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Summary
Background Current methods for the detection and surveillance of urothelial carcinomas (UCs) are often invasive,
costly, and not effective for low-grade, early-stage, and minimal residual disease (MRD) tumors. We aimed to develop
and validate a model from urine sediments to predict different grade and stage UCs with low cost and high accuracy.

Methods We collected 167 samples, including 90 tumors and 77 individuals without tumors, as a discovery cohort.
We assessed copy number variations and methylation values for them and constructed a diagnostic classifier to detect
UC, UCseek, by using an individual read-based method and support vector machine. The performance of UCseek
was validated in an independent cohort derived from three hospitals (n = 206) and a relapse cohort (n = 42) for
monitoring recurrence.

FindingsWe constructed UCseek, which could predict UCs with high sensitivity (92.7%), high specificity (90.7%), and
high accuracy (91.7%) in the independent validation set. The accuracy of UCseek in low-grade and early-stage patients
reached 91.8% and 94.3%, respectively. Notably, UCseek retained great performance at ultralow sequencing depths
(0.3X-0.5X). It also demonstrated a powerful ability to monitor recurrence in a surveillance cohort compared with
cystoscopy (90.91% vs. 59.09%).

Interpretation We optimized an improved approach named UCseek for the noninvasive diagnosis and monitoring of
UCs in both low- and high-grade tumors and in early- and advanced-stage tumors, even at ultralow sequencing
depths, which may reduce the burden of cystoscopy and blind second surgery.

Funding A full list of funding bodies that contributed to this study can be found in the Acknowledgments section.
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Research in context

Evidence before this study
Urothelial carcinoma (UC) is considered the type of cancer
with the highest cost/patient ratio due to its high recurrence
and postsurgical monitoring. Certain FDA-approved tools,
such as urine cytology, UroVysion, and cystoscopy, are used to
detect UC but have some disadvantages of being inaccurate,
invasive, and expensive.
At present, many studies have focused on the diagnostic
models of UC, most of which are based on a single feature,
such as methylation alterations or copy number variations,
with suboptimal specificity or sensitivity, especially for early,
low-grade and minimal residual UCs. Therefore, there is an
urgent need for a sensitive, noninvasive, convenient and
affordable technology to replace these conventional methods
to some extent.

Added value of this study
In this study, we optimized an augmentation method named
"UCseek" and further validated it in a retrospective
multicenter cohort. The results showed that the sensitivity
and specificity of UCseek in the independent validation set

were 92.7% and 90.7%, respectively, which showed potential
clinical feasibility. Furthermore, we demonstrate that UCseek
also has good diagnostic performance for low-grade and
early-stage UC. Meanwhile, UCseek performed well at ultralow
WGBS sequencing depth (0.3X-0.5X), which was not observed
in previous liquid biopsy studies. In addition, we demonstrate
the high accuracy of this method for monitoring UC
recurrence in a multitime-point surveillance cohort,
presenting the high sensitivity of this method for minimal
residual disease.

Implications of all the available evidence
The results of the study proved that the tumor markers we
screened were tumor specific, and UCseek proved to have
good diagnostic performance in early-stage, low-grade
patients and was validated in a multicenter independent
validation set. Therefore, this method demonstrates its
potential in clinical application for noninvasive routine
diagnosis and recurrence monitoring of patients, which can
further reduce the burden on patients.
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Introduction
Urothelial carcinoma (UC) is a malignancy of the uri-
nary tract originating in the bladder, renal pelvis, and/or
ureter (upper tract urothelial carcinoma, UTUC).1 The
high recurrence rate and ongoing invasive monitoring
requirements, such as cystoscopy and ureteroscopy, are
the key contributors to the economic and human toll of
this disease.2 Another commonly used tool for diag-
nosing and monitoring bladder cancer is urine
cytology,3 which is highly specific but lacks sensitivity
(25%–35%), especially for low-grade tumors (4%–

15%)1,3,4 and UTUC.5,6 Several different noninvasive
urine-based tests approved by the FDA, such as NMP22
and UroVysion (FISH), also have low sensitivity for low-
grade or small tumors.7,8 Therefore, it is necessary to
develop sensitive, specific, noninvasive, convenient, and
cost-effective assays to complement the current clinical
practice of UCs, particularly for low-grade and early-
stage tumors.9

A rapidly increasing number of genomic and epi-
genomic studies have demonstrated the potential of uri-
nary DNA for the diagnosis and surveillance of UCs. For
example, Uroseek detects 11 gene mutations and 39
chromosomal abnormalities but needs to be combined
with urine cytology to increase sensitivity.10 EpiCheck
uses a set of 15 methylation markers to detect recurrence
in muscle-invasive bladder cancer patients, but the
overall sensitivity is only 68.2%.11 UroCAD was built by
incorporating all the autosomal chromosomal CNVs for
UCs and has low sensitivity (65.6%) in low-grade tumors.
Previously, we found that the genomic heterogeneity of
CNV profiles was less prevalent between UTUC and
bladder cancer.12 Recently, our epigenomic study showed
that UTUCs and bladder cancers showed higher simi-
larities in terms of DNA methylation profiles than SNP
profiles.12–14 Thus, we hypothesized that noninvasive
biomarkers for UCs based on CNV andDNAmethylation
will perform better in both bladder cancers and UTUCs.
Indeed, we developed UCdetector12 for UCs and GUseek
for genitourinary cancer.15 However, further validation is
needed in multicenter and large-scale cohorts.

In this study, we optimized an enhanced approach
named ‘UCseek’ and further validated it in a retro-
spective multicenter cohort. Furthermore, UCseek out-
performs our previous UC diagnostic method, namely,
"GUseek", in both predictive performance and robust-
ness. Compared with GUseek, the performance of
UCseek was evaluated in a validation dataset, including
low-grade and early-stage UCs and ultralow WGBS
sequencing depths (0.3X-0.5X), as well as in a cohort of
relapsed patients.
Methods
Study design and participants
These samples were obtained from randomly voided
midstream urine in the hospital (Peking University First
Hospital, the Affiliated Hospital of Qingdao University
and Cancer Hospital Chinese Academy of Medical Sci-
ences) with written informed consent obtained from all
patients. All of the participants were aged ≥18 years. All
urine samples were collected for testing prior to
www.thelancet.com Vol 89 March, 2023
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standard-of-care treatments, such as transurethral
resection of bladder tumor (TURBT), cystectomy,
cystoscopy, and other procedures. The pathology diag-
nosis results were reviewed by at least two independent
pathologists. In the discovery cohort, according to the
Chinese guidelines for the diagnosis and treatment of
urothelial carcinoma of the bladder, the incidence of UC
was approximately 3 times higher in men than in
women. Therefore, based on this information, UC
samples with a similar sex ratio in the discovery cohort
were collected. The nontumor samples were collected
randomly. In the independent validation cohort, all the
samples were randomly collected. Sample size calcula-
tion was performed according to the accuracy and
tolerance of UC diagnosis. Since no data were available
to extrapolate the accuracy of UCseek for UC diagnosis,
we expected to find a sensitivity of 90% and a specificity
of 90% according to previous studies analyzing the
biomarker in UC. With a 95% confidence interval (CI)
and 10% precision, a minimum of 70 patients were
required in the current study.

Then, we collected 167 urine samples obtained from
Peking University First Hospital, including samples
from 90 tumor patients and 77 control individuals
without tumors from the cohort study “CAS Precision
Medicine Initiative” with shared medical data and
cancer-free urological diseases such as renal or ureteral
calculus and ureterostenosis in the discovery cohort. To
maintain the excellent performance of the UCseek
model developed from the discovery cohort, we calcu-
lated the number of samples required for an indepen-
dent validation set according to the sample size
estimation method. In the independent validation
cohort, samples were collected from three different
centers, Peking University First Hospital (n = 54), the
Affiliated Hospital of Qingdao University (n = 30) and
Cancer Hospital Chinese Academy of Medical Sciences
(n = 55), as well as 67 volunteers, which included 109
tumor samples and 97 control individuals without tu-
mors (individuals from the cohort study “CAS Precision
Medicine Initiative” with shared medical data and
cancer-free urological diseases such as renal or ureteral
calculus and ureterostenosis). Additionally, 54 tissue
samples were collected, including 45 UC and 9 normal
tissue samples. Moreover, we downloaded SNP6.0 array
copy number data from the TCGA database to verify the
reliability of the copy number marker. In addition, we
followed up 42 patients at multiple time points in an
independent validation set. Eight of the patients were
newly diagnosed patients, and the remaining 34 patients
were followed up. Urine samples from 12 patients were
collected from two follow-up visits as a multi-item point
monitoring dataset.

DNA extraction and WGBS library construction
Urine samples were collected using a cell preservation
solution kit and shipped to the laboratory within 48 h.
www.thelancet.com Vol 89 March, 2023
Urine (50 ml) was centrifuged to obtain the sediment,
and DNA was extracted using Qiagen Cat#: 51306.
DNA purity and quantity were examined with Qubit
4.0. Subsequently, we performed WGBS-seq library
construction by using Ultra II End Repair/dA-Tailing
and Ultra II Ligation modules (NEB Cat#: E7546
and E7595 L) and an EZ DNA Methylation-Gold kit
(Zymo Cat#: D5005). Finally, all the libraries were se-
quenced on a NovaSeq 6000 system to generate 2X150
bp paired-end reads according to the manufacturer’s
protocols.

Tumor-specific methylation analysis at the block
level
A total of 147,888 blocks of tightly coupled CpG sites,
called methylation haplotype blocks (MHBs), were
generated in a previous study16 by combining WGBS
data. Meanwhile, we identified ∼24,0000 UC-specific
MHBs in tumor tissues from UC patients (n = 4). We
performed feature selection using the combined
≈380,000 MHBs. The methylation haplotype load
(MHL) for each MHB in urine sediment was then
calculated. For each MHB, if the proportion of missing
values (NAs) in the sample was greater than 10%, this
MHB region was discarded; otherwise, the NA in the
sample was replaced by the average MHL value of the
MHB. We then calculated the difference for each MHB
between the control and tumor groups using a t test to
reduce the number of markers, followed by LASSO
analysis to obtain the most significantly different
methylation markers.

Identification of CNV markers for discriminating
between UC and noncancer urine sediments
As previously described, we applied the varbin algo-
rithm to extract the copy number profiles from WGBS
data in variable-length bins (∼50000 genomic bins) by
using uniform expected unique read counts.17–19 Unique
reads were counted and normalized using the LOWESS
statistical method, and finally, the GC-corrected ratio of
each bin was obtained. Afterward, the same feature
screening method as the methylation marker was used
to obtain the most significantly different copy number
variation markers.

Construction and validation of the methylation
model
For the methylation model, we calculated the methyl-
ation scores based on the tumor-specific methylation
markers selected above. In brief, we classified each read
of the samples into either a tumor-derived DNA class
(abbreviated as T class) or a nontumor urine-derived
DNA class (abbreviated as N class) and then predicted
tumor-derived methylation scores through the following
process. Step 1: (1) We fitted the distributions of those
markers in the nontumor group and tumor group
according to Equation (1). (2) According to Equation
3
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(2), we calculated the probability that each read belongs
to the nontumor or tumor groups. (3) According to the
probability of all reads, we constructed a maximum
likelihood function using Equation (3) to estimate the
tumor score, called the methylation score. Step 2: In the
discovery set, the methylation scores were used for
model building by randomly partitioning the data into
training and test sets based on a 70%/30% split to obtain
the Youden index more than 100 times, and finally, we
selected the methylation scores corresponding to the
best Youden index as the threshold.20 Compared with
GUseek, the methylation model we adopted is based on
the status of each read of the sample to deconvolute the
patient’s tumor score, while GUseek is based on the
status of a sample. Such a modeling approach can
effectively expand the ability to extract signals from
significantly differentially methylated sites.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
f (markerkT) = Beta(ηkT , ρkT )
f (markerkN) = Beta(ηkN , ρkN) Equation (1)
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩
p(r|m)N = ∏

j
p(rj ⃒⃒Beta(ηN , ρN))

p(r|m)T = ∏
j
p(rj ⃒⃒Beta(ηT , ρT )) Equation (2)
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
P(ri ⃒⃒θ,m) = θ ∗ p(ri ⃒⃒mT )+(1−θ) ∗ p(ri ⃒⃒mN)

log∏I

i
P(ri ⃒⃒θ,m) = ∑I

i

log (P(ri ⃒⃒θ,m)
Equation (3)

where markerk is a 1×k vector (k = c(marker1,marker2,
…,markerk)) representing k methylation differential
regions, j (j = c(CpG1, CpG2, …, CpGj)) indicates the
methylation status of the CpG site on each read (0 or 1
means unmethylated or methylated), i (i ∈ c(read1,read2,
…, readi, readN)) represents one of the reads from all I
reads, and θ indicates the score that this read originates
from the tumor.

Construction and validation of the CNV model
For the CNV model, the scores of CNV classifiers were
obtained by using support vector machine (SVM) anal-
ysis.21 Then, thresholds for the copy number model
were determined by the same strategy as the methyl-
ation model.

Construction and evaluation of the classifier,
termed UCseek
For UCseek, we integrated the scores of the methylation
model and the CNV model according to Equation (4).
The final UCseek scores were obtained based on the
weight w of the two models. The optimal w is 0.45,
determined by maximum likelihood estimation in this
study.22 Unlike GUseek, which uses markers screened
for methylation and copy number to normalize them
into a model for remodeling, our UCseek is constructed
from two different types of information separately to
form an integrated system through an appropriate
weight for tumor diagnosis and monitoring. Subse-
quently, the performance of the methylation model,
CNV model, and UCseek was evaluated in the test set
and independent validation set, receiver operating
characteristic (ROC) curves were plotted, and the area
under the ROC curve (AUC) values were calculated.23

UCseek = w ∗ cnv score+(1−w) ∗Methylation score

Equation (4)

Validation of the selected methylation markers and
copy number markers in tumor and normal tissues
First, the methylation model obtained from urine sam-
ples was used to classify 54 tissues, and the performance
of the methylation model on tissues was evaluated.
Subsequently, for the verification of the copy number
marker, we used the SNP6.0 microarray data in TCGA.
We assigned the CNV segment value to the candidate
CNV region as the copy number information of these
CNV regions to determine whether candidate regions
are also differentiated among tissue samples.

Statistical analysis
The statistical analysis and data visualization used in
this study were performed by using R packages,
including but not limited to the following R packages:
"limma", "e1071", "ROCR", "tidyverse", "ggplot",
"ggpubr", "survminer", "devtools", "dplyr", "survival",
"ComplexHeatmap", "pheatmap", and "caret". All hy-
pothesis tests were two-sided, and P < 0.05 was
considered statistically significant.

Ethics
The study was approved by the Ethics Committee of
Peking University First Hospital (No. 2015(977)), the
Affiliated Hospital of Qingdao University (No. QYFY-
KYLL944311920) and Cancer Hospital Chinese Acad-
emy of Medical Sciences (No. NCC2017-YZ-013).

Data availability
The original sequencing data of the discovery set, in-
dependent validation set, and urothelial carcinoma
tissue data in this study have been deposited in the
Genome Sequence Archive in the National Genomics
Data Center, Beijing Institute of Genomics (China
National Center for Bioinformation) of CAS24 under
accession Nos. PRJCA001203, HRA002284 and
HRA001562.
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Role of funding source
The funders had no role in the study design, data collec-
tion, data analysis, interpretation, or writing of the report.

Results
Data generation and analysis
In this study, the discovery cohort included 90 UC pa-
tients (36 low-grade and 54 high-grade tumors) and 77
control individuals without tumors (Table S1). The in-
dependent validation cohort included 109 UC patients
(13 low-grade and 96 high-grade tumors) and 97 control
individuals without tumors. The study included the
demographic and clinical characteristics of the partici-
pants in detail (Table S1). Ultimately, based on these
data, we developed a model, UCseek, that combined
methylation information and copy number information
to diagnose and monitor UC patients (Fig. 1).

The methylation model has excellent diagnostic
sensitivity for UCs
First, we evaluated the tumor-specific methylation
pattern using MHL scores for signal amplification in
detecting tumor signals in plasma DNA even at shallow
depths.16,25 We identified 60 significantly differentially
Fig. 1: Workflow of data generation and UCseek classifier development
of methylation and copy number variation (CNV) profiles in urinary sed
markers screened based on the differences between cancer patients and
Construction and integration of methylation and CNV models to develo

www.thelancet.com Vol 89 March, 2023
methylated MHBs. Among them, differences in 27
MHBs were also found between tumor and normal
tissues in the WGBS data (Fig. 2a). Hypergeometric
testing revealed that the differentially methylated MHBs
derived from tissues were significantly enriched in
those of the urine sediments (p = 2.62 × 10−12). These
findings suggest that WGBS of urine sediment DNA
can detect tumor-derived DNA methylation events.

Next, we constructed the methylation model using a
probabilistic approach-based method called Cancer-
Detector25 and defined the methylation score to predict
the source of the reads derived from the 60 differentially
methylated MHBs of urine sediments between UC pa-
tients and nontumor controls in the discovery cohort.
The methylation score was significantly higher in pa-
tients with UCs but lower in patients without tumors
(Fig. 2b). Then, to classify UC patients from nontumor
controls, we set an optimal cutoff value for the methyl-
ation score greater than 0.55 according to the Youden
index (Fig. 2c and Fig. S1a). The AUC value of the
methylation model was observed in both the training
and test datasets of the discovery cohort (Fig. 2d).
Additionally, it performed equally well for predicting
UCs from tissue WGBS data (Fig. S1b and Fig. S1c),
for the noninvasive detection and monitoring of UCs. Evaluation
iments using shallow whole-genome bisulfite sequencing (sWGBS)
noncancer people (benign disease patients and healthy individuals).
p an enhanced classifier termed ‘UCseek’.

5
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Fig. 2: The diagnostic performance of the methylation model showed high sensitivity. (a) Box plot showing the distribution of methylation
scores in primary tissue (left panel) (nT = 45, nN = 9) and urine (right panel) (nT = 90, nN = 67) of methylation markers screened from urine
sediment WGBS data between the normal and tumor groups (where N represents the control group and T represents the tumor group). (b) Box
plot showing the significant differences in scores in the methylation model found among healthy individuals (nnormal = 59), benign patients
(nbenign = 18), and tumor patients (ntumor = 90) in the discovery set. (c) Manhattan plot showing the significantly different distribution of the
methylation scores of the methylation model between control and tumor samples in the discovery set (n = 167). The green line represents the
threshold of the methylation model. The control group contained healthy individuals and benign patients. (d) ROC curves and the corresponding
AUC values of the methylation model in the training set and test set. (e) Confusion matrix of the methylation model in the independent
validation set. (f) Bar plot showing the sensitivity, specificity, and accuracy of the methylation model in the training set, test set, and independent
validation set (n = 206); the red line indicates 80% accuracy. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 by Wilcoxon tests.
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which further suggested that WGBS of urine sediment
DNA can detect tumor-derived DNA methylation events.
Importantly, the methylation model achieved a sensi-
tivity of 90.8% and a specificity of 81.4% in the inde-
pendent validation cohort (Fig. 2e). Therefore, the
methylation model showed moderate specificity (Fig. 2f)
but excellent sensitivity.

The CNV model has excellent specificity in the
detection of UCs
Considering that CNVs are relatively rare and less
extensive in normal-appearing urothelium than in
tumors, to further improve the diagnostic potential of
urine sediment DNA with WGBS data, we focused on
CNVs that can be accurately evaluated with WGBS
data.15 Similarly, we identified 40 regions with the
most significant differences in copy number patterns
between UC and nontumor urine samples. Next, we
performed unsupervised clustering with selected CNV
markers. As expected, these markers could distinguish
UC samples from normal samples in both training
and test data (Fig. 3a), as well as the tumor tissue
from normal tissue in the TCGA bladder cancer
dataset (Fig. 3b), suggesting that the CNV markers
www.thelancet.com Vol 89 March, 2023
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Fig. 3: The diagnostic performance of the CNV model showed high specificity. (a) Unsupervised clustering results of the copy number
markers in the training set (left panel) and test set (right panel) screened by urine sediment WGBS data (n = 167). (b) Unsupervised clustering of
copy number markers in the TCGA validation dataset (n = 448), showing the potential classification efficacy of these screened markers on UC
tissues. (c) Box plot showing the significant differences in scores of the CNV model among healthy individuals, benign patients, and tumor
patients in the discovery set (n = 167). (d) Manhattan plot showing the significantly different distribution of the CNV scores of the CNV model
between control and tumor samples in the discovery set (n = 167). The green line represents the threshold of the CNV model. The control group
contained healthy individuals and benign patients. (e) ROC curves and the corresponding AUC values of the CNV model in the training set and
test set. (f) Confusion matrix of the CNV model in the independent validation set. (g) Bar plot showing the sensitivity, specificity, and accuracy
values of the CNV model in the training set, test set, and independent validation set (n = 206). The red line represents 80% accuracy. *P < 0.05,
**P < 0.01, ***P < 0.001, ****P < 0.0001, ns indicates not significant by Wilcoxon tests.

Articles
identified in urine sediment DNA are specific markers
for UCs.

Next, we constructed the CNV model based on a
support vector machine (SVM) machine learning algo-
rithm to perform the classification task with the 40
selected CNV markers of urine sediment. Similarly, the
CNV score of urine sediment DNA was significantly
higher in UC patients than in nontumor controls
(Fig. 3c). An optimal cutoff value greater than 0.60 was
www.thelancet.com Vol 89 March, 2023
set according to the Youden index (Fig. 3d). Notably, high
AUC values were observed in both the training and test
datasets of the discovery cohort (Fig. 3e). The CNV model
achieved a sensitivity of 78% and a specificity of 94.8% in
the independent validation cohort (Fig. 3f). As expected,
the CNV model showed excellent diagnostic specificity in
both the discovery cohort and validation cohort (Fig. 3g).
Collectively, this CNV model has excellent specificity but
moderate sensitivity in detecting UCs.
7
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Construction of an ensemble model, UCseek, by
combining the DNA methylation model and CNV
model
Considering the high sensitivity of the DNA methyl-
ation model and the high specificity of the CNV model
described above, we integrated them to obtain a new
diagnostic model, referred to as UCseek (Fig. 4a). The
UCseek scores were significantly different between tu-
mor patients and nontumor controls (Fig. 4b). Similarly,
we set an optimal cutoff value for the UCseek score
Fig. 4: UCseek has better performance than the methylation model
integrating the methylation model and the CNV model. The optimal thre
showing the significant differences in UCseek scores among healthy in
(n = 167). (c) Manhattan plot showing the scores of UCseek between the c
green line represents the UCseek threshold. The control group containe
corresponding AUC values of UCseek in the training set and test set. (e) C
plot showing the sensitivity, specificity and accuracy of UCseek in the train
indicates an accuracy of 80%. (g) Bar plot showing the accuracy, sensitivity
(n = 206), where the red line represents the historical 90% accuracy. (h) Ba
and high-grade (n = 139) (left) and early- (n = 123) and late-stage patien
detection in urine samples (n = 38). *P < 0.05, **P < 0.01, ***P < 0.001
greater than 0.46 by the Youden index (Fig. 4c). UCseek
exhibited excellent diagnostic ability in the discovery
cohort (Fig. 4d) and in the independent validation
cohort with high sensitivity (92.7%) and specificity
(90.7%) (Fig. 4e and f). The ensemble model UCseek
outperformed the methylation model and the CNV
model (Fig. 4g). Moreover, UCseek performed equally
well for both high-grade or late-stage tumors and low-
grade or early-stage tumors (Fig. 4h). Notably, we per-
formed FISH tests and urine cytology tests in 38 cases
or the CNV model. (a) The UCseek diagnostic model obtained by
shold of UCseek is 0.46 according to the Youden index. (b) Box plot
dividuals, benign patients, and tumor patients in the discovery set
ontrol and tumor groups in the training dataset and test dataset. The
d healthy individuals and benign patients. (d) ROC curves and the
onfusion matrix of UCseek in the independent validation set. (f) Bar
ing set, test set, and independent validation set (n = 206); the red line
, and specificity of the three models in the independent validation set
r plot showing the diagnostic performance of UCseek in low- (n = 49)
ts (n = 55) (right). (i). Histogram of the accuracy of UCseek and FISH
, ****P < 0.0001 by Wilcoxon tests.

www.thelancet.com Vol 89 March, 2023
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and 34 cases (Table S2) of the discovery and validation
cohorts, and the results showed that UCseek signifi-
cantly outperformed the FISH test (Fig. 4i) and urine
cytology (Fig. S2a).

Moreover, our previous study showed that UCs can
be detected based on the CNV profiles of urinary
cfDNA.12 Thus, we hypothesized that the UCseek
model should also perform well with whole urine
DNA (cellular and/or cell-free DNA), which can be
purified easily and reliably. In fact, ten of the samples
with FISH results were whole urine. We compared
the performance of UCseek based on whole urine
DNA and FISH in these UC patients. Notably, the
accuracy of the UCseek model predictions exceeded
that of FISH (90% vs. 70%) (Fig. S2b). Moreover, we
found that the UCseek scores were significantly
correlated with advanced grade (Fig. S2c), but there
was no obvious difference in sex, age, or stage
(Fig. S2d–f). Collectively, the UCseek model based on
urinary cellular and/or cell-free DNA not only facili-
tated the detection of early-stage UCs but also offered
practical advantages for urine collection, such as more
frequent use and home use.
Fig. 5: UCseek showed high concordance and classification performan
plots illustrating the Pearson’s correlation coefficient of the scores of UC
Depth simulation was performed for 206 samples in the independent v
1.5X∼2.5X. The data at these three different depths are consistent with th
axis represents the original depth sequencing data and the Y-axis repr
calculated by the Pearson correlation coefficient. (b) AUC values of UCseek
Bar plots showing the performance of UCseek in the independent validati
and accuracy. (d) The accuracy of UCseek for different stages at different s
of UCseek for high and low grades at different simulation depths in the
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The subsampling results showed that UCseek is an
ultrasensitive and robust UC detection method
To evaluate the performance ofUCseek at low sequencing
depths, we randomly subsampled raw data with ratios of
10%, 30%, and 50% for the samples from the indepen-
dent validation cohort. We found that the Pearson corre-
lation values of the scoresUCseek, themethylationmodel
and the CNV model were very high between the original
3X-5X depths and the subsampled depths (Fig. 5a and
Figs. S3a and S3b). UCseekmaintained high accuracy at a
depth down to 0.9X-1.5X, whereas it decreased moder-
ately at a depth of 0.3X-0.5X (Fig. 5b). In particular, we
found that the specificity but not the sensitivity ofUCseek
decreased significantly at the 0.3X-0.5X depth (Fig. 5c).
The results suggested that the CNV model may perform
suboptimally at ultralow depths. Although the specificity
of the CNV model decreased significantly at a depth of
0.3X-0.5X (Figs S3c and S3d), the methylation model
maintained a relatively good performance (Figs. S3c and
S3d). Furthermore, UCseek can sensitively detect low-
stage and early-stage tumors even at low sequencing
coverage (Fig. 5d and e). Therefore, UCseek holds great
potential to detect cancer early and cost effectively.
ce with the original results at low-depth sequencing. (a) Scatter
seek between different sequencing depths and the original depths.
alidation set, with 3 different depths: 0.3X∼0.5X, 0.9X∼1.5X, and
e prediction results of the original depth data in UCseek, where the X-
esents the different depth sequencing data. The concordance was
for the independent validation set at different depths (n = 206). (c)
on set at different simulation depths, including sensitivity, specificity
imulation depths in the independent validation set. (e) The accuracy
independent validation set (n = 206).
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UCseek has better capability than cystoscopy for
monitoring recurrence and small lesions
Given that UCseek performed well at the early stage
(Fig. 4h), we further collected a surveillance cohort
(n = 42) including the first-diagnosis cohort (n = 8) and
the postintent-to-treat cohort (n = 34), with urine sam-
ples and cystoscopy and/or MR imaging follow-up data
(Table S3). Indeed, UCseek gave a positive prediction
for all 8 patients, including Ta high-grade (n = 2), T1
high-grade (n = 3), T3a high-grade (n = 2) and T3b high-
grade (n = 1). In addition, 4 out of the 8 patients were
subjected to repeated transurethral resection of bladder
Fig. 6: UCseek assay results and timing of treatment for each patient i
UCseek-predicted results, cystoscopy results, and imaging results were m
surgery (n = 8). (b) Patients with consistent cystoscopy and UCseek result
specimens were obtained before surgery on the same day. (c) Patients w
ological information is shown in Figure A, and the specimens were obt
accuracy of cystoscopy and UCseek for newly diagnosed patients (left) and
were newly diagnosed at the first diagnosis, and 22 patients experienced
UCseek. The cystoscopic images of one patient at two follow-up visits
cystoscopy at the first follow-up visit, yet UCseek detected a tumor sign
Recurrence-free survival (RFS) according to the UCseek scores in the recurre
tests. (g) The bar plot shows the sensitivity of UCseek diagnosis.
tumor (Re-TURBT), and UCseek gave a consistent pre-
diction with Re-TURBT in 3 patients (Fig. 6a). These
results further showed the ultrasensitivity of UCseek in
detecting small tumors (Fig. 6a).

Next, in the postcurative-intent therapy patients
(n = 21), UCseek gave a consistent prediction with Re-
TURBT in 20 of 21 patients. The patient with one
exception, 391–11, was predicted to be negative by
UCseek but positive by Re-TURBT. Notably, the patient
was identified as having a recurrent tumor 22 months
later by Re-TURBT (Fig. 6b). More importantly, in the
post curative-intent therapy patients (n = 13), UCseek
n the surveillance cohort. (a) Patients with newly diagnosed UC. The
arked, and the specimens were obtained on the same day before

s (n = 21). The pathological information is shown in Figure a, and the
ith inconsistent cystoscopy and UCseek results (n = 13). The path-
ained before surgery on the same day. (d) Histogram showing the
for relapsed patients (right). In this recurrence cohort, eight patients
recurrence. (e) Example of a patient with minimal tumor detected by
and the corresponding UCseek scores. This patient was missed by
al, which was subsequently confirmed by the second cystoscopy. (f)
nce cohort (n = 26). Statistical significance was evaluated by log-rank
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gave a positive prediction but was negative by Re-
TURBT, and 8 out of 13 patients were confirmed to
have recurrence by Re-TURBT within 1 year of follow-
up (Fig. 6c). Overall, we found that UCseek accurately
detected 20 of 22 (90.91%) patients with recurrence, but
cystoscopy detected only 13 of 22 (59.09%) recurrent
patients (Fig. 6d), suggesting that UCseek could serve as
a noninvasive and highly sensitive approach to predict
the recurrence of bladder cancer by monitoring small
lesions. The good performance of this model is high-
lighted by a patient who was detected by UCseek but
was missed by ordinary cystoscopy (Fig. 6e). In this case,
the lesion was not observed by cystoscopy but was later
diagnosed as bladder cancer after half a year with a
higher UCseek score (Fig. 6e). Consistently, Kaplan–
Meier survival curves for recurrence-free survival
(RFS) further showed that patients with detectable tu-
mor DNA by UCseek recurred at a median of 6 months
after definitive therapy (Fig. 6f). Of the 24 patients with
tumor DNA detectable by UCseek, 20 recurred, while of
the 12 patients without tumor DNA detectable by
UCseek, only 2 recurred (Fig. 6g). Therefore, UCseek
may serve as an effective method for the detection of
early-stage, minimal, residual, and recurrent tumors,
which in turn may improve disease management.
Discussion
The success of early cancer detection largely relies on (i)
high-quality cancer-specific markers and (ii) computa-
tional methods for the ultrasensitive detection of tiny
amounts of tumor ctDNA. In this study, we developed
an integrated machine learning-based approach called
UCseek to incorporate both CNV and DNA methylation
markers for the ultrasensitive early detection and
recurrence monitoring of UCs. In recent years, signifi-
cant research effort has been focused on the develop-
ment of urinary biomarkers for the noninvasive and
cost-effective detection of variations in protein expres-
sion or chromosomal or DNA methylation instability
with low coverage whole genome sequencing or bisulfite
sequencing in either cfDNA or genomic DNA for UCs.
For example, urine protein IL-1, IL-1ra, and IL-8 were
found to be able to distinguish control urine from
various bladder cancer stages with specificity values
exceeding 0.9 in an independent cohort of 80 urine
samples upon ELISA validation.26 For urine tumor
DNA, an assay named UroCAD identified UCs by
detecting CNVs from urine-exfoliated cells by whole
genome sequencing with an overall sensitivity of 80.4%
and specificity of 94.9% in the external validation cohort
of 95 participants but showed slightly low sensitivity
(63.6%) for low-grade tumors.27 A 2-marker-based
methylation assay using mass spectrometry, termed
utMeMA for the detection of urinary tumor DNA, had a
sensitivity of 91.7% and a specificity of 77.3% in the
external validation cohort of 175 participants and
www.thelancet.com Vol 89 March, 2023
showed a sensitivity of 69.2% for low-grade tumors.28 In
addition, a GHSR/MAL panel with 9 methylation
markers achieved good performance in urine pellets
with a sensitivity of 78.6% and a specificity of 91.7%, but
without further validation.29 In addition to these studies,
our research group previously developed two new
models, UCdetector (sensitivity 78.6%, specificity 87.5%
in the external validation cohort of 52 participants) and
GUseek (without an independent validation cohort), for
UCs or genitourinary cancer by using urinary cell-free
DNA and cellular DNA based on CNVs and DNA
methylation markers, which need further validation.12,30

Here, the key considerations of (i) and (ii) promised, as
demonstrated, that our method UCseek could perform
well compared to the other methods. As expected, our
UCseek exhibited an excellent prediction sensitivity of
92.7% in the external validation cohort of 206 partici-
pants, which outperformed the previous UC detection
methods, i.e., UroCAD, UCdetector and GHSR/MAL
panel. Moreover, UCseek outperformed utMeMA
(90.7% vs. 83.1%) and UCdetector (90.7% vs. 87.5%) in
terms of prediction specificity in the independent vali-
dation cohort (n = 206). To further validate the perfor-
mance of UCseek, a large-scale, multicenter, and
prospective clinical trial (ChiCTR2200063932) for low-
and high-grade UCs in China is ongoing. Collectively,
UCseek showed remarkable sensitivity and specificity
for the prediction of UCs, which has great application
potential in the clinic.

In contrast, it has been shown that low-grade UCs
accumulate fewer CNVs than high-grade UCs13,31; thus,
patients with limited CNVs cannot be identified by
methods such as UroCAD. Moreover, the moderate
decrease in detection specificity for DNA methylation
markers may be due to some cancer-specific comethy-
lated markers also being tightly coupled with methylated
CpGs in urothelial cells. Consistently, it has been shown
that the loss of methylation linkage disequilibrium in
cancer cells was validated, but the majority of MHBs in
cancers still contain tightly coupled CpGs compared
with matched normal tissues.16

Moreover, compared to our previous diagnosticmodel
GUseek, UCseek achieved better results in UC detection,
especially at low sequencing depths (0.3X-0.5X), which
indicates that it can become a low-cost cancer detection
method. A unified threshold for samples with various
sequencing depths can be assigned for cancer diagnosis.
More importantly, the performance of UCseek was
further validated in an independent validation cohort
(n = 206), including a surveillance cohort (n = 42). These
advantages were not proven by GUseek before, so
UCseek is more likely to be applied in clinical practice.

We acknowledge several limitations of our study.
First, this study only primarily analyzed a single land-
mark timepoint and did not systematically collect serial
longitudinal urine draws for all patients in the surveil-
lance cohort. Second, only a limited number of benign
11
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diseases and low-grade patients in an independent
validation set were included in the current study.
Furthermore, a multicenter, blinded clinical trial
including more benign diseases is needed to validate the
clinical application of UCseek to identify UC from pa-
tients with urinary system diseases. Additionally,
further studies are needed to validate and expand its
clinical utility in detecting minimal residual disease and
predicting recurrence.

Taken together, UCseek could be a highly specific,
robust, and noninvasive urothelial carcinoma diagnostic
method with improved accuracy compared with the
DNA methylation model or the CNV model alone. It
may be used as a noninvasive approach for diagnosis
and recurrence surveillance in UCs prior to the use of
cystoscopy, which would largely reduce the burden on
patients. We optimized an improved approach named
UCseek for the noninvasive diagnosis and monitoring
of UCs in both low- and high-grade tumors and in early-
and advanced-stage tumors, even at ultralow sequencing
depths, which may reduce the burden of cystoscopy and
blind second surgery. Overall, our findings help to make
a major step toward the clinicalization of methods for
diagnosing UC and provide more precise and person-
alized treatment recommendations for patients who
require long-term monitoring for recurrence.

Contributors
WC, XB, LZ and XL conceived the project. PW, YS and DZ performed
the experiments. PW, YL and JZ verified the underlying data, had full
access to all of the data in the study and take responsibility for the
integrity of the data and the accuracy of the data analysis. PW, YS, and
DZ conducted the bioinformatics analyses. JZ, JS, MZ, YL, ZY, YT, QZ,
JQ, and MZ provided technical or material support. WC, PW, YS and JZ
wrote the manuscript with help from all of the authors. All authors read
and approved the final manuscript.

Data sharing statement
The original sequencing data of the discovery set, independent valida-
tion set, and urothelial carcinoma tissue data in this study have been
deposited in the Genome Sequence Archive in the National Genomics
Data Center, Beijing Institute of Genomics (China National Center for
Bioinformation) of CAS under accession Nos. PRJCA001203,
HRA002284 and HRA001562 at https://ngdc.cncb.ac.cn/gsa/. For the
TCGA-BLCA cohort, copy number segment data were obtained from
UCSC Xena at https://xenabrowser.net/datapages/.

Declaration of interests
The authors declare no potential conflicts of interest.

Acknowledgments
We thank the UC cancer patients and their families for their partici-
pation and for providing their UC specimens for the advancement of
cancer research. We also thank the Peking University First Hospital, the
Affiliated Hospital of Qingdao University and Cancer Hospital Chinese
Academy of Medical Sciences for preparing the specimens for this
study. This work was supported by the National Key R&D Program of
China (2018YFC2000100, 2019YFA0110900 to W.C.), the CAS Strategic
Priority Research Program (XDA16010102 to W.C.), the National Nat-
ural Science Foundation of China (82173061 to W.C., 82103426 to Y.L.),
CAMS Innovation Fund for Medical Sciences (CIFMS) (2021-I2M-C&T-
B-052, 2021-I2M-1-033), Beijing Hope Run Special Fund of Cancer
Foundation of China (LC2017A15).
Appendix A. Supplementary data
Supplementary data related to this article can be found at https://doi.
org/10.1016/j.ebiom.2023.104437.
References
1 Babjuk M, Burger M, Comperat EM, et al. European association

of urology guidelines on non-muscle-invasive bladder cancer
(TaT1 and carcinoma in situ) - 2019 update. Eur Urol. 2019;76:
639–657.

2 Lotan Y, Svatek RS, Sagalowsky AI. Should we screen for bladder
cancer in a high-risk population? Cancer. 2006;107:982–990.

3 Dimashkieh H, Wolff DJ, Smith TM, Houser PM, Nietert PJ,
Yang J. Evaluation of urovysion and cytology for bladder cancer
detection: a study of 1835 paired urine samples with clinical and
histologic correlation. Cancer Cytopathol. 2013;121:591–597.

4 Sweis RF, Galsky MD. Emerging role of immunotherapy in
urothelial carcinoma-Immunobiology/biomarkers. Urol Oncol.
2016;34:556–565.

5 Messer J, Shariat SF, Brien JC, et al. Urinary cytology has a poor
performance for predicting invasive or high-grade upper-tract
urothelial carcinoma. BJU Int. 2011;108:701–705.

6 Tanaka N, Kikuchi E, Kanao K, et al. The predictive value of positive
urine cytology for outcomes following radical nephroureterectomy
in patients with primary upper tract urothelial carcinoma: a multi-
institutional study. Urol Oncol. 2014;32:48.e19–48.e26.

7 Chou R, Gore JL, Buckley D, et al. Urinary biomarkers for diag-
nosis of bladder cancer: a systematic review and meta-analysis. Ann
Intern Med. 2015;163:922–931.

8 Lin T, Liu Z, Liu L, et al. Prospective evaluation of fluorescence in
situ hybridization for diagnosing urothelial carcinoma. Oncol Lett.
2017;13:3928–3934.

9 Mancini M, Zazzara M, Zattoni F. Stem cells, biomarkers and ge-
netic profiling: approaching future challenges in urology. Urologia.
2016;83:4–13.

10 Springer SU, Chen CH, Rodriguez Pena MDC, et al. Non-invasive
detection of urothelial cancer through the analysis of driver gene
mutations and aneuploidy. Elife. 2018;7:e32143.

11 Mancini M, Righetto M, Zumerle S, Montopoli M, Zattoni F.
The bladder EpiCheck test as a non-invasive tool based on the
identification of DNA methylation in bladder cancer cells in the
urine: a review of published evidence. Int J Mol Sci. 2020;21:
6542.

12 Ge G, Peng D, Guan B, et al. Urothelial carcinoma detection based
on copy number profiles of urinary cell-free DNA by shallow whole-
genome sequencing. Clin Chem. 2020;66:188–198.

13 Guan B, Liang Y, Lu H, et al. Copy number signatures and clinical
outcomes in upper tract urothelial carcinoma. Front Cell Dev Biol.
2021;9:713499.

14 Lu H, Liang Y, Guan B, et al. Aristolochic acid mutational signature
defines the low-risk subtype in upper tract urothelial carcinoma.
Theranostics. 2020;10:4323–4333.

15 Xu Z, Ge G, Guan B, et al. Noninvasive detection and localization
of genitourinary cancers using urinary sediment DNA methylomes
and copy number profiles. Eur Urol. 2020;77:288–290.

16 Guo S, Diep D, Plongthongkum N, Fung HL, Zhang K, Zhang K.
Identification of methylation haplotype blocks aids in deconvolu-
tion of heterogeneous tissue samples and tumor tissue-of-origin
mapping from plasma DNA. Nat Genet. 2017;49:635–642.

17 Navin N, Kendall J, Troge J, et al. Tumour evolution inferred by
single-cell sequencing. Nature. 2011;472:90–94.

18 Baslan T, Kendall J, Rodgers L, et al. Genome-wide copy number
analysis of single cells. Nat Protoc. 2012;7:1024–1041.

19 Ulz P, Belic J, Graf R, et al. Whole-genome plasma sequencing
reveals focal amplifications as a driving force in metastatic prostate
cancer. Nat Commun. 2016;7:12008.

20 Fluss R, Faraggi D, Reiser B. Estimation of the Youden Index and
its associated cutoff point. Biom J. 2005;47:458–472.

21 Cao LJ, Tay FH. Support vector machine with adaptive parameters
in financial time series forecasting. IEEE Trans Neural Netw.
2003;14:1506–1518.

22 Lee G, Lee MJ. Regression discontinuity for binary response and
local maximum likelihood estimator to extrapolate treatment. Eval
Rev. 2022. https://doi.org/10.1177/0193841X221105968.

23 Zweig MH, Campbell G. Receiver-operating characteristic (ROC)
plots: a fundamental evaluation tool in clinical medicine. Clin
Chem. 1993;39:561–577.
www.thelancet.com Vol 89 March, 2023

https://ngdc.cncb.ac.cn/gsa/
https://xenabrowser.net/datapages/
https://doi.org/10.1016/j.ebiom.2023.104437
https://doi.org/10.1016/j.ebiom.2023.104437
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref1
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref1
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref1
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref1
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref2
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref2
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref3
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref3
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref3
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref3
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref4
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref4
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref4
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref5
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref5
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref5
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref6
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref6
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref6
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref6
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref7
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref7
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref7
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref8
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref8
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref8
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref9
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref9
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref9
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref10
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref10
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref10
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref11
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref11
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref11
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref11
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref11
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref12
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref12
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref12
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref13
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref13
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref13
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref14
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref14
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref14
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref15
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref15
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref15
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref16
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref16
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref16
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref16
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref17
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref17
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref18
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref18
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref19
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref19
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref19
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref20
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref20
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref21
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref21
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref21
https://doi.org/10.1177/0193841X221105968
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref23
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref23
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref23
www.thelancet.com/digital-health


Articles
24 Database resources of the BIG data center in. Nucleic Acids Res.
2018;46:D14–D20.

25 Li W, Li Q, Kang S, et al. CancerDetector: ultrasensitive and non-
invasive cancer detection at the resolution of individual reads us-
ing cell-free DNA methylation sequencing data. Nucleic Acids Res.
2018;46:e89.

26 Vanarsa K, Enan S, Patel P, et al. Urine protein biomarkers of
bladder cancer arising from 16-plex antibody-based screens. Onco-
target. 2021;12:783–790.

27 Zeng S, Ying Y, Xing N, et al. Noninvasive detection of urothelial
carcinoma by cost-effective low-coverage whole-genome sequ-
encing from urine-exfoliated cell DNA. Clin Cancer Res. 2020;
26:5646–5654.
www.thelancet.com Vol 89 March, 2023
28 Chen X, Zhang J, Ruan W, et al. Urine DNA methylation assay
enables early detection and recurrence monitoring for bladder
cancer. J Clin Invest. 2020;130:6278–6289.

29 Hentschel AE, Nieuwenhuijzen JA, Bosschieter J, et al. Compara-
tive analysis of urine fractions for optimal bladder cancer detection
using DNA methylation markers. Cancers (Basel). 2020;12:859.

30 Wolff EM, Chihara Y, Pan F, et al. Unique DNA methylation pat-
terns distinguish noninvasive and invasive urothelial cancers and
establish an epigenetic field defect in premalignant tissue. Cancer
Res. 2010;70:8169–8178.

31 Hurst CD,AlderO, Platt FM, et al. Genomic subtypes of non-invasive
bladder cancer with distinct metabolic profile and female gender bias
in KDM6A mutation frequency. Cancer Cell. 2017;32:701–715.
13

http://refhub.elsevier.com/S2352-3964(23)00002-6/sref24
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref24
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref25
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref25
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref25
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref25
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref26
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref26
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref26
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref27
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref27
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref27
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref27
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref28
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref28
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref28
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref29
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref29
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref29
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref30
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref30
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref30
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref30
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref31
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref31
http://refhub.elsevier.com/S2352-3964(23)00002-6/sref31
www.thelancet.com/digital-health

	UCseek: ultrasensitive early detection and recurrence monitoring of urothelial carcinoma by shallow-depth genome-wide bisul ...
	Introduction
	Methods
	Study design and participants
	DNA extraction and WGBS library construction
	Tumor-specific methylation analysis at the block level
	Identification of CNV markers for discriminating between UC and noncancer urine sediments
	Construction and validation of the methylation model
	Construction and validation of the CNV model
	Construction and evaluation of the classifier, termed UCseek
	Validation of the selected methylation markers and copy number markers in tumor and normal tissues
	Statistical analysis
	Ethics
	Data availability
	Role of funding source

	Results
	Data generation and analysis
	The methylation model has excellent diagnostic sensitivity for UCs
	The CNV model has excellent specificity in the detection of UCs
	Construction of an ensemble model, UCseek, by combining the DNA methylation model and CNV model
	The subsampling results showed that UCseek is an ultrasensitive and robust UC detection method
	UCseek has better capability than cystoscopy for monitoring recurrence and small lesions

	Discussion
	ContributorsWC, XB, LZ and XL conceived the project. PW, YS and DZ performed the experiments. PW, YL and JZ verified the un ...
	Data sharing statementThe original sequencing data of the discovery set, independent validation set, and urothelial carcino ...
	Declaration of interests
	Acknowledgments
	Appendix A. Supplementary data
	References


