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A B S T R A C T   

Perilla seed meal is an important agricultural by-product of perilla oil extraction. The antioxidant 
and anti-aging activities of perilla seed meal protein hydrolysate were investigated, and the 
bioactive peptides were identified to maximize the utilization of perilla seed meal resources. Anti- 
aging peptides were identified using a combination of peptidomics and in silico bioinformatics. 
Furthermore, the potential molecular mechanism of these peptides was explored through mo-
lecular docking and RT-PCR. The results showed a significant anti-aging properties of F2 (MW 3 
kDa ~5 kDa) by inhibition of reactive oxygen species (ROS) production and β-galactosidase ac-
tivity. Nine novel peptides were identified from F2 and subsequently synthesized to explore their 
bioactivities. The two peptides, NFF and PMR, were found to promote the proliferation of ker-
atinocytes (HaCaT cells) and suppress the level of ROS and the activity of β-galactosidase. Both 
peptides exhibited a strong binding affinity with the Keap1 protein. Additionally, NFF and PMR 
downregulated the expression of matrix metalloproteinases (MMPs) and the degradation of col-
lagens (COLs). The potential molecular mechanism underlying the anti-aging properties of perilla 
seed meal peptides might involve the competitive binding of Keap1 to facilitate the release of 
Nrf2 and activation of NF-κB signal pathway. This study provides a theoretical basis for the 
application of perilla seed meal peptides in functional cosmetics and presents a novel perspective 
for the investigation of additional food-derived peptides.   

1. Introduction 

Reactive oxygen species (ROS) are chemical compounds generated during the process of respiration that play a crucial role in 
various physiological processes, including cell cycle regulation, signal transduction, programmed cell death and metabolism [1,2]. 
However, excessive ROS have a detrimental impact on the nucleophilic centers of biological macromolecules, leading to the degra-
dation of proteins, lipids and genes [3–5]. This process alters tissue function, initiates oxidative stress damage, accelerates the aging 
process and ultimately contributes to the development of chronic diseases, such as hypertension [3–5]. The incorporation of exogenous 
antioxidants has demonstrated the ability to alleviate the oxidative damage induced by ROS and reduce the occurrence of diseases [6]. 
Antioxidants, commonly utilized as supplements for anti-aging purposes, possess the capacity to inhibit or neutralize free radicals [6]. 
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Antioxidants can eliminate free radicals and mitigate their harmful effects on human cells, thus decelerating aging. Additionally, they 
can also reduce the activities of elastase, collagenase and the levels of other inflammatory factors, leading to improved skin relaxation 
and a reduction in aging-related skin manifestations such as wrinkles [7]. Nonetheless, the synthesis of antioxidants is expensive and 
may involve potential risks of toxicity [1,8]. Natural polyphenols, bioactive compounds and secondary metabolites abundantly present 
in fruits and vegetables, display remarkable antioxidant characteristics [9,10]. However, the practical application of polyphenols is 
impeded by their limited solubility and bioavailability [11]. It is worth mentioning that natural peptides obtained from plant proteins, 
known for their antioxidant properties, have gained considerable international attention for their environmentally friendly attributes, 
sustainability, cost-effectiveness and absence of adverse effects [8]. 

Perilla, a member of the Labiatae family, is an annual plant that plays a crucial role in traditional Chinese medicine, as evidenced by 
its widespread use of stems, seeds and leaves [11]. Perilla seed protein has been widely utilized in the fields of food additives, cosmetics 
and medicine due to its remarkable nutritional value and efficient protein conversion rate [12]. The protein content of perilla seed 
meal typically falls within the ranges of 35 %–45 % [12,13]. Perilla seed meals, the primary by-product of oil seed processing, are 
frequently used as animal feed or discarded, resulting in the loss of valuable functional constituents present in perilla seed meal [12, 
13]. Previous studies have confirmed the significant antioxidant effectiveness and potential of perilla seed meal protein hydrolysate 
and perilla peptides [14]. Nevertheless, the precise mechanism of perilla seed peptides (PSPs) has yet to be confirmed. Therefore, it is 
imperative to investigate PSP in order to enhance the value of perilla and expand its application [12,15]. 

Protein does not exhibit any pharmaceutical properties in its intrinsic form [16]. Nevertheless, protein can produce active peptides 
through various processes, including microbial fermentation, gastrointestinal digestion, in vitro treatment with proteases and exposure 
to extreme pH conditions or high temperature [16]. Enzymatic hydrolysis is commonly used in the production of active peptides to 
avoid additional organic or toxic reagents, while also ensuring the maintenance of secure and controlled hydrolysis conditions [17]. 
Previous research frequently utilized membrane filtration and chromatographic techniques to separate peptides [18]. Subsequent to 
the separation process, the frequent occurrence of multiple peptides remains challenges in the following stages of peptide synthesis and 
validation [1,19]. 

The utilization of computer-aided analysis in peptide screening and prediction processes enhances the exploration of potential 
activities and mechanisms associated with these peptides. This approach incorporates various techniques, including computer 
simulation screening, safety assessment, activity scoring, toxicity evaluation, and sensitization analysis [1,20]. Ren [1] et al. have 
identified four novel peptides with favorable water solubility, safety and antioxidant properties from the pool of antioxidant peptides 
derived from crushed rice protein through computer-assisted screening. In recent years, molecular docking has gained increasingly 
popularity for its utility in the screening and identification of natural small molecular active compounds, as well as for studying the 
interaction mechanisms between small molecules and macro-molecules [21,22]. However, there is a dearth of research dedicated to 
the utilization of computer-based methodologies to accelerate the identification of bioactive peptides from perilla seed. This research 
gap impedes our capacity to fully comprehend the safety of novel peptides in an efficient and cost-effective manner. 

Therefore, the purposes of this study are a) to assess the anti-aging properties of perilla seed hydrolysate through chemical models, 
HaCaT cell models induced by H2O2, and HFF-1 cell models induced by D-gal; b) to identify novel anti-aging peptides by peptidomics 
and in silico methodologies, subsequently validated by in vitro experimentation; c) to elucidate the molecular mechanism of the 
identified anti-aging peptides through molecular docking and reverse transcription polymerase chain reaction (RT-PCR) analysis. This 
study provides a theoretical basis for the high-value utilization of perilla seed by-products in the food and pharmaceutical industries, as 
well as a novel approach for the identification and investigation the molecular mechanisms of bioactive peptides. 

2. Materials and methods 

2.1. Materials 

Perilla seed meal was purchased from Yunnan. Annexin V-FITC kit and β-gal staining kit were purchased from Beyotime (Jiangsu, 
China). Cell-countingkit-8 (CCK-8) was obtained from Do Jindo Laboratories (Japan). Alkaline protease, neutral protease and papain 
are purchased from Yuanye Biological Reagent Co., Ltd (shanghai, China). The following chemicals used in this study were purchased 
from Sigma Chemical Co. (St. Louis, USA): Ophthalaldehyde (OPA), sodium dodecyl sulfate (SDS), 1,1-diphenyl-2- picrylhydrazyl 
(DPPH) and D-galactose (D-gal). Quantitative real-time polymerase chain reaction (qRT-PCR) primers were purchased from Generay 
Biotech Co., Ltd (Shanghai, CHINA). GeneJET RNA purification kit was bought from Iermo Fisher Scientific (USA). RNA Reverse 
Transcription Kit was obtained from PrimeScript™ RT reagent Kit (Takara, Japan). 

2.1.1. Production of perilla seed crude protein (PSCP) 
Hu’s [23] method was used to extract crude protein from perilla seeds and was adjusted. In brief, perilla seed powder solution (1 

g:10 mL) was continuously stirred at 60 ◦C until the pH of the solution remained unchanged at 9.0. The mixture was centrifuged (ST16, 
Thermo Fisher Scientific Co, Ltd., American) at 5411×g for 10 min and the pH of the supernatant was adjusted to the isoelectric point 
of 4.0. After standing overnight at 4 ◦C, the precipitate was collected by centrifugation and washed with distilled water for desali-
nation. The precipitate was freeze-dried (LyovaporL-200, Buchi Laboratory Equipment Trading Ltd. Co., Ltd., Switzerland) and the 
powder was the PSCP. Protein content and moisture content of perilla seed meal and PSCP were determined by moisture analyzer 
(PAL-3, Shanghai Jing Ning Scientific Instrument Co., Ltd., Shanghai, China) and Kjeldahl nitrogen analyzer (DI110C, Beijing Jia sheng 
Xingye Technology Co., Ltd., Beijing, China) respectively. 
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2.2. Preparation and separation of perilla seed peptides（PSP） 

2.2.1. Screening of proteases 
Three enzymes (alkaline protease, neutral protease and pepsin) were used to hydrolyze PSCP. Table S1 lists the optimum tem-

perature and PH of the three enzymes respectively. The ratio of solid to liquid was 1:30 (g: mL) and the amount of enzyme was 3000 u/ 
g PSCP. After hydrolysis for 4 h, the enzyme was inactivated at 100 ◦C for 10 min and the supernatant was centrifuged at 5411×g for 
10 min. The free radical scavenging ability of DPPH and the degree of hydrolysis (DH) of supernatant were measured. 

2.2.2. Determination of DPPH free radical scavenging activity 
The DPPH test was modified to align with Fu’s [24] methodology. Briefly, 150 μL of DPPH solution (0.05 mg/mL in ethanol) was 

added to 150 μL of sample solution to be tested, incubated in the dark for 30 min and the absorbance of the sample was measured at 
517 nm (Multiskan SkyHigh, Thermo Fisher Scientific Co, Ltd., American). The DPPH radical scavenging rate of the test sample was 
calculated using the formula below: 

DPPH radical scavenging rate =

(

1 −
A1 − A2

A3

)

× 100%  

Where, A1: the absorbance of the DPPH-containing sample; 
A2: the ethanol-containing sample’s absorption value; 
A3: the DPPH-in-ethanol absorption value. 

2.2.3. Determination of hydrolysis degree（DH） 
DH was determined by an o-phthaldialdehyde (OPA) method of Wang [25]. 400 μL of hydrolysate and 3 mL of OPA reagent were 

combined and after 2 min of room temperature incubation, the mixture’s absorbance (VS3200, Agilent Technologies Co. Ltd., 
American) was measured at 340 nm. The standard curve of leucine is used to calculate the concentration of free amino in the sample to 
be measured. The DH of the test sample was calculated using the formula below: 

DH=
A1
A2

× 100%  

Where, A1: the concentration of free amino in the sample to be tested (mol/L); 
A2: the concentration of nitrogen in the sample to be tested (mol/L). 

2.2.4. Ultrafiltration separation of PSP 
The supernatant of method 2.2.1 passes through ultrafiltration membranes (Master Flex F/L, Pall Corporation Co., Ltd., American) 

with molecular weight cut-off (MWCO) of 5 and 3 kDa in turn. Therefore, the retentate in the concentration step of 5 kDa membrane 
(<5 kDa) was collected and lyophilized, while the permeate was packaged by 3 kDa membrane, collecting retentate (3~5 kDa) and 
permeate (<3 kDa). Until additional analysis was required, the final permeate and retentate were freeze-dried and stored at − 20 ◦C. 

2.3. Identification of PSP 

Fraction F2 was loaded from an autosampler into a Zorb ax 300SB-C18 peptide Trap (Agilent Technologies, Wilmington, DE) and 
then separated by liquid chromatography column (0.15 mm × 150 mm, RP-C18, DE). 0.1 % formic acid aqueous solution was 
employed as solution A in the liquid phase and 0.1 % ethyl formic acid aqueous solution (ethyl formic acid 84 %), was utilized as 
solution B.Q Exactive Mass Spectrometer (Themo Fisher) was used for mass spectrometry analysis and the corresponding database was 
searched by MaxQuant 1.5.5.1 software to obtain the results of peptide identification and quantitative analysis. 

http://districtdeep.ucd.ie/PeptideRanker/ was used to predict the activity of each peptide (between 0 and 1) [26]. The closer the 
calculated value is to 1, the higher the activity the fragment shows. Values of peptide sequences above 0.8 were considered for further 
analysis. service.php? AnOxPePred 1.0 was used to predict the free radical scavenging activity of PSP [26]. Values of peptide sequences 
above 0.4 were considered for further analysis. The allergenicity of PSP were analyzed online using Allergen FP v.1.0 (http://www. 
ddg-pharmfac.net/A llergenFP). The toxicity of PSP was analyzed online using Toxin Pred (http://crdd.osdd.net/raghava/toxinpred/). 
The novelty of PCSP were analyzed online using https://www.uwm.edu.pl/biochemia/php/en/biopep. 

2.4. Molecular docking of PSP with Keap1 

Discovery 2019 calculated the semi-flexible molecular docking between PSP and Keap1. The crystal structure of Keap1 (PDB ID: 
2FLU, 1.50 Å, PDB DOI: https://doi.org/10.2210/pdb2FLU/pdb) was obtained from the RCSB PDB database (http://www.rcsb.org/) 
prior to docking. Then, the ligand (peptide from perilla seed) required for molecular docking was prepared using Discovery 2019. For 
the target protein, the crystal structure required pretreatment, including removing water molecules, supplementing hydrogen atoms 
and charges. The binding energy (kcal/mol) value represented their binding capacity. Lower binding capacity represents more stable 
ligand-receptor binding. 
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2.5. Synthesis of polypeptide 

GL Biochem Ltd. (Shanghai, China) produced the screened peptides using the traditional 9-fluorenylmethyloxycarbonyl solid phase 
synthesis method, yielding a purity of above 95 %. 

2.6. Cell culture 

Human skin fibroblast HFF-1 and immortal human keratinocyte HaCaT (Chinese Academy of Science, Shanghai, China) were 
cultivated at 37 ◦C and 0.5 % CO2 (China Academy of Sciences) in Dulbecco’s modified Eagle medium (DMEM) with 10 % (v/v) fetal 
bovine serum. 0.25 % trypsin was used to digest HaCaT and HFF-1. 

2.7. Cell viability  

(a) 2 × 104 cells per well were put onto a 96-well plate, cultured for 24 h, then replaced with test sample DMEM medium and 
treated for another 24 h. Then it was replaced by DMEM medium containing 10 % CCK-8. After 2 h of incubation, the 
absorbance at 450 nm was measured. The following formula was used to determine the cell viability: 

Cell viability =
A2 − A1
A3 − A1

× 100%  

Where, A1: the absorbance in the absence of the cell group; 
A2: the test sample’s absorbance in the presence of the cell group; 
A3: the absorbance of the cell group that has not been treated. 

(b)In a 96-well plate, 5 × 103 cells were added to each well, cultured for 24 h and then replenished with DMEM medium containing 
0.4 % serum for an additional 24 h. After that, it was replaced by 100 μL DMEM (containing 0.4 % serum) containing the test sample 
and cultured for 72 h. 100 μL of 10 % CCK-8 solution was used to replace the test solution for 2 h and then the absorbance was read 
at 450 nm. The following formula was used to calculate the sample’s proliferative activity: 

Proliferative activity =
A2 − A1
A3 − A1

× 100%  

Where, A1: the absorbance in the absence of the cell group; 
A2: the test sample’s absorbance in the presence of the cell group; 
A3: the absorbance of the cell group that has not been treated. 

2.8. Storage stability test of polypeptide 

Polypeptide was prepared into 1 mg/mL solution and stored at 5 ◦C, 25 ◦C and 40 ◦C (under illumination). The changes of 
appearance, pH and peak area of peptides during storage were observed. The pH and peak area of polypeptide were determined by pH 
meter (FE28, Mettler Toledo, Switzerland) and HPLC (1260, Agilent Technologies Co. Ltd., American) respectively. 

Polypeptide degradation rate =
A1 − A2

A1
× 100%  

Where, A1 represent Peak areas at day 0 of PSP storage; 
A2 represent Peak areas at day 0 of PSP storage. 

2.9. Effect of PSPs on the ROS concentration in HaCaT cells with H2O2-induced premature aging 

The intracellular ROS levels in HaCaT cells were detected using DCFH-DA as a fluorescent probe, in accordance with the meth-
odology of He [27] et al. In 24-well plates, 1 × 105 HaCaT cells were seeded and cultured for 24h. Afterwards, the test samples (in 
DMEM) were added to the wells and incubated for an additional 4h. After the test samples were incubated with 800 μM H2O2 for 2 h, 
the relative amount of ROS was determined by measuring the fluorescence intensity of DCF using a reactive oxygen species (ROS) 
detection kit (Beyotime) and flow cytometry (FCM) (BD FACSCanto, Becton Dickinson Medical Devices (Shanghai) Co.,Ltd., Shanghai, 
China). 

2.10. Effect of PSPs on the activity of SA-β-gal in premature aging of HFF-1 cells mediated by D-gal 

The senescence degree of HFF-1 cells was determined using the experimental approach of He [27] et al. by measuring sen-
escence-associated-β-galactosidase (SA-β-gal) activity. After inoculating HFF-1 cells at a density of 2 × 104 cells per well in a 48-well 
plate after 24 h, the test sample solution containing a final concentration of 20 mg/mL D-gal was employed instead of the growth 
medium for 72 h. SA-gal enzyme activity was measured using an X-gal staining kit (Beyotime). The number of cells that β-gal positive 
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shows the degree of cellular senescence. 

2.11. Real-time polymerase chain reaction method for detecting relative expression of MMP-1, MMP-3, MMP-9, COL-I and COL-II mRNA 

The cells were seeded at a density of 105 cells/well in a twelve-well plate and divided into control group (NC), H2O2 group and 
H2O2+ peptides group. The H2O2+peptide group was treated with different concentrations of NFF (10, 20 μg/mL) and PMR (100, 200 
μg/mL), while the control group and H2O2 group were treated with DMEM medium. After the sample was treated for 4 h, the culture 
medium was taken out and treated with 400 μM H2O2 for 2 h. Polypeptide samples with different concentrations were added to each 
well and incubated for 24 h in a 5 % CO2 incubator at 37 ◦C. 

After 24 h of culture, the cells were collected by trypsinization and total RNA was extracted, purified and quantified. The RNA was 
reverse transcribed into complementary DNA (cDNA) according to the instructions of the reverse transcription kit, pre-denatured at 
95 ◦C for 5 min, denatured at 95 ◦C for 15 s, annealed at 60 ◦C for 30 s, extended at 72 ◦C for 30 s, 40 cycles and maintained at 72 ◦C for 
10 min. β-actin was served as the internal control and the expression levels of MMP-1, MMP-3, MMP-9, COL-I and COL-III genes were 
calculated. The experiment was repeated three times separately. 

2.12. Data statistics 

The mean standard deviation of at least two independent repeated experiments done in duplicate or triplicate was used to represent 
the data. Differences were considered at NS, p > 0.05, *p < 0.05, **p < 0.01, * * * p < 0.001, #p < 0.05, ##p < 0.01 and ###p <
0.001 using a two-tailed Student’s t-test analysis of variance. 

3. Result and discussion 

3.1. Preparation of perilla seed meal protein and its protein hydrolysate 

The most popular method of protein extraction in commercial production is thought to be alkaline extraction and acid precipitation 
because of its high yield and low cost [28]. 41.79 g perilla seed crude protein was extracted from 100 g perilla seed meal powder by 
alkali extraction and acid precipitation. Table S2 showed the comparison of protein content and moisture content of perilla seed meal 
crude protein (PSCP) with that of original perilla seed meal powder. The protein content of the isolated protein was 58.82 %, which is 
better than the previously reported 41.83 % [23]. 

The type of protease is very important to the biological activity of protein hydrolysate [29]. In this study, alkaline protease, neutral 
protease and papain were used to hydrolyze perilla protein to screen the most suitable enzyme. It is widely recognized that the extent 
of hydrolysis directly impacts the composition, length and structure of polypeptides, consequently influencing their functional 
properties [30]. Therefore, DH and DPPH free radical scavenging activities were used as indicators to evaluate the hydrolysis ability of 
each enzyme. The result was shown in Fig. 1a, alkaline protease and neutral protease were the most widely hydrolyzed, followed by 
papain. The DPPH free radical scavenging activities of the three types of enzymatic hydrolysates, which were 76.67 % (alkaline 
protease), 79.79 % (neutral protease) and 76.20 % (papain), were not significantly different (Fig. 1b). 

These findings should be emphasized due to the lack of research on the multifunctional characteristics of neutral protease hy-
drolysate [31]. The hydrolysis process of alkaline protease needs to be maintained under alkaline conditions. After the protein is 
treated with alkali, the amino acids in it undergo racemization, which reduces the L-enantiomer of essential amino acids and their 
digestibility and produces toxic D-amino acids [32]. 

In addition, Guo et al. found that an increase in DH does not necessarily correlate with enhanced biological activity [33]. Neutral 

Fig. 1. DH and DPPH Radical Scavenging activity of enzymatic hydrolysates from different proteases. Values are shown as mean ± SD (n = 2). 
Alkaline protease: A, Neutral protease: N and Papain: P. * represents P < 0.05, ns represents no significant difference. 
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protease, an endoenzyme [31] predominantly catalyzes the hydrolysis of peptide bonds containing aromatic amino acid residues on 
the carboxyl side, namely tryptophan, tyrosine and alanine. Notably, the abundance of these amino acids is positively associated with 
antioxidant activity [34]. Therefore, neutral protease was used as hydrolase in the follow-up study. 

3.2. Separation and characterization of PSP 

3.2.1. Ultrafiltration separation of perilla seed crude protein hydrolysate（PSCPH） 
Protein hydrolysate refers to a mixture comprising unhydrolyzed proteins, peptides exhibiting varying hydrophobicity, chain 

lengths and net charges, as well as free amino acids [8]. Appropriate separation methods are helpful to more accurate structure and 
activity of peptides [35]. Ultrafiltration is a commonly used separation technology for peptides, which can be divided into different 
components based on molecular weight [1]. To separate antioxidant peptides, PSCPH was divided into three fractions: F1 (MW < 3 
kDa), F2 (3 kDa < MW < 5 kDa) and F3 (MW > 5 kDa), using an ultrafiltration membrane. The DPPH radical scavenging ability was 
then determined for these three fractions. 

3.2.2. Determination of DPPH radical scavenging activity of PSCPH ultrafiltration components 
The DPPH radical clearance capacity of each fraction, as depicted in Fig. 2, exhibited a clear dose-dependent relationship. The ic50 

value of F1(0.15 mg/mL) is much lower than that of F3 (0.31 mg/mL) and similar to F2 (0.18 mg/mL) (P > 0.05). Furthermore, the 
molecular weight distribution of component F2 was determined. As illustrated in Fig. S1, all the constituents in F2 were polypeptide 
fragments with a molecular weight of less than 5000 Da, with 49.37 % accounting for the range of 3000~5000 Da and 50.63 % 
accounting for less than 3000 Da. The component with a MW of less than 5000 Da demonstrated stronger DPPH radical scavenging 
activity, which is consistent with the results of the prior investigation. Because of its higher fluidity and diffusivity, peptides with a 
molecular weight below 3000 Da exhibit a greater propensity to interact with target molecules, thereby yielding a more potent 
antioxidant effect [29]. As a result, component F2 was chosen to undergo subsequent cell-level efficacy testing. 

3.2.3. Antioxidant activity of F2 in HaCaT 
The safe concentration of F2 for HaCaT cells was detected by the CCK-8. In short, during the 24 h treatment with F2 of 50, 100, 200 

and 400 μg/mL, the survival rate of HaCaT cells in the F2 group exceeded 80 %, which indicated that F2 had no obvious cytotoxic effect 
on HaCaT cells at the concentration of <400 μg/mL (Fig. 3a). 

Hydrogen peroxide (H2O2) holds significant prominence as a reactive oxygen species, capable of directly instigating cellular 
oxidative stress and senescence [36]. The level of oxidative damage to cells can be assessed by measuring the levels of ROS in the cells 
[37]. The intensity of fluorescent DCF produced by ROS oxidation can serve as an indicator of intracellular ROS levels [38]. As shown 
in Fig. 3b, the relative expression of ROS in cells from the H2O2-injured group was 7.82 ± 0.49, which was substantially different from 
that in the blank control group (p < 0.001), indicating that H2O2 incubation raised the intracellular ROS level. The level of ROS in 
HaCaT cells pretreated with F2 at 200 and 400 μg/mL concentrations was considerably lower than in the H2O2 damage group (p <
0.01). The results suggested that pre-treating HaCaT cells with F2 effectively mitigated cellular oxidative damage. Previous studies 
have demonstrated that antioxidant peptides derived from ultrafiltration components of watermelon seeds, eggshell membranes and 
broken rice protein hydrolysates possess the ability to safeguard cells against oxidative damage by reducing excessive levels of ROS [1, 
38,39]. Therefore, F2 was regarded as a reliable source of peptides that are antioxidants. 

Fig. 2. DPPH radical scavenging activity of ultrafiltration components of PSCPH. * * * indicates that the DPPH radical scavenging activity of ul-
trafiltration components is significantly different from that of perilla protein (p < 0.001). 

L. Wang et al.                                                                                                                                                                                                          



Heliyon 10 (2024) e33604

7

(caption on next page) 

L. Wang et al.                                                                                                                                                                                                          



Heliyon 10 (2024) e33604

8

3.2.4. Anti-senescent activity of PSPs in human skin fibroblast (HFF-1) 
The safe concentration of F2 for HFF-1 cells was detected by the CCK-8 method. To put it briefly, after a 24 h treatment with F2 at 

concentrations of 50, 100, 200 and 400 μg/mL, the viability of HFF-1 cells in F2 group was more than 80 %, suggesting that F2 did not 
appear to have any discernible cytotoxic effect on HFF-1 cells at concentrations lower than 400 μg/mL (Fig. 3c). 

D-galactose (D-gal) is a model widely used to explore aging [40]. The conversion of elevated levels of D-gal by galactose oxidase into 
aldose and hydroperoxide leads to the generation of reactive oxygen species (ROS), triggering inflammation, oxidative stress, 
impairment of mitochondrial function and ultimately, apoptosis [41]. Therefore, the D-gal-induced anti-aging model was utilized to 
assess the anti-aging effectiveness of F2. In Fig. 3e, senescent cells exhibiting positive SA-β-gal expression were observed as cells with a 
dark blue appearance. Treatment with D-gal at a concentration of 20 mg/mL for a duration of 72 h resulted in an elevation of 
β-galactosidase activity when compared to the control group (NC), consequently augmenting the number of senescent cells (p < 0.05, 
Fig. 3d). Senescent cell formation may be inhibited during F2 incubation, as evidenced by the significant dose-dependent decrease (P 
< 0.05) in the number of SA-β-gal positive cells in the F2 group as compared to the D-gal group. These results indicated that pre-
treatment of HFF-1 cells with F2 effectively prevented cell senescence. In the previous research, the monomer polypeptide with 
anti-aging effect was successfully separated and purified from the enzymatic hydrolysate of Agaricus blaze [42]. As a result, F2 can be 
regarded as a good source of anti-aging peptides. 

3.2.5. Identification of potential PS derived antioxidant peptides and in silico analysis 
Based on prior experimental findings, the identification of the F2 structure was achieved. Conventional techniques for separation 

and purification are intricate and may result in the depletion of bioactive compounds. Conversely, computer informatics enables swift 
identification of potential bioactive peptides within protein hydrolysate [43]. Consequently, this investigation employed computer 
prediction methods, encompassing peptide activity score, free radical scavenging activity, toxicity and sensitization, to discern 
antioxidant peptides exhibiting promising properties. The mass spectrum obtained is depicted in Fig. S2. A comprehensive total of 
1696 peptide sequences were deciphered using LC-MS/MS. The evaluation of polypeptide screening was illustrated in Fig. 4. Ulti-
mately, a selection of 9 novel peptides (RAW, FGRL, NFF, PMR, WGRP, MYF, FAGR, WFL and GEMF), which exhibited non-toxic and 
non-allergenic properties and demonstrated successful docking with the Keap1 protein. 

3.2.6. Molecular docking simulation of antioxidant mechanisms 
The human antioxidant defense system possesses the capability to counteract the harmful effects of free radicals [8]. The 

Nrf2/Keap1 pathway governs the synthesis of antioxidants and defense proteins via Nrf2, thereby safeguarding cells against oxidative 
stress [44]. In a state of normal physiological conditions, the dissociation of Nrf2 from Keap1 occurs within the cellular environment, 
followed by its degradation through ubiquitination [1,44]. Under stress conditions, Nrf2 and Keap1 dissociate into the nucleus and 

Fig. 3. Protective effect of F2 on HaCaT cells damaged by H2O2 and protective effect of F2 on HFF-1 cells damaged by D-gal: (a) The cell viability of 
HaCaT cells treated by F2, (b) The ROS of HaCat cells induced by H2O2 under the protection of F2, (c) The cell viability of HFF-1 cells treated by F2, 
β-gal positive cells (in blue) were observed through microscopy (e) and counted (d), #p < 0.05, ###p < 0.001 versus the blank control group (NC), 
*p < 0.05; **p < 0.01 versus the D-gal injured group. 

Fig. 4. Screening method and quantity of peptides.  
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Table 1 
Activity scores of PSPs and their molecular docking sites with Keap1.  

Number Peptide Activity 
score 

Free radical scavenging 
activity 

Keap1 Binding Energy (kcal/ 
mol) 

Effort 

Hydrogen bond Hydrophobic 

1 RAW 0.884907 0.43946666 ¡271.793 Gly367、、Val606、、Ile559、、Val418、、Val465、、Gly417、、Ile416、、Ser602、、Glu82 Cys368 
2 FGRL 0.947393 0.40923873 ¡210.62 Ala510、、Val512、、Val465、、Cys513、、Leu365、、Val604、、Val418、、Leu557、、 

Val463、、Ile416 
Arg415、、Ala556、、Ala607 

3 NFF 0.986707 0.40036428 ¡195.146 Gly367、、Ile559、、Val418、、Val467、、Val465、、Val512、、Gly464、、Val463 Ala366、、Ala607 
4 PMR 0.903736 0.43705025 ¡185.843 Gly462、、Ile416、、Gly464、、Val512、、Val465、、Val418、、Ala510、、Leu557 Val606 
5 WGRP 0.969705 0.5153805 ¡176.725 Val369、、Val606、、Gly367、、Val465、、Val512、、Ile559、、Val418、、Ala510 Ala607 
6 MYF 0.981789 0.50796968 ¡154.298 Gly511、、Val512、、Leu365、、Arg415、、Gly367、、Val606、、Val465、、Ile559、、Leu557 Ala366、、Ala556 
7 FAGR 0.849376 0.41867596 ¡130.957 Ile559、、Val465、、Val463、、Val604、、Val606、、Arg415、、Gly509、、Gly462、、 

Ala510、、Val512 
- 

8 WFL 0.995533 0.46672744 ¡112.677 Val463、、Ile559、、Gly464、、Ala510、、Leu557、、Gly558、、Gly605、、Val606、、Gly367 Ala366、、Val465、、Val418、、Val512、、 
Arg415 

9 GEMF 0.843572 0.42946669 ¡99.5078 Ile416、、Val420、、Val606、、Ile559、、Val512、、Gly367、、Val465、、Gly464、、 
Val418、、Val463、、Ile416 

Ala556、、Val606  
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Nrf2 transcriptional and translational activities increase, thereby upregulating the expression of antioxidant enzymes [45,46]. As one 
of the main defense pathways of oxidative damage, Keap1-Nrf2-ARE can reduce the exogenous oxidative damage of human cells [35]. 
The stimulation of cytoprotective protein-related genes and antioxidant enzymes downstream of the pathway is observed when the 
interaction between keap1 and Nrf2 is inhibited, leading to antioxidant effects [47]. The Discovery Studio 2019 CDOCKER application 
was used to perform molecular docking research on the PSPs and Keap1 proteins. 

The results of molecular docking, as depicted in Fig. S3 and Table 1, provided visual representation of the binding interactions 
between PSPs and Keap1. The extent of binding is determined by factors such as the fraction of binding energy, the active site of the 
receptor and the number of amino acid residues involved in the interaction [6]. These findings suggested that the PSPs have the 
potential to independently attach to the Keap1 protein, indicating the spontaneous binding capability of the PSPs to the Keap1. The left 
side of Fig. S3 showed the 3D structure of Keap1 protein with the lowest docking energy to the nine PSPs and the right side showed the 
corresponding theoretical binding mode. The findings demonstrated that these nine PSPs established a stable docking conformation by 
integrating within the active cavity of Keap1 [48]. 

Nine PSPs (RAW, FGRL, NFF, PMR, WARP, MYF, FAGR, WFL and GEMF) have been observed to bind to keap1 via hydrogen 
bonding and hydrophobic interactions, which is consistent with the research reported in the literature [35,49]. Antioxidant peptides 
engage with the active site of the Keap1 protein, fostering a stable conformation that triggers the Keap1-Nrf2 signaling pathway and 
thereby exerts antioxidant activity [35,49]. 

3.3. Effect of synthetic peptide on proliferation of HaCaT cells and storage stability 

Nine screened peptides were synthesized, and their efficacy was verified. Among them, RAW, FGRL, PMR, WGRP, FAGR and WFL 
are water-soluble peptides, so the test concentration is set at 0–400 μg/mL. NFF, MYF and GEMF are water-insoluble peptides, which 
can be dissolved in 50 % DMSO. Research finding indicate that maintaining a DMSO volume fraction below 0.1 % in the Sigma 

Fig. 5. Effect of PSPs on proliferation of Hacat, Values are expressed as mean ± SD (n = 3). Differences were considered at * p < 0.05, ** p < 0.01, * 
* * p < 0.001 versus the blank control group (NC). 

Fig. 6. Effects of PSPs on the ROS level of HaCaT stimulated by H2O2. Values are expressed as mean ± SD (n = 2). #p < 0.05, ###p < 0.001 versus 
the blank control group (NC); *p < 0.05, **p < 0.01 versus the H2O2injured group. 
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preserves the cellular morphology, allowing for normal growth and reproduction. Consequently, the recommended test concentration 
range for NFF, MYF and GEMF was 0–20 μg/mL [50]. The CCK-8 method was employed to determine the non-toxic concentration of 
the synthetic peptide on HaCaT cells. After 24 h, the viability of HaCaT cells in the synthetic peptide group surpassed 80 %, signifying 
the lack of significant cytotoxicity of the synthetic peptide on HaCaT cells at the tested concentration (Fig. S4). According to the report, 
natural antioxidants have the ability to induce cellular proliferation [51]. Epidermal growth factor (EGF) has been observed to 

Fig. 7. Protective effect of PSPs on HFF-1 cells damaged by D-gal：β-gal positive cells (in blue) were observed through microscopy (a) and counted 
(b), ###p < 0.001 versus the blank control group (NC); **p < 0.01 versus the D-gal injured group; *p < 0.05 versus the D-gal injured group. 
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facilitate the morphogenesis of epithelial cells and branches of exocrine glands [52], thus making it a suitable candidate for utilization 
as a positive control. Specifically, the concentration of 100 μM EGF has been found to enhance the proliferation of HaCaT keratino-
cytes, resulting in a cell viability of 106.76 %. 

As shown in Fig. 5, NFF, WGRP, MYF, FAGR, PMR, FGRL and GEMF promoted the proliferation of HaCaT keratinocytes and the cell 
viability were as follows135.16 ± 9.06 % (10 μg/mL), 126.35 ± 3.39 % (100 μg/mL), 125.51 ± 3.23 % (10 μg/mL), 113.74 ± 8.7 % 
(100 μg/mL), 130.678 ± 3.74 % (100 μg/mL), 121.37 ± 3.06 % (100 μg/mL) and 108.54 ± 1.47 % (10 μg/mL). It has been suggested 
that the promotion of cell proliferation is associated with the prevention of oxidative stress during cell culture [51]. Therefore, the first 
five peptides (NFF, WGRP, MYF, FAGR, PMR) were screened for antioxidant verification. The pH and peak area of NFF and PMR during 
storage were shown in Fig. S5. The degradation of NFF, PMR, WGRP, FAGR and MYF was investigated under different temperature and 
light conditions for 60 days. At 25 ◦C and 40 ◦C (light), NFF exhibited degradation rates of 15.40 % and 31.87 % respectively. PMR 
experienced degradation when stored at 40 ◦C (light), with a degradation rate of 83.04 %. WGRP showed degradation rates of 2.33 % 
and 93.06 % when exposed to 25 ◦C and 40 ◦C (light) respectively. Similarly, MYF exhibited degradation rates of 5.57 % and 83.21 % at 
25 ◦C and 40 ◦C (light) respectively. The peak area of FAGR remained unchanged under the storage conditions of 5 ◦C, 25 ◦C and 40 ◦C 
(light). The visual characteristics of NFF, PMR, MYF and FAGR remained consistent throughout the storage period. However, the color 
of WGRP exhibited a yellowing effect after 30 days of storage at 40 ◦C (light). Consequently, it is advisable to store peptides at low 
temperatures in a light-free environment. 

3.4. Antioxidant activity of synthetic peptide in HaCaT 

The utilization of the membrane permeation probe DCFH-DA, which undergoes oxidation by intracellular ROS resulting in the 
production of intensely fluorescent DCF in proportion to ROS levels, was employed to evaluate the efficacy of synthetic peptide in 
inhibiting ROS generation [53]. Following treatment with H2O2, the level of reactive oxygen species (ROS) in HaCaT cells exhibited a 
statistically significant increase of 1.81 ± 0.08 times compared to the control group (p < 0.001). In the NFF (20 μg/mL) and PMR (200 
μg/mL) groups, ROS generation was observed to be 1.32 ± 0.04 times and 1.54 ± 0.05 times higher than in the control group, 
respectively. Additionally, these values demonstrated a reduction of 25.40 % and 12.80 % when compared to the H2O2 group, as 
illustrated in Fig. 6. The increase in antioxidant enzymes brought on by the Keap1-Nrf2 pathway’s activation may be the reason for the 
decrease in ROS in the NFF and PMR treatment groups [53]. However, cellular senescence is closely related to ROS accumulation [53]. 
This discovery implies that NFF and PMR possess the potential to mitigate the detrimental effects of reactive oxygen species (ROS) on 
aging and injury. Consequently, we investigated to assess the anti-aging effectiveness of NFF and PMR, aiming to validate our 
hypothesis. 

3.5. Anti-senescent activity of synthetic peptide in HFF-1 

The viability of HFF-1 cells in the synthetic peptide group surpassed 80 %, suggesting that the synthetic peptide did not exhibit 
significant cytotoxicity towards HFF-1 cells at the tested concentration (Fig. S6). Fig. 7a depicted the impact of NFF and PMR on SA- 
β-gal in D-Gal-induced premature senescent cells. The dark blue cells in the figure signify senescent cells exhibiting positive SA-β-gal 
expression. Following D-gal treatment, the rate of positive staining was observed to be 2.36 ± 0.03 times greater than that of the 
control group (p < 0.01), suggesting that D-gal treatment induces senescence in HFF-1 cells. As expected, the pretreatment of HFF-1 by 
NFF and PMR decreased the activity of β -galactosidase induced by D-gal (reducing the number of senescent cells and the blue depth). 
As shown in Fig. 7b, the positive staining rates of NFF (20 μg/mL) and PMR (400 μg/mL) were 0.70 ± 0.17 and 0.69 ± 0.18 times that 
of the control group, respectively, which decreased by 70.25 % and 70.87 % compared with the D-gal group, and the effect was better 
than that of GSH (50.61 %) of 500 μg/mL. Therefore, the results of SA-β-gal activity showed that NFF and PMR can be used as anti- 
aging substances [54]. 

3.6. Effects of synthetic peptide on mRNA and proteins expression of MMP-1, MMP-3, MMP-9, COL-I and COL-III in HFF-1 cells irradiated 
by H2O2 

Oxidative stress promotes the expression of Matrix metalloproteinases （MMPs） in cells by activating NF-κB signaling pathway 
[55,56]. Matrix metalloproteinases (MMPs) are involved in extracellular matrix remodeling through the degradation of extracellular 
matrix components and are also involved in the inflammatory response by regulating the pro-inflammatory cytokines TNF-α and IL-1β 
[57,58]. Overexpression of MMP-1 will destroy type I and III collagen, while MMP-3 can degrade proteoglycan and type IV collagen 
fiber [59]. MMPS gradually destroy the integrity of human dermis, and long-term action can seriously damage skin collagen, thus 
making human skin aging [60]. MMP-1 and MMP-3 expression are often used to represent collagenase activity in human skin. 
Therefore, plant extracts or compounds that can inhibit the activities of collagenase enzymes might have the potential to be used as 
cosmetics to prevent skin aging [61]. As shown in Fig. 8a–e, compared with the control (NC) cells, the mRNA levels of MMP-1, MMP-3 
and MMP-9 in H2O2-induced group were significantly increased, while the levels of COL-I and COL-III were significantly decreased. In 
comparison to the H2O2 group, NFF (20 μg/mL) substantially down-regulated the expression of MMP-9 while up-regulating the 
expression of COL-1 and COL-III. Additionally, PMR (200 μg/mL) significantly decreased the expression of MMP-1, MMP-3 and MMP-9 
and inhibited the degradation of Col-1. Nrf2 signaling pathway plays an important role in anti-oxidative stress response and it can 
effectively restore redox homeostasis in cells after being activated [62]. The activation of Nrf2 inhibits the activation of NF-κB 
signaling pathway, thus protecting extracellular matrix [63]. Therefore, it is speculated that the anti-aging matrix of perilla peptide is 
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shown in Fig. 9. The synthetic peptide interacted with Keap1 and inhibits the formation of Keap1-Nrf2, which means that the free Nrf2 

Fig. 8. Anti-aging effect of peptide on HFF-1 cells stimulated by H2O2. Ie cells were collected and lysed, and the relative expression levels of 
immune response related genes MMP-1, MMP-3, MMP-9, COL-I and COL-III were determined by qRT-PCR (β-Actin expression was the internal 
control). Each experiment is made in triplicate. #p < 0.05, ###p < 0.001 versus the blank control group (NC); ***p < 0.001, **p < 0.01; *p < 0.05 
versus the H2O2 injured group. 

Fig. 9. Role of peptides in aging induced by oxidative stress (By Figdraw).  
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is dissociated from its inhibitor Keap1 and transported to the nucleus to combine with ARE. The activation of Nrf2 signal pathway 
inhibits the activation of NF-κB signal pathway, reduces the expression of MMPs and increases the expression of COLs. 

4. Conclusion 

In summary, perilla seed meal has been proved to be a good source of anti-aging peptides. The hydrolysate fraction 2 (F2) of perilla 
seed meal with molecular weight of 3 kDa < MW < 5 kDa has the activities of scavenging free radicals, inhibiting intracellular ROS 
production and β-gal galactosidase activity. Nine novel anti-aging peptides were identified by the combination of peptidomics and 
silicon analysis. The two peptides, NFF and PMR, were found to promote the proliferation of keratinocytes (HaCaT cells) and suppress 
the level of ROS and the activity of β-galactosidase. Both peptides exhibited a strong binding affinity with the Keap1 protein. Addi-
tionally, NFF attenuated the expression of senescence marker SA-β-gal and inflammatory-related enzyme MMP-9 in HFF-1 and 
inhibited the degradation of COL-I and COL-III. Similarly, PMR reduced the expression of inflammatory-related enzymes MMP-1, 
MMP-3, and MMP-9 in HFF-1, and inhibited the degradation of COL-I and COL-III. These results indicated the interdependence be-
tween inflammation and aging. The potential molecular mechanism of anti-aging of peptide derived from perilla seed meal may be 
related to the activation of Nrf2 pathway, which may attribute to the fact that the peptide might involve the competitive binding of 
Keap1 to facilitate the release of Nrf2 and activation of NF-κB signal pathway. This study provides a theoretical basis for the application 
of perilla seed anti-aging hydrolysates and peptides in cosmetics and food industries, a way to increase the value of agricultural by- 
products, and a reference for the efficient identification and molecular mechanism research of more food-borne peptides. This 
work identified two novel peptides derived from Perilla Seed and exhibited potential application in cosmetic and pharmaceutical 
application. However, molecular dynamics simulation and western blotting should be conducted to explore the expression of 
downstream antioxidant enzymes of Nrf2 signal pathway. The stability and compatibility in cosmetic formulations should be inves-
tigated for the application of perilla peptide in cosmetics. 
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