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ABSTRACT

Besides passive recording of brain electric or magnetic activity, also non-ionizing electromagnetic or optical
radiation can be used for real-time brain imaging. Here, changes in the radiation’s absorption or scattering allow
for continuous in vivo assessment of regional neurometabolic and neurovascular activity. Besides magnetic
resonance imaging (MRI), over the last years, also functional near-infrared spectroscopy (fNIRS) was successfully
established in real-time metabolic brain imaging. In contrast to MRI, fNIRS is portable and can be applied at
bedside or in everyday life environments, e.g., to restore communication and movement. Here we provide a
comprehensive overview of the history and state-of-the-art of real-time optical brain imaging with a special
emphasis on its clinical use towards neurofeedback and brain-computer interface (BCI) applications. Besides
pointing to the most critical challenges in clinical use, also novel approaches that combine real-time optical
neuroimaging with other recording modalities (e.g. electro- or magnetoencephalography) are described, and

their use in the context of neuroergonomics, neuroenhancement or neuroadaptive systems discussed.

1. Introduction

Imaging-based neurofeedback or brain-computer interface (BCI)
applications depend on reliable real-time imaging of neural processes
reflected by various physiological measures, such as single or multi-unit
spike activity, electric or magnetic cortical field potentials, neuro-
electric or -magnetic brain oscillations, or cerebral blood flow and
oxygenation(Lebedev & Nicolelis, 2017; Soekadar et al., 2008). While
some of these measures are recorded passively, i.e., by amplification of
signal power originating from the brain itself (e.g., electric or magnetic
field potentials and oscillations), others are assessed by directing energy
to the brain, e.g., in the form of non-ionizing electromagnetic or optical
radiation, and measuring its absorption, scattering, reflection or trans-
mission. Here, due to their biological compatibility and tolerability, use
of static magnetic fields, spatial and temporal gradients of magnetic
fields, as well as optical radiation, e.g., in the near-infrared spectrum
(700-2500 nm), was successfully established in brain imaging over the

last years. Being portable and broadly accessible, particularly functional
near-infrared spectroscopy (fNIRS) developed into a promising tool in
neurofeedback and BCI applications (Naseer & Hong, 2015). Although
sharing very similar technical underpinnings, the distinction between
neurofeedback and BCI applications mainly derives from their purpose
of use: while the term neurofeedback was introduced to denote tech-
niques facilitating self-regulation of brain/neural activity through sen-
sory feedback, e.g., to normalize symptom-related brain activity, BCI is
typically used to label technical tools that provide active brain/neural-
control of external devices, e.g., for restoration of communication or
movement (Birbaumer et al., 2014; Nann et al., 2020; Soekadar et al.,
2008, 2016; Wolpaw et al., 2002). Beside such active BCIs, also para-
digms in which brain/neural activity informs human-machine interac-
tion passively became included under the term BCI (then termed passive
BCI or neuroadaptive technology) (Blankertz et al., 2010; Klaproth et al.,
2020; Muller et al., 2008; Zander & Jatzev, 2012; Zander & Kothe,
2011), e.g., when adjusting user interfaces in the operational theater to
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the surgeon’s mental state (Arico et al., 2017). As such, most BCI systems
feature qualities of neurofeedback, and it was proposed that merging
these two different types of application, e.g. in the context of neuro-
rehabilitation (Soekadaret al., 2015a), may boost efficacy and adoption
of clinical BCIs (Soekadar et al., 2019).

Being noninvasive and wearable, real-time optical brain imaging is a
promising modality for both neurofeedback and BCI applications. To
appreciate its advantages and recent technical innovations on one side
and discuss current challenges and limitations on the other side, we first
provide a comprehensive overview of the history and state-of-the-art in
optical brain imaging, before highlighting the most recent studies on its
application to brain/neural control and neurofeedback.

2. Use of optical radiation to assess brain physiology

When measuring the heating effects of sunlight at different wave-
lengths, Fredrick William Herschel (1792-1871) discovered that this
heating effect increased from the blue to the red part of the optical
spectrum and that the thermal effects even further continued beyond the
visible spectrum so that he postulated the existence of invisible “calorific
rays” (Herschel, 1800). Later, this part of the optical spectrum was
termed infrared radiation (spectral wavelength 700-1000 nm).

Based on the discovery that specific elements generate characteristic
absorption-lines when exposed to optic radiation (Fraunhofer, 1817),
near-infrared light was later used, for instance, in the context of spec-
trochemical analysis (Abney & Festing, 1881). With the development of
very sensitive light detectors (such as photomultiplier tubes or charge-
coupled device sensors) and fiber-optic light guides, a whole set of ap-
plications in physics, chemistry, and bio-physiology emerged that was
based on inferring molecular properties from attenuation of optical
radiation.

Oxygenation of hemoglobin alters its absorption characteristics
within the near-infrared spectral band between 784 and 894 nm (Hoppe-
Seyler, 1864; Stokes, 1864). As biological tissue, including the skull, is
partially transparent to optical radiation at wavelengths in the (near-)
infrared spectral band between 700 and 1000 nm, near-infrared radia-
tion is particularly attractive to assess, e.g., brain metabolic processes
associated with a modification of light absorption and scattering (Jobsis,
1977). Using the Beer-Lambert law (Beer, 1852), the absorbance and
concentration in a sample can be related to the attenuation of light with
known wavelength and intensity that irradiates this sample. In 1988,
Delpy provided a modification of the Beer-Lambert law by taking light
scattering into account, e.g. under the condition that it was kept con-
stant and stable. This so-called “modified Beer-Lambert law” permitted
the calculation of relative oxygenation levels from the measured near-
infrared spectroscopy (NIRS) signal (Delpy et al., 1988) (a technique
termed functional NIRS or fNIRS when used for the purpose of assessing
metabolic responses linked to a specific function or behavior). Given
that attenuation of near-infrared radiation passing through a specific
medium relates to the concentration of light-absorbing molecules
(chromophores) in the medium, e.g. oxygenated and deoxygenated he-
moglobin (oxy-Hb and deoxy-Hb), changes in molecule concentration
can be calculated. This derives from the modified Beer-Lambert law with
the following equation:

AA(AL L) = e(D)AciP(A)d

where AA is the measured change in attenuation of light within two
consecutive time points At, the index i denotes all investigated chro-
mophores, ¢; is the corresponding extinction coefficient at wavelength 2,
Ac; is the change in concentration, d is the source-detector separation,
and P is the differential path length factor that accounts for increased
distance traveled by the light due to scattering in the tissue. Provided the
scattering/path length d x P are known, absolute changes in the con-
centration of a specific chromophore can be calculated. This path length
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can be estimated using three different approaches: 1. By assessing the
phase shift of an intensity-modulated light source, 2. by measuring the
direct ‘time of flight’ of short light pulses passing through the substrate,
and 3. by measuring absorption at wavelengths that are typical for water
molecules assuming constant water concentrations throughout the
medium.

There is ample evidence for a close relationship between local
neuronal activity and dilation of nearby blood vessels as well as increase
in local blood flow. The spatial and temporal correlation between
transient modulations in neural activity and associated hemodynamic
responses was termed neurovascular coupling (NVC) (Iadecola, 2017).
Building on NVC, there are now three established optical methods to
assess modulations of regional neurometabolic and neurovascular ac-
tivity as surrogate marker for neural activity: 1. intrinsic signal optical
imaging, 2. diffuse correlation spectroscopy (DCS) (Durduran & Yodh,
2014) and 3. fNIRS (Scholkmann et al., 2014). While intrinsic signal
optical imaging offers high spatial (~100 pm) and temporal (100 ms)
resolution, it requires open-skull or thinned-skull procedures and has
only been established in animal research. DCS measures speckle fluc-
tuations of near-infrared diffuse light (i.e., fluctuations in intensity
patterns produced by the mutual interference of a set of optical wave-
fronts) in tissue that are sensitive to the motions of red blood cells. Of-
fering high temporal resolution (up to 100 Hz), a relatively large
penetration depth (up to ~1.5 cm) and portability, it is a promising new
technique, but has not been established in the neurofeedback or BCI
fields yet. Finally, fNIRS is the most established and fastest growing
approach in neurofeedback/BCI applications, mainly because of its
robustness, portability and commercial accessibility.

All three techniques can evaluate relative changes of oxy- and deoxy-
Hb or cerebral blood flow in superficial cortical layers. It was shown that
neural activity resulting in higher oxygen consumption leads to
decreased oxy-Hb concentrations (termed “initial dip”) (Bahar et al.,
2006), followed by an up-regulation of regional cerebral blood flow
(rCBF) within a few hundred milliseconds to seconds. This up-regulation
is followed by an increase of total hemoglobin (t-Hb) that, overall, re-
sults in a measurable increase in oxy-Hb. As the degree of rCBF increase
was shown to exceed the regional cerebral oxygen metabolic rate
(rCMROy) during neural activity (Fox & Raichle, 1986), neural activity
can be estimated from the relative increase in oxy-Hb and t-Hb
compared to a relative decrease of deoxy-Hb in the venous branch of the
cerebral vascular system (Wolf et al., 2002) (Fig. 1).

It should be noted, however, that there is no clear mechanistic un-
derstanding yet of how neuronal activity regulates cerebral blood flow
and metabolism as measured by, e.g., fNIRS or fMRI (Devor et al., 2012).
According to the “metabolic hypothesis”, neural activity associated with
an increase in lactate, adenosine triphosphate/adenosine diphosphate
ratio or modulation of some yet unidentified oxygen sensor (Paulson
et al., 2010; Raichle & Mintun, 2006), for instance, leads to a metabolic
cascade resulting in vasodilatation/constriction. An alternative hy-
pothesis, the “neurogenic hypothesis”, postulates feed-forward mecha-
nisms in which release of neurotransmitters and neuropeptides influence
CBF and metabolism directly. It is conceivable that both mechanisms
play a role, and that also glial cells contribute to these mechanisms
(Allaman et al., 2011; Iadecola, 2017).

Currently, there are three methods available to infer molecular
properties of organic tissue using fNIRS: 1. continuous-wave (CW)
spectroscopy, 2. frequency-domain (FD) techniques, and 3. time-domain
(TD) (or time-resolved) spectroscopy (Fig. 2). State-of-the-art NIRS
systems can comprise up to several hundred channels with temporal
resolutions as high as 250 Hz and spatial resolutions of approximately
7-10 mm (Ferrari & Quaresima, 2012).

In CW spectroscopy, a continuous wave of light with either discrete
wavelengths (laser diode) or sharply peaked/narrow spectra is used.
Typically, continuous-wave NIRS sensitivity is increased by applying
amplitude-modulation at low frequencies (in the kHz-range) and using
phase-locked detection techniques. While the CW approach can achieve
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Fig. 1. Assessing brain hemodynamic responses using functional near-infrared spectroscopy (fNIRS). Near-infrared (NIR) light (e.g., at 760 nm and 850 nm) is
emitted through the subject’s skull (left panel). Changes in intensity of light absorption and scattering in response to a stimulus are continuously recorded by a NIR
light detector. Based on the modified Beer-Lambert Law (mBLL), the measured light intensity can be converted into estimations of cerebral total hemoglobin (HbT)
and differentiated into oxygenated and deoxygenated hemoglobin (HbO/HbR) (right panel, t = time, s = seconds, ¢ = concentration).
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Fig. 2. Most commonly used functional near-infrared spectroscopy (fNIRS)
methods to assess molecular properties of organic tissue (modified from
Scholkmann et al., 2014). The index i denotes all investigated chromophores, P
is the differential path length factor that accounts for increased distance trav-
eled by the light due to scattering in the tissue, and d is the source-detector
separation. Ac; is the change in concentration and g; is the corresponding
extinction coefficient at wavelength A, AA is the measured change in attenua-
tion of light within two consecutive time points At. ¢ is the estimated phase
shift between the emitted and detected light waves. Currently, most BCI ap-
plications use continuous wave (CW) spectroscopy because it is particularly
suitable to continuously assess relative changes in, e.g., oxy-/
deoxy-hemoglobin.

high signal-to-noise ratios, a major disadvantage is that CW spectros-
copy is unable to quantify light scattering. Thus, light absorption and
absolute hemoglobin concentrations can only be estimated based on
relative changes, assuming constant scattering, not allowing for
resolving contributions of different tissues. Here, to some degree, the use
of multiple source-detector distances (M s-d) allows for separating
different tissue layers and can substantially improve signal-to-noise ratio

(Gagnon et al., 2012; Yucel et al., 2015).

Frequency-domain techniques also use a continuous wave, but
modulate its intensity at high frequencies (100 MHz-1 GHz), using
measured phase shifts for estimation of the time of flight. While
potentially providing more precise recordings, the advantages of FD
techniques over conventional CW techniques have yet to be established
(Davies et al., 2017). In time-domain or time-resolved spectroscopy,
picosecond light pulses are applied and the photon arrival times are
measured directly. Besides determining molecule concentrations from
absorption changes, these approaches also provide scattering informa-
tion and thus enable the separation of different tissue layers. Recently, a
first optical BCI was introduced based on such time-resolved fNIRS
signal potentially applicable for mental communication in patients with
brain injury or stroke (Abdalmalak et al., 2020).

As most neurofeedback and BCI paradigms utilize relative and not
absolute changes of brain physiological parameters, up to now mainly
CW spectroscopy was established in the neurofeedback/BCI field. FD
and TD spectroscopy, however, may offer some complementary ad-
vantages that need to be further explored in real-time optical imaging.
While CW spectroscopy is already widely available and can be more
easily applied in multichannel systems due to its mobility (Ferrari &
Quaresima, 2012), FD and TD techniques are potentially more precise
due to their penetration depth (Coscia et al., 2019; Gagnon et al., 2012;
Yucel et al., 2015), but also less established and more cost intensive.

The distance between CW fNIRS light sources and detectors is a
tradeoff between signal strength (light attenuation and the pathlength of
light are exponentially related) and sensitivity to brain tissue (for a
larger source-detector separation, more photons ‘see’ the cerebral layer
of interest). Injected light has to conform with safety standards and
powers usually lie in the range of 5-50 mW. For transcranial assessment
of human cortical hemoglobin oxygenation, the light sources and de-
tectors are typically placed at a distance between 2 and 4 cm.

A remaining major challenge in using fNIRS to assess brain physio-
logical activity is the differentiation between neurometabolic/neuro-
vascular signals and other systemic biological processes. For instance,
non-neural activity related to systemic arterial pulse oscillations (~1
Hz), respiration (~0.2 — 0.4 Hz) or and low frequency oscillations of
other origin (at <~0.1 Hz) (Mayer waves/Traube-Herring waves) modu-
late the measured oxy-Hb and deoxy-Hb concentrations, and fluctuate
both during task and at rest conditions (Toronov et al., 2000). Although
a number of strategies were introduced to reduce the impact of these
systemic physiological artifacts (Klein & Kranczioch, 2019; von Luh-
mann et al., 2020), validity of quantitative measures is still limited.
Thus, most neurofeedback/BCI applications use a dual-state approach, i.
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e., (continuously) contrast two known conditions for the classification of
brain states. Here, relative changes of oxy-Hb, deoxy-Hb and CBF are
sufficient for simple brain-state assessment. Another limitation related
to real-time monitoring of hemoglobin is the considerable delay be-
tween neural activation and change in oxy-Hb/deoxy-Hb (ranging from
two to several seconds) (Huppert et al., 2006). While the change in oxy-
Hb/deoxy-Hb during a simple motor activation paradigm, e.g. an
externally-paced button press task, usually occurs at 2-5 s after task
execution, experimental designs with an impact on systemic parameters
(e.g. ventilation) can lead to a delayed change of oxy-Hb/deoxy-Hb at
1-4 min after the onset of the task. Here, the signal change occurs due to
insufficient source separation between brain and other tissue, e.g. skin
and connecting tissue, that leads to contamination of brain tissue-related
measures. Thus, most neurofeedback and BCI applications apply a
moving baseline to compensate for this issue.

With the advancement of optical imaging methods and translation
from microscopic to macroscopic scales, other metabolic responses to
neural activity (e.g., voltage shifts, ionic indicators or synaptic release)
may become viable for non-invasive optical BCI applications. In this
context, acousto-photonic tomography and photo-acoustic tomography
(Yao and Wang, 2014) may play a particular role, but there are a number
of challenges related to penetration depth, resolution and susceptibility
to motion artifacts that have yet to be mastered.

3. Optical brain imaging and its application to neurofeedback

Given the variety of physiological parameters that can be derived
from changes in optical properties of brain tissue (e.g., perturbations in
cerebral blood volume, blood flow or metabolic rate of oxygen), several
possible clinical fNIRS applications were explored over the last years
(Mihara & Miyai, 2016; Naseer & Hong, 2015; Wolf et al., 2007). These
range from studying the physiological correlates of stroke and cere-
brovascular disease to epileptic disorders (e.g., oxygenation response to
epileptic activity and focus localization), idiopathic headache syn-
dromes and functional imaging of the diseased brain (e.g., in the context
of neurorehabilitation) (Obrig, 2014). fNIRS also showed particular
promise as a clinical tool for online brain-monitoring during cardiac
surgery (Zheng et al., 2013) or critical care (Moerman & De Hert, 2017).
It is worth noting that (Kannan and Przekwas, 2011, 2012) have per-
formed very high fidelity 2D and 3D simulations for accurately and
efficiently predicting and quantifying local and global injuries for organs
like the brain and the lung. They were able to (i) noninvasively
“numerically penetrating” the tissues and (ii) reconstruct the optical
properties the presence of water, oxygenated, and de-oxygenated blood.
These numerical noninvasive measurements are then used to predict the
extent and severity of the organ hemorrhage/injury. A major obstacle in
establishing NIRS as a routine clinical tool for diagnostics of the diseased
brain is the variety of NIRS parameters (such as change in cerebral blood
volume, blood flow or oxy-Hb/deoxy-Hb), however, and variability of
tasks that are used in clinical studies. This limits comparability and
generalizability of findings. Currently, commercial systems provide in-
formation on relative change in hemodynamic properties only, but not
on absolute change. Also, as NIRS can only assess the optical properties
of the superficial cortical layers, deep sulci, as well as all subcortical and
infra-tentorial brain regions cannot be studied directly. Moreover,
compared to oxy-Hb/deoxy-Hb as measured by fNIRS, signal-to-noise of
fMRI BOLD signals was estimated to be up to 2-3 times higher (Cui et al.,
2011). While NIRS clearly has the advantage that it can be used at the
patient’s bedside, its superiority over other diagnostic tools remains to
be proven.

The first studies aiming at establishing fNIRS as a modality for brain
self-regulation were performed at the beginning of the millennium
(Coyle et al., 2004; Sitaram, 2005). It was demonstrated that motor
imagery, e.g., the imagination of clenching a ball, is associated with a
distinct oxy-Hb concentration increase and deoxy-Hb concentration
decrease as measured by contralateral optodes placed over the motor
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cortex (C3/C4 electrode positions according to the 10/20 EEG system).
This metabolic modulation was translated into online visual feedback, e.
g., displayed as a growing or shrinking circle on a computer display
(Coyle et al., 2004). In a later study, this paradigm was used to establish
a binary switch. In this study, two options (e.g., “yes” and “no”) were
presented to the user who was instructed to perform imagery tasks only
when the desired target became highlighted (a control paradigm
commonly referred to as “synchronous mode of operation™). The system
monitored the sensorimotor cortex activity during both options and
compared the response to each. The selection of either state required
multiple trials and, after approximately one minute, the classification
result was shown on a display. Although performance (defined as in-
formation transfer rate, ITR, in bit/sec.) was inferior to many electro-
encephalographic (EEG) systems, the system could achieve more than
80% correct classifications in healthy participants (Coyle, 2007), a value
comparable with other established EEG- or magnetoencephalography
(MEG)-based BCIs (Mihara & Miyai, 2016).

Given the tight relatedness of neurofeedback and BCI applications on
their technological but also clinical level (Soekadar et al., 2019), the
following provides an overview of the most relevant applications that
employ real-time optical brain imaging, e.g., for restoration of
communication and movement, symptom reduction in neuropsychiatric
disorders, or neuroenhancement and neuroergonomics'. From a
behavioural point of view, both neurofeedback and BCI applications
involve operant conditioning of neural cell esemblies (Soekadar et al.,
2015b). This shared neurobiological basis may not only potentiate the
scope of BCI applications from assistance to treatment, but may also
pave the way for the development of novel mechanism-based neuro-
feedback paradigms.

3.1. Optical BCIs in restoration of communication

The first clinically meaningful application of a BCI was introduced in
the late 1990ies when a patient who suffered from locked-in syndrome
(LIS) could select single letters on a screen by self-regulating slow
cortical potentials (SCP) recorded by EEG. Applicability and versatility
of such BCI systems for restoration of communication were later sub-
stantially improved (Blankertz et al., 2011; Blankertz, 2008; Kubler &
Kotchoubey, 2007). However, successful application in patients diag-
nosed with complete locked-in syndrome (CLIS), i.e., the inability to elicit
any voluntary muscle contraction, remains a great challenge. While not
all reasons for this failure in applicability are entirely clear and remain
subject of discussion, e.g., the thought-extinction hypothesis (Kubler &
Birbaumer, 2008) predicting that any voluntary cognitive activity, goal-
directed thinking or mental imagery would cease once a patient has
entered CLIS, an in-depth analysis of data recorded by electro-
corticography (ECoG) showed that CLIS can lead to considerable
impairment of the circadian system reflected by an increased fragmen-
tation of slow wave sleep (SWS) (Soekadar et al., 2013). This evidenced
that use of appropriate tools to monitor attentiveness and alertness
during the attempt to establish any form of BCI communication with
CLIS patients is critical.

Assuming that instrumentally learned responses and intentional
cognitive processes extinguish in complete paralysis (as predicted by the
thought extinction hypothesis), alternative approaches based on
semantic classical conditioning were introduced and tested (Ruf et al.,
2013). Semantic classical conditioning refers to establishing a cortical
response to the trueness of a statement (i.e., its semantics) irrespective of
the particular constituent words and letters or sounds of the words. For
this, an unconditioned stimulus (e.g., an acoustic signal or short elec-
trical pulse) is presented only when a true statement is acoustically

! For a more comprehensive overview of fNIRS-neurofeedback studies, please
see Kohl et al. (2020) as well as https://osf.io/hnxfq/ providing a compre-
hensive database that includes methodological details of published studies
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presented (conditioning and calibration of the classifier). After condi-
tioning, cortical responses are evaluated online (e.g., using linear
discriminant analysis) and classification results fed back to the subject at
the end of each trial. In a first study involving healthy volunteers, a
mean accuracy of 65.4% for classification of “yes” and 68.8% for “no”
thinking was found. Offline analysis of the conditioned cortical re-
sponses (as measured by area under curve of 2 s-time intervals following
acoustic presentation of a true or false statement) revealed significant
differences between conditioned “yes” and “no” answers. Successful
translation of this approach to LIS patients was later demonstrated in a
clinical study that consisted of two weeks of measurements with four
sessions per week (De Massari et al., 2013). Although online classifica-
tion of brain responses was around chance level when averaged across
all sessions, use of a non-linear classification algorithm (radial basis
function kernel support vector machine) resulted in substantial im-
provements in classification accuracies. This suggests that, in principle,
semantic classical conditioning of brain activity is feasible, but that
online single-trial analysis of electric brain activity may not be robust
enough to establish reliable communication in CLIS patients. After it was
shown that less training is required to learn voluntary control of blood-
oxygenation-level-dependent (BOLD) signals compared to EEG signals
(e.g., only a few real-time fMRI sessions are required to achieve >80%
BCI control accuracy) (Birbaumer et al., 2013; Sitaram et al., 2017), it
seemed reasonable to attempt establishing the semantic conditioning
approach in an fMRI or fNIRS-based paradigm. However, use of fMRI in
patients with complete paralysis, who usually depend on artificial
respiration, is often not feasible. The availability of fNIRS-BCI systems
allowing for bedside evaluation of metabolic brain activity led to first
experiments in which semantic classical conditioning was attempted for
restoration of communication in a patient diagnosed with CLIS (Bir-
baumer et al., 2014). Later, also classification of sensorimotor and
temporal cortical oxygenation and de-oxygenation following simple
questions with known positive or negative answers (e.g., “Your name is
Giulia”) was attempted (Gallegos-Ayala et al., 2014). In healthy volun-
teers, classification of NIRS-responses associated with simple “yes” and
“no” answers was successfully demonstrated and did not require any
specific conditioning of cortical responses (Abdalmalak et al., 2020;
Rezazadeh Sereshkeh et al., 2019; Tanino et al., 2015). Due to the
limited number of CLIS patients and significant challenges to ascertain a
sufficient level of alertness (Soekadar et al., 2013), it remains open
whether and to what degree communication in CLIS can be restored.
Thus, further studies are needed to proof applicability and usefulness of
fNIRS-BCIs for restoration of communication in CLIS.

Given that patients with prolonged disorders of consciousness are
often misdiagnosed (Wang et al., 2020), beyond CLIS, there is critical
need for robust non-invasive bed-side tools to evaluate level of con-
sciousness and for re-establishing communication. Besides their imme-
diate impact on self-determination and quality of life, such systems may
also trigger neural recovery as it was shown for BCIs in restoration of
movement and accelerate emergence from minimally conscious state
(EMCS).

3.2. Optical BCIs in restoration of movement

Besides restoration of communication, restoration of movement
became the second major pillar in clinical BCI research (Soekadar et al.,
2011a). In 2003, a first non-invasive EEG-BCI was presented that
enabled a quadriplegic patient to control grasping motions through
functional electrical stimulation activated by modulation of sensori-
motor rhythms (SMR) (Pfurtscheller et al., 2003). SMR is an oscillatory
idle rhythm (9-15 Hz) recordable over the sensorimotor cortex that
becomes desynchronized during motor imagery, motor planning or
execution. It was shown that repeated use of such SMR-BCI-controlled
hand exoskeleton can lead to cortical neuroplasticity (Soekadar et al.,
2011b) and functional motor recovery in chronic stroke patients with
severe finger paralysis (Cervera et al., 2018; Pichiorri et al., 2015;
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Ramos-Murguialday et al., 2013). Given that optical BCIs can also
translate motor imagery-related modulations of brain activity into
control commands of external devices (Sitaram et al., 2007), such sys-
tems were soon tested as possible upper- and lower limb rehabilitation
tools for stroke patients (Khan et al., 2018; Rea et al., 2014; Schurholz
et al., 2012). Similar to EEG- and MEG-BCI paradigms, motor imagery-
based fNIRS-neurofeedback induced higher activation of the premotor
cortex, which was accompanied by improved self-assessed kinesthetic
motor imagery during real neurofeedback as compared to a within
sham-feedback condition in healthy participants (Mihara et al., 2012).
Repeated feedback training of motor imagery-related brain activity led
to more focused brain activation compared to sham feedback training
using both an fNIRS- (Kober et al., 2014) or fMRI-based system (Marins
et al.,, 2015). Beyond replicating this finding, a first double-blinded
randomized sham-controlled pilot study involving 20 hemiplegic
stroke patients showed a specific improvement of hand and finger
function after six fNIRS-based real-time feedback training sessions
(Mihara et al., 2013). Recently, (Fujimoto et al., 2017) successfully
demonstrated regulation of the supplementary motor area (SMA)
without providing any instruction of motor imagery or other mental
strategies. Although, mental strategies were not systematically assessed
after the training and participants may have engaged in motor imagery,
this study underlines the potential of fNIRS-based neurofeedback for
modulating brain activity in motor regions. Such neurofeedback may
also be used to support motor learning after stroke. In an effort to exploit
the advantages of both, (Rieke et al., 2020) introduced a combined,
sequential real-time fMRI and fNIRS BCI system aiming at enhancing
motor learning after stroke. The patient first underwent three fMRI-
neurofeedback sessions receiving feedback of the ipsilesional motor
cortex activity while engaging in a wrist extension training. The fMRI
sessions allowed for a more precise localization of the signal source
informing the channel selection in subsequent fNIRS neurofeedback
sessions. During these fNIRS-sessions, the patient additionally received
neural-triggered functional electrical stimulation (FES) to assist in wrist
movements while the wrist extension training was continued.

Besides upper limb movements, also successful regulation of
swallowing-related motor regions (within the inferior frontal gyrus) was
demonstrated which may prove beneficial to treat dysphagia in the
future (Kober et al., 2015, 2018, 2019).

Whereas classification accuracy of motor imagery-related cortical
activation ranged between 70% and 90% in healthy subjects (Coyle
et al., 2004; Coyle, 2007; Hong et al., 2015; Naseer and Hong, 2013,
2015; Sitaram, 2005), classification accuracies tend to be lower in pa-
tient populations (Blokland et al., 2014). More studies are needed to
investigate the mechanisms underlying learned self-regulation of
metabolic brain activity and how BCl-related functional and structural
neuroplasticity relates to specific clinical improvements (Soekadaret al.,
2015a; Ushiba & Soekadar, 2016).

3.3. Optical real-time brain imaging in neuropsychiatric disorders

Besides neurorehabilitation, optical real-time brain imaging may
also represent a promising tool to improve brain functions and amelio-
rate symptoms in neuropsychiatric disorders.

E.g., eight sessions of fNIRS-neurofeedback training of prefrontal
cortex activation improved inhibitory control in a subclinical sample of
highly impulsive adults. This corresponded to higher activation of the
left dorsolateral prefrontal cortex (dIPFC) during a Go-Nogo-task after
the neurofeedback training compared to a control group receiving
electromyography (EMG)-biofeedback (Hudak et al., 2017). Children
diagnosed with attention deficit and hyperactivity disorder (ADHD)
underwent a similar training protocol. After 12 sessions, study partici-
pants showed a trend towards improved inhibitory control, which was
accompanied by symptom reduction. However, control groups (EEG-
and EMG-biofeedback) also showed marginal symptom reduction and
no significant group effect was found. This is in line with data of a small
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randomized controlled trial reporting only unspecific improvements of
reading abilities in children with ADHD after 15 sessions of neurofeed-
back (Blume et al., 2020). In patients with social anxiety disorder, 15
sessions of fNIRS neurofeedback training of prefrontal brain regions
reduced social threat-related attention bias and improved social and
general trait anxiety as well as depressive symptoms (Kimmig et al.,
2019). Due to absence of a control group, results are only preliminary,
however.

In addition, training protocols have been developed to enhance the
effects of a facial-recognition training in autism (Liu et al., 2017), reduce
auditory verbal hallucinations and improve cognitive functioning in
schizophrenia (Gomes et al., 2018; Storchak et al., 2019) and modulate
eating behavior (Percik et al., 2019). To date, mostly single-case studies
were reported, however.

Successful classification of neutral and positive affective states was
demonstrated (Trambaiolli et al., 2018), and it was shown that partici-
pants could increase asymmetric activation of the left dIPFC by affective
engagement with a virtual agent (Aranyi et al., 2016). These fNIRS-
based affective BCIs developed in healthy participants may pave the
way for their future application in the treatment of mood disorders such
as major depression. Moreover, the effectiveness of fNIRS-
neurofeedback training for modulating activation of the orbitofrontal
cortex (OFC) was demonstrated in a sham-controlled study involving 60
healthy participants. This brain region was shown to be related to
cognitive flexibility and reward processing. Psychiatric disorders char-
acterized by dysregulations in these domains and associated with OFC
dysfunction could be targeted with this neurofeedback protocol in future
(Li et al., 2019).

3.4. Optical real-time brain imaging for neuroenhancement and
neuroergonomics

Next to clinical applications, fNIRS-neurofeedback has been inves-
tigated as a tool for cognitive enhancement and improving stress resil-
ience and well-being in healthy people. Aiming to reduce stress in
Japanese workers (Kotozaki et al., 2014), combined neurofeedback of
the frontal pole with a heart rate variability (HRV) biofeedback training.
After four weeks of training in the participants’ home environment, they
found improvements in job-related stress measures and lower cortisol
responses alongside increases in grey matter volume in brain regions
implicated in stress response (hippocampus) and emotion control
(orbitofrontal cortex). Unfortunately, the study design did not allow to
disentangle the effects of neurofeedback from HRV biofeedback or
control for unspecific effects of the training. Lai et al. (2015) investi-
gated the effects of a one-session neurofeedback training of the frontal
pole on attentional networks. They reported improved levels of perfor-
mance as compared with a passive control task (counting), and similar
performance as compared to mindfulness meditation. This study pro-
vides first evidence that neurofeedback training may have similar effects
on attention as mindfulness practices. However, studies employing
larger training regimens and follow-up measures are needed to corrob-
orate this finding and to investigate whether neurofeedback is more
efficient than mediation as hypothesized by the authors. Also, differ-
ences in the involved neural mechanisms need to be investigated.

Recently, (Xu et al.,, 2020) introduced an fNIRS-neurofeedback
training based on frontoparietal connectivity, and demonstrated its
feasibility to improve working memory and attention in healthy people.
Such an approach may also turn out to be useful in the treatment of
neuropsychiatric disorders characterized by deficits in these cognitive
domains or to prevent cognitive decline.

Beyond direct feedback and control of brain activity related to
various mental or emotional states, including levels of vigilance, atten-
tion and mental workload, detecting such states could be used for pas-
sive BCIs creating supportive environments in which feedback or task
demands are optimally adapted to the mental state of the user (Gerjets
et al., 2014; Muller et al., 2008; Zander & Jatzev, 2012). By mitigating
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the consequences of excessive workload or allowing for strategy
changes, safety, performance, effectiveness or motivation in human-
—machine interaction could be increased. Such neuroergonomic ap-
proaches use markers in brain activity to assess covert mental states,
such as mental workload, independently of the reported subjective or
measured overt performance of a human operator (Parasuraman &
Wilson, 2008). Sudden performance declines that follow sustained pe-
riods of excessive or too low task demands or engagements could be
predicted and avoided, an issue of importance, e.g., in neuro-
rehabilitation or psychotherapeutic interventions. In this context, HRV
was recently identified as a promising biomarker predicting decline in
brain/neural control performance (Nann et al., 2021). Moreover, vary-
ing workload conditions have been shown to modulate activation in the
dorsolateral and ventrolateral prefrontal cortex as measured by fNIRS
(Ayaz et al., 2013; Bruno et al., 2018; Schreppel et al., 2008). Accord-
ingly, frontal oxygen dependent metabolism measured over prefrontal
regions using fNIRS could be successfully used for the assessment of
expertise development and the assessment of cognitive workload (Ayaz
et al., 2013, 2012; Causse et al., 2017).

While recently published studies support the potential of fNIRS-
neurofeedback for clinical and non-clinical applications, a recent sys-
tematic review concluded that sufficiently powered studies and large
randomized controlled trials are still lacking and specificity of the re-
ported effects remains to be demonstrated (Kohl et al., 2020). Also,
shortcomings in reporting important information were identified. E.g.,
online signal processing methods and training success measures were
not reported by some of the studies. Moreover, it is noteworthy that
some of the above mentioned studies did not use concentrations of HbO
or HHD as a feature to calculate the feedback signal but used measures of
the optical density of one wavelength (Kotozaki et al., 2014) or the ratio
of light intensities of two different wavelengths (Lai et al., 2015; Percik
etal., 2019). While these features should, in theory, carry information of
HbO concentrations, methodological studies are required to find out if
this simplified approach is comparable in terms of signal quality and
performance. Future studies will benefit from adopting more rigorous
research and reporting practices as encouraged by a recent consensus
paper (Ros et al., 2020) and methodological recommendations (Kohl
et al., 2020).

3.5. Advancing optical real-time brain imaging towards broader clinical
adoption

While optical real-time brain imaging is clearly more suitable for
neurofeedback than BCI applications due to its signal features in the
seconds range, it was recently suggested that designing paradigms that
combine both brain/neural control of an assistive device and instru-
mental conditioning of brain activity (neurofeedback) may provide
decisive advantages to increase the impact of intervention (e.g.,
fostering generalization of learned skills from the laboratory to real-life
scenarios while triggering neuroplasticity and neural recovery) (Soe-
kadar et al., 2019). Thus, combination of optical brain imaging with
other modalities, such as EEG or optically pumped magnetometers
(OPM) that exploits shared and complementary information may sub-
stantially increase robustness and performance (Fazli et al., 2015, 2012;
von Luhmann et al., 2017). By broadening the versatility and reliability
of use, such hybrid systems could extend the scope of optical real-time
brain imaging towards broader clinical adoption. Numerous studies
have investigated feasibility, safety and reliability of such hybrid sys-
tems across different brain regions and functional domains (Fazli et al.,
2012; Koo et al., 2015; Muller-Putz et al., 2015; Shin et al., 2018) paving
the way for various future clinical applications (for an overview of such
systems targeting the motor cortex, see table 1).

4. Conclusions and future outlook

Optical real-time brain imaging has demonstrated its clinical
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Table 1

List of studies investigating feasibility of hybrid brain-computer interfaces
involving optical brain imaging for neurofeedback of motor cortex activation.
Besides details on the signal features used for neurofeedback, also achieved
classification accuracies are provided.

Study Brain area Features used for neuroeedback Classification
accuracy
(Fazli et al., bilateral NIRS: mean of AHbO and HbR 83.10%
2012) motor EEG: Power
cortex
(Koo et al., bilateral NIRS: AAHbO 88%
2015) motor EEG: power, variance (self-paced)
cortex
(Yin et al., bilateral NIRS: signals from HbR, HbO, 89%
2015) motor HbT, HbO - HbR, light
cortex absorption (two wavelengths)
EEG: power, instantaneous
phase, instantaneous amplitude,
instantaneous frequency
(Buccino bilateral NIRS: mean and slope of AHbO 72.2%
et al., motor and HbR (right / left)
2016) cortex EEG: power, variance
(Li et al., bilateral NIRS: Initial dip of HbO and HbR 91.02%
2017) motor EEG: coefficient of discrete (right / left)
cortex wavelet transform
(Fu et al., bilateral NIRS: signals from HbR, HbO 74%
2017) motor EEG: power, instantaneous (hand
cortex phase, instantaneous amplitude, clenching)

instantaneous frequency

relevance and is currently tested in a variety of applications, e.g. in the
treatment of stroke (Mihara et al., 2013), ADHD (Blume et al., 2020;
Hudak et al., 2017; Marx et al., 2014), social anxiety disorder (Kimmig
et al., 2019), autism spectrum disorder (Liu et al., 2017) and schizo-
phrenia (Storchak et al., 2019). Further, protocols that were successfully
tested in healthy participants are now paving the way for clinical ap-
plications of optical real-time brain imaging in neuropsychiatric disor-
ders (Aranyi et al., 2016; Li et al., 2019; Trambaiolli et al., 2018; Xu
et al., 2020). Particularly brain functions related to the frontal lobes,
such as executive functions or emotion regulation that are often affected
in depression, schizophrenia or neurodegenerative disorders, might be
promising targets for neurofeedback applications. To establish optical
real-time brain imaging as a robust and powerful clinical tool, a number
of challenges related to the consistency of findings (Bendall et al., 2016)
and possible confounds limiting specificity of fNIRS recordings (e.g.,
extracranial artifacts such as temporal muscle activity) have to be
mastered, however (Schecklmann et al., 2017).

Besides further clinical validation, broader use of optical neuro-
feedback/BCI applications in and outside of the clinical context will also
depend on further miniaturization, improvements in optical sensor
technology and user-friendliness (von Liihmann et al., 2015). Increasing
the performance of such systems, e.g., by further advancing hybrid BCIs
or using innovative imaging techniques, will be critical to establish
optical measures of brain activity in the context of assistive applications.

The particular potential in hybrid optical neurofeedback and BCI
applications relates to its capability to incorporate an increasing number
of bio-signal modalities and integration of contextual (environmental)
information. In this regard, combination of such advanced context-
sensitive systems with devices providing multi-sensory feedback to the
user (e.g., comprising augmented or virtual reality, AR/VR, vibro-
tactile/acoustic or haptic as well as heat and cold stimulation) are of
special interest for the medical field. Not only might such systems
improve assistive brain/neural control (Crea et al., 2018; Nann et al.,
2020), but such multi-level closed-loop systems might also prove
particularly effective and useful to purposefully modulate the brain’s
network activity in the context of neurofeedback applications.

By focusing on the use of both electrical/magnetic and bio-optical
signals from both brain and body, and exploiting the advantages of
each modality and signal, the design of more comprehensive and robust
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human-machine interfaces becomes possible: Toward unobtrusive,
hazard free applications with high usability that can be reliably inte-
grated into the user’s daily life.

Successful development of such multi-modal neurofeedback/BCI
systems will be the result of highly interdisciplinary collaborations that
combine understanding of physiology, clinical conditions and symp-
toms, instrumentation, application, and last but not least methodology.

In analogy to clinical neurofeedback/BCI applications based on other
modalities, broad use and implementation of optical real-time brain
imaging in everyday life environments raise a number of important
neuroethical questions, such as privacy, data security or accessibility,
that need to be considered (Clausen et al., 2017). This is particularly true
for applications in neuroenhancement or neuroergonomics that serve
other purposes than medical applications aiming at restoration of lost or
compromised brain or body function.
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