies between human and
mouse. Lee et al. (12) constructed DEDB for genome-wide
analysis of alternative splicing for Drosophila melanogaster.
As well as alternative splicing analysis, ECgene (13,14)
gives comprehensive analysis results for functional annotation
of proteins and expression analysis. Furthermore, it has been
recently expanded to nine species.

The Alternative Splicing Annotation Project (ASAP) data-
base (15) is a widely used resource providing a genome-wide
analysis of human alternative splicing and tissue-specific
splicing (4,16–20) based on expressed sequence tag (EST),
messenger RNA (mRNA) and genome sequences. It has
served as the basis for a wide variety of studies (21–28).

Here we describe a major expansion of the ASAP database,
designed to make it a good resource for analyzing and com-
paring alternative splicing between a wide range of animal
genomes. Whereas the original release of ASAP focused
entirely on human data, we have now included genome-
wide analyses of alternative splicing for 15 animal species
from human to nematodes. Furthermore, we have added a
new dimension of comparative genomics tools, for comparing
alternative splicing patterns, conservation of splice sites,
exons and introns, across 17 animal genomes.

MATERIALS AND METHODS

We downloaded UniGene (29), GenBank (9) and Entrez
Genes (30) from NCBI ftp site (UniGene; ftp://ftp.ncbi.nih.
gov/repository/UniGene/, GenBank; ftp://ftp.ncbi.nih.gov/
genbank/, Entrez Genes;ftp://ftp.ncbi.nih.gov/gene/) in Jan-
uary 2006. Genome assembly sequences, RefSeq (31)/
mRNA alignments and RepeatMasker tracks were down-
loaded from UCSC genome browser except for yellow
fever mosquito genome from Ensembl genome browser
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(32). Multigenome alignments for human (hg17), mouse
(mm7), chicken (galGal2), fruit fly (dm2), zebrafish
(danRer3) and western clawed frog (xenTro1) were down-
loaded from UCSC genome browser.

In order to update lists of tissue and cancer versus normal
specific genes for human, we downloaded EST library
information from UniLib (ftp:/ftp.ncbi.nih.gov/repository/
UniLib/). A total of 2895 new human EST libraries were clas-
sified and added into existing 47 tissue categories and normal/
tumor types. In total, 8828 human EST libraries were classi-
fied into 47 tissues and normal/tumor. We used same method
used by Xu and Lee (19) for LOD value calculation for tissue
and normal versus cancer specificity.

Orthologous exons, introns and splice site sequences were
extracted using Pygr, which gives us less than a millisecond access
to any location of any genome in multigenome alignments. More-
over, Pygr can be easily integrated with ASAP II database and
more detailed information will be available at ASAP II website.

We defined as orthologous exons and introns if at least one of
the splice sites of exons (those of flanking exons for introns)
from two species is exactly aligned in multigenome alignments.
This strategy can increase the possibilities of finding orthologous
exons, because the exons can be within well-conserved blocks of
multigenome alignments. Conventional protein similarity-based
method can give only orthologous genes only if protein
sequences are available. Moreover, multigenome alignment-
based method enables us to interpret how alternatively spliced
exons and introns are evolved across distant species.

RESULTS AND DISCUSSION

Alternative splicing analyses

Compared with the previous release of ASAP (15), ASAP II
provides an �3-fold expansion in human alternative splicing

events, to a total of 89 078 distinct alternative splicing rela-
tionships in human, detected within 11 717 genes (UniGene
clusters). Out of the total set of multi-exon genes (22 220),
53% were detected to contain alternative splicing (Table 1).
Focusing on genes with at least one mRNA sequence (for
which our gene model is therefore likely to be full-length,
and which generally have higher EST coverage), 75%
(10 202 out of 13 690) were detected to contain alternative
splicing. The continuing rapid growth in alternative splicing
detection as a function of increased EST and mRNA counts
suggests that the field is still far from saturation, and that
far more experimental data will be required to obtain a
complete catalog of human alternative splicing.

Another major change is the addition of alternative splic-
ing analyses for 14 new animal genomes (Table 1), ranging
from mammals, birds and fish, to insects, C.elegans and
Ciona. This provides a very large dataset of non-human
alternative splicing events (a total 67 095 alternative splicing
relationships, over three-quarters the size of the human alter-
native splicing dataset). However, due to the limited EST
coverage for many animal genomes (e.g. Fugu, honeybee),
these data cannot be considered comprehensive. Numbers
of mapped UniGene clusters can be lower than expected
for Ciona, Fugu and yellow fever mosquito due to the
incomplete genome assemblies. For mouse, 8711 (53%)
out of 16 404 multi-exon genes were detected to contain
alternative splicing and 60% (8203 out of 13 626) for
genes with at least one mRNA. Twenty five percent of
Rat, 22% of western clawed frog, 22% of chicken, 26% of
cow and 19% of fruit fly multi-exon genes were detected
to contain alternative splicing. Proportions of the alterna-
tively spliced multi-exon genes for C.elegans (6%) and
African malaria mosquito (8%) were lower than mammals.
Alternative splicing analyses of 15 most sequenced species
can expand our research area from human to nematodes as

Table 1. Statistics for ASAP II database

Organism Genome
assemblya

UniGene clusters Detected splices/Clusters Isoforms Alternative splicing Alternatively
splicedb (%)

Total Mapped Splices Clusters Relationships Clusters

Human hg17 66 488 47 477 193 023 22 220 260 198 89 078 11 717 53
Mouse mm7 43 104 32 522 141 284 16 404 135 465 33 057 8711 53
Rat rn3 41 687 34 003 82 941 14 195 53 212 7210 3378 24
Western clawed frog xenTro1 33 132 24 617 65 633 10 880 34 293 4836 2349 22
Chicken galGal2 30 470 19 708 51 471 9671 26 557 4244 2154 22
Cow bosTau2 39 432 28 709 60 813 11 448 32 401 6692 3008 26
Dog canFam2 22 930 16 645 29 290 6834 11 424 1633 951 14
C.elegans ce2 20 621 15 546 54 395 12 580 23 393 1309 763 6
Ciona ci2 15 587 1373 5611 972 2161 150 98 10
Zebrafish danRer3 32 400 22 297 67 598 12 136 27 547 2611 1577 13
Fruit fly dm2 16 635 14 568 37 469 9683 26 854 4850 1841 19
Fugu fr1 2355 1980 3014 798 866 33 24 3
Yellow fever mosquito AaegL 1 15 182 10 624 3594 1787 2529 120 87 5
Honeybee apiMel2 5900 5027 6270 2548 2990 90 57 2
African malaria mosquito anoGam1 15 609 14 173 17 278 8013 15 115 1070 605 8

aGenome assembly sequences were downloaded from UCSC genome browser except for Yellow fever mosquito, which was downloaded from Enesmbl genome
browser.
bAlternative spliced genes (%) ¼ No. of alternatively spliced clusters/No. of spliced clusters.
Fifty-three percent of human and mouse multi-exon genes are detected to contain alternative splicing. Focusing on genes with at least mRNA, 75 and 60% of human
and mouse multi-exons genes were detected to contain alternative splicing (ASAP II website for details). Due to limited mRNA and EST coverage (Fugu and
honeybee) and incomplete genome assembly (Fugu, Ciona and yellow fever mosquito), number of mapped clusters (Ciona, 9%; 1373 out of 15 587) or alternatively
spliced clusers (24 for Fugu, 98 for Ciona, 57 for honeybee, 87 for and yellow fever mosquito) can be significantly lower than expected, these data cannot be
considered comprehensive: 19–26% of fruit fly, western clawed frog, chicken, rat and cow multi-exon genes were detected to contain alternative splicing.
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well as comparative and evolutionary studies between dis-
tantly related species.

As an illustration of ASAP II’s value for biological discov-
ery, we performed analyses of tissue-specificity and cancer
versus normal specificity of human alternative splice forms.
ASAP II yielded �2- to 3-fold larger identification of tissue-
specific splice forms than the previous ASAP release (19,20).
We added 2895 new EST libraries to our tissue classification
database (Materials and Methods): each library source was
classified as one of 47 tissue types, and also as tumor versus
normal in origin. We found 1709 high-confidence (LOD > 3)
tissue-specific alternative splicing relationships from 960
genes, and 273 high-confidence (LOD > 3) cancer-specific
relationships from 198 genes. The largest categories of tissue-
specific splice forms were identified from brain/nerve, testis,
skin, muscle and lymph. Users can download all EST library
classification and log-odds (LOD) calculation results from
ASAP II download page and mine their own experimental
candidates.

Comparative genomics analyses

To help researchers easily compare alternative splicing data
between species, we performed a comprehensive comparative
genomics analysis across 17 genomes (Table 2), identifying
orthologous exons, introns and alternative splice events
between these genomes. As a separate analysis that is valid
even when the target genome has little or no alternative splic-
ing data, we also analyzed the conservation of alternative

exons and splice sites across 17 genomes. To do this, we
used the well-established and characterized multigenome
alignments (33) constructed for the UCSC genome browser
(34). Orthologous exons and introns were defined by sharing
at least one splice site in multigenome alignments (Materials
and Methods). Out of 129 981, 85 673 (66%) human internal
exons have at least one orthologous exon, which are identified
by hg17 referenced 17 species multigenome alignments. Total
numbers of orthologous exons found by five different multige-
nome alignments are summarized in Table 2. This method
can give more comprehensive database for orthologous
genes than conventional protein similarity-based method.
Furthermore, we constructed multigenome splice site database
from UCSC multigenome alignments (Figure 1D). These data
give users both the ability to compare observed splicing pat-
terns between experimental data for different species, but
also to study the evolution of alternative exons and splice
sites (by looking at their conservation) even in genomes for
which no splicing data are available.

Database mining and tools

Users can mine ASAP II in several ways:

(i) by using the web interface (below);
(ii) by downloading it as MySQL tables and performing

SQL queries;
(iii) by using Python tools that work directly with the ASAP

II schema, for graph query of alternative splicing graphs
and comparative genomics query of multigenome
alignments.

Although there’s no space to discuss the latter tools (Pygr, the
Python Graph Database Framework for Bioinformatics) here,
extensive documentation is available on the web (http://www.
bioinformatics.ucla.edu/pygr), including many tutorial exam-
ples about mining ASAP II.

Web interface

ASAP II can be searched by several different criteria such as
gene symbol, gene name and ID [UniGene (29), GenBank
(9), etc.]. The web interface provides seven different kinds
of views:

(i) user query, UniGene annotation, orthologous genes and
genome browsers;

(ii) genome alignment;
(iii) exons & orthologous exons;
(iv) introns & orthologous introns;
(v) alternative splicing;

(vi) isoform and protein sequences;
(vii) tissue & cancer versus normal specificity.

ASAP II shows genome alignments of isoforms, exons and
introns in UCSC-like genome browser. Users can easily navi-
gate among all the views by clicking links of interest. Alter-
native and constitutive exons are highlighted in red and blue,
respectively. All alternative splicing relationships with sup-
porting evidence information, types of alternative splicing
patterns, and inclusion rate for skipped exons are listed in
separate tables. Users can also search human data for tissue-
and cancer-specific splice forms at the bottom of the gene
summary page. We report P-values for tissue-specificity as

Table 2. Statistics for orthologous exons and introns

Multiple alignmentsa Exons with
orthologous
exons

Total
internal
exons

Introns with
orthologous
introns

Total
canonical
introns

hg17 referenced 17
species Multigenome
alignments

85 673 129 981 100 447 193 024

mm7 referenced 17
species Multigenome
alignments

81 296 105 260 97 371 141 285

galGal2 referenced 7
species Multigenome
alignments

20 471 36 865 24 973 51 472

danRer3 referenced 5
species Multigenome
alignments

18 977 50 792 22 367 67 599

xenTro1 referenced 5
species Multigenome
alignments

23 428 49 679 26 893 65 634

aOnly orthologous exons and introns that have two exact matches of both
canonical splice sites (U1/U2 and U11/U12). List of species used in multi-
genome alignments is available at UCSC genome browser (34).
Sixty-six percent (85 673 out of 1 29 981) for human and 77% (81 296 out of
105 260) for mouse internal exons have at least one orthologous exons; 52%
(1 00 447 out of 1 93 024) for human and 69% (97 371 out of 1 41 285) for
mouse canonical introns have at least one orthologous introns. Most of ortho-
logous exons and introns were from human and mouse orthologs due to larger
number of mRNA and EST sequences than other genomes: 56, 37 and 47% of
chicken (galGal2), zebrafish (danRer3), and western clawed frog (xenTro1)
internal exons have at least one orthologous exons and 49, 33 and 41% for
orthologous introns. Because a set of genome assemblies used for multigenome
alignments is different from ASAP II calculation for chicken, zebrafish and
western clawed frog (Table 1 for details), numbers of orthologous exons and
intron can be decreased.
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LOD scores, and highlight the results for LOD > 3 and at
least three EST sequences (19,20). A short introduction to
the web interface and a comprehensive user guide are avail-
able at the ASAP II website, http://www.bioinformatics.ucla.
edu/ASAP2.

Comparative genomics is a major focus of the ASAP II
web interface, displaying results from its new orthologous

exons and introns database. For example, it displays the mul-
tiple alignments of splice site sequences as a phylogenetic
tree (Figure 1D), enabling users to infer the evolutionary his-
tory of introns at a glance. In Figure 1D, one can easily that
this pair of splice sites appears to have evolved in an early
mammalian ancestor, but not before. Many applications are
possible. For example, researchers could identify ‘recently

Figure 1. Popup page for orthologous exons, introns and splice sites. (A) List of orthologous genes are described in UniGene summary section. (B) Orthologous
Exons. ‘EXACT’ means both splice sites are exactly aligned in multigenome alignments. Change in protein modularity (remainder divided by three) is denoted as
‘(0 ! 0)’. (C) Orthologous Introns. ‘(1157 ! 2382)’ means human intron (ID 365585) size is increased in rat intron (ID 28953). (D) Multiple alignments of
splice site sequences and its phylogenetic tree generated by UCSC Phylogenetic Tree Gif Maker (34) on the fly. Splice site consensus of this intron (ID 365585)
is well-conserved within close genomes but not in distant genomes; dog (canFam2) and opossum (monDom2).
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evolved splice sites’ by selecting introns whose canonical
splice site sequences (GT/AG) are only conserved within clo-
sely related species, but not in distant species. ASAP II
includes links to comparative genomics information from all
views. All orthologous genes identified by multigenome align-
ments are listed in its annotation summary (Figure 1A). If
the user clicks ‘Show Orthologous Exons/Introns’ on any
page, detailed information will be shown in new window
(Figure 1B and C).

Comparison with other alternative splicing databases

Alternative splicing analysis results can be significantly dif-
ferent between different databases because each database
uses different sequence databases, genome assembly, meth-
ods for sequence alignments, alignment filtering and strin-
gency, etc. Total numbers of alternatively spliced genes and
exons for other databases are summarized in Table 3. ASAP
II has more alternatively spliced genes than ASD for human
(11 717 versus 9929) and mouse (8711 versus 8211). But,
DEDB has more spliced genes than ASAP II (13 222 versus
9683). ECgene has twice as many spliced genes as the other
databases suggesting the use of different stringency criteria
for alignment filtering. HOLLYWOOD has more human
internal exons than ASAP II (151 199 versus 129 981), but
percentage of alternative exons is significantly lower for
human (25% versus 36%) and mouse (13% versus 21%). Pre-
sumably, sequence database for HOLLYWOOD (January
2004) is older than ASAP II (January 2006).

Update and future directions

ASAP II gives alternative splicing analysis of UniGene data
released in January 2006 (Version JAN06). In order to pro-
vide with up-to-date alternative splicing analysis, ASAP II
database will be updated within 2 years if total number of
available sequences are significantly increased. Availability
of genome assembly is essential for supporting new species;
we will add new species if the genome assembly is publicly
available as well as the orthologous Exon/Intron database.

We will also develop novel analysis methods for alterna-
tive splicing such as evolutionary history of exons and introns
and make available in ASAP II. We hope that ASAP II can

become a useful resource for comparative genomics studies
in the post-genome era.
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