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Abstract

Background: Transcription factor (TF) binding specificity is determined via a
complex interplay between the transcription factor’s DNA binding preference and
cell type-specific chromatin environments. The chromatin features that correlate with
transcription factor binding in a given cell type have been well characterized. For
instance, the binding sites for a majority of transcription factors display concurrent
chromatin accessibility. However, concurrent chromatin features reflect the binding
activities of the transcription factor itself and thus provide limited insight into how
genome-wide TF-DNA binding patterns became established in the first place. To
understand the determinants of transcription factor binding specificity, we therefore
need to examine how newly activated transcription factors interact with sequence
and preexisting chromatin landscapes.

Results: Here, we investigate the sequence and preexisting chromatin predictors of
TF-DNA binding by examining the genome-wide occupancy of transcription factors
that have been induced in well-characterized chromatin environments. We develop
Bichrom, a bimodal neural network that jointly models sequence and preexisting
chromatin data to interpret the genome-wide binding patterns of induced
transcription factors. We find that the preexisting chromatin landscape is a
differential global predictor of TF-DNA binding; incorporating preexisting chromatin
features improves our ability to explain the binding specificity of some transcription
factors substantially, but not others. Furthermore, by analyzing site-level predictors,
we show that transcription factor binding in previously inaccessible chromatin tends
to correspond to the presence of more favorable cognate DNA sequences.

Conclusions: Bichrom thus provides a framework for modeling, interpreting, and
visualizing the joint sequence and chromatin landscapes that determine TF-DNA
binding dynamics.
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Background
Sequence-specific transcription factors (TFs) bind DNA at their cognate sequence mo-

tifs, using both direct base interactions and DNA structural feature recognition [1–3].

However, the presence of cognate motif instances alone is a poor predictor of TF bind-

ing [4, 5]. TFs typically bind a small fraction of their potential target motif instances in

a given cell type, and the cohort of sites which are bound can vary greatly across cell

types [6–8]. These observations suggest that cell type-specific TF selectivity is governed

by cell type-specific chromatin environments [5, 7, 9, 10]. Cell-specific patterns of chro-

matin accessibility, nucleosome positioning, and histone post-translational modifica-

tions modify the availability of a TF’s sequence motifs [11–16]. Co-operative

interactions with other regulatory proteins can alter a TF’s intrinsic sequence prefer-

ences, or enable binding at otherwise unavailable target sequence motifs [5, 17–19].

Even pioneer TFs, which are characterized by their ability to bind target motifs in rela-

tively inaccessible chromatin, bind DNA in cell type-specific patterns that can be mod-

ulated by other TFs [20–23]. Thus, it remains unclear how DNA sequence, chromatin

structure, and interactions with other regulators act in concert to determine cell type-

specific TF binding patterns.

Most previous searches for features associated with cell type-specific TF binding sites

have performed correlations with chromatin data measured when the TFs under study

are already bound to DNA (i.e., “concurrent” chromatin information) [6, 24–30]. But

TFs and their recruited regulatory complexes often alter local chromatin landscapes

[31, 32]. Concurrent chromatin features thus cannot be used to address the question of

how TF binding patterns become established in the first place. The few studies that

have analyzed the determinants of TF binding in dynamic contexts have lacked inte-

grated analysis approaches that separate DNA sequence and prior chromatin predictors

of future TF binding activities [9, 11, 12, 21, 33, 34].

We present Bichrom, a bimodal neural network framework for characterizing the

relative contributions of DNA sequence and preexisting cell type-specific chromatin

landscape to an induced TF’s binding specificity (Fig. 1a). Our use of neural networks

is motivated by their advantages in predicting genome-wide TF binding patterns [24,

28, 35], and the ability of multi-modal neural networks to integrate heterogeneous data

types [36–38]. Bichrom’s architecture embeds TF binding sites into a two-dimensional

latent space, which can be used to estimate the relative contributions of DNA sequence

and preexisting chromatin features at individual TF binding sites. By comparing how

well neural networks can represent genome-wide binding patterns using sequence in-

formation alone versus a combination of sequence and preexisting chromatin features,

we can quantify the marginal amount of information added by preexisting chromatin.

Comparing such metrics across TFs allows us to assess how TFs differ in their overall

sensitivity to preexisting chromatin.

Our approach is distinct from other recent applications of neural networks to TF

binding prediction tasks. Several studies have also used neural networks to integrate

DNA sequence and concurrent chromatin landscape information, but with the goal of

imputing unobserved TF binding patterns in a given cell type [24, 28, 39]. In contrast,

we focus on settings in which we already know (via ChIP-seq) where a TF of interest is

binding when expressed in a given cell type, and we aim to interpret how those binding

sites relate to DNA sequence and preexisting chromatin features. Due to their focus on
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imputation or prediction tasks as opposed to feature attribution, previous neural net-

work applications use early-integration frameworks (i.e., DNA sequence and chromatin

accessibility data are integrated at a feature level) [6, 24, 26, 39–41]. However, early-

integration makes it challenging to interpret the contributions of individual features to-

ward TF binding at individual sites. Our bimodal architecture has the distinct advan-

tage of enabling deconvolution of sequence and chromatin predictors of TF-DNA

binding.

We demonstrate Bichrom’s utility by examining the binding determinants of the pro-

neural bHLH TF Ascl1 when it is induced in mouse embryoid body (mEB) cells [42].

Bichrom analysis finds that despite Ascl1’s characterized pioneering abilities [42–46],

Ascl1 binding is dependent on the preexisting mEB chromatin environment at a subset

of its binding sites. Next, we demonstrate that Bichrom can informatively rank TFs by

their relative dependence on prior chromatin landscapes. We focus on a selection of

neuronal TFs that are activated downstream of Ascl1 (and bind DNA in the chromatin

environment established by Ascl1) [42]; Bichrom’s assessment of relative chromatin de-

pendence for these TFs is supported by observing whether the same TFs bind different

sites when they become activated in a different chromatin environment. Finally, we ex-

pand our analysis to examine the differential sequence and prior chromatin drivers for

12 TFs induced in cell types for which the preexisting chromatin accessibility landscape

Fig. 1 Overview of Bichrom’s neural network architecture and approach. a Bichrom’s bimodal sequence
and preexisting chromatin network consists of two sub-networks: the sequence sub-network (BichromSEQ)
which uses one-hot encoded DNA sequence as input; and the chromatin sub-network (BichromCHR) which
uses binned normalized tag counts from chromatin experiments such as ATAC-seq and histone
modification ChIP-seq. The sequence and chromatin sub-network activations embed the training data into
a lower-dimensional plane, which is then used by a sigmoid-activated node for TF binding label
classification (i.e., bound/unbound). b Overview of Bichrom’s training strategy. BichromSEQ is trained using
training batches within which positive and negative training samples are matched in their prior accessibility
status. The weights of the convolutional and LSTM layers of BichromSEQ are fixed, and Bichrom is trained
using both sequence and preexisting chromatin data. c Overview of the Ascl1 data: Ascl1 expression is
induced in mouse embryoid bodies (mEBs) using a Dox-inducible promoter and Ascl1 binding is measured
12 h post induction. Bichrom training uses 12 prior chromatin datasets from mEB and mES cell types
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has also been characterized (mouse and human fibroblasts [23, 47]). While we focus

here on systems in which TF expression is induced in cell lines, Bichrom is broadly ap-

plicable to study TF binding determinants in any dynamic regulatory system in which

chromatin landscapes can be assayed before a TF’s DNA binding activity occurs.

Results
A bimodal neural network integrates DNA sequence and preexisting chromatin data to

characterize TF binding predictors

Bichrom’s bimodal neural network is composed of two sub-networks: one that operates

only on DNA sequence features (BichromSEQ), and one that operates on chromatin fea-

tures derived from ATAC-seq and ChIP-seq specific for histone modifications

(BichromCHR). Both sub-networks are designed to output real-valued activations, which

are additively combined by a single sigmoid-activated node (Fig. 1a). Bichrom is trained

to predict TF binding labels, as defined by ChIP-seq peaks. In our typical usage,

Bichrom trains on binding labels for a TF that has become activated in a given cell

type, using input features from DNA sequence and chromatin data profiled before the

targeted TF has become active. While we phrase Bichrom training as a predictive task,

our motivation is not to predict TF binding (which, of course, has already been ob-

served via ChIP-seq), but rather to characterize the sequence and preexisting chromatin

states that define a TF’s binding pattern. We do so by taking advantage of the interpret-

able nature of the bimodal network architecture; the weighted activations flowing from

each sub-network result in a latent two-dimensional representation of each genomic re-

gion, which we can analyze to interpret and compare the sequence and preexisting

chromatin predictors at individual TF binding sites (Fig. 1a).

Bichrom’s neural network hyper-parameters were chosen via a random grid-search

(see “Methods”). Each sub-network consists of a single convolutional neural network

(CNN) layer that acts as a primary feature extractor, followed by a long short-term

memory (LSTM) layer that can capture potential interactions between convolutional

filters [24, 48]. The LSTM output is fed through dense layers, which are combined to

produce a scalar real-valued output (Fig. 1a). Bichrom’s CNN-LSTM architecture was

found to perform better than or equivalent to a wide range of alternative CNN-based

architectures (see “Methods,” Additional file 1: Fig. S1). Each sub-network is input fea-

tures from 500 bp genomic windows: BichromSEQ operates on one-hot encoded DNA

sequences, while BichromCHR operates on normalized and binned read counts from

one or more pre-existing chromatin data tracks. Since we aim to interpret the sub-

network activations as separable sources of sequence and prior chromatin information,

we wish to avoid scenarios where the BichromSEQ sub-network learns sequence features

that are associated with the prior chromatin landscape. To minimize such confounding

issues, we train BichromSEQ using mini-batches where the positive and negative sets are

matched in their prior accessibility labels (see “Methods,” Fig. 1b).

While our primary motivation is the interpretation of sequence and prior chromatin

predictors of induced TF binding, we asked whether Bichrom’s architecture and train-

ing scheme produces an accurate representation of genome-wide TF-DNA binding

data. To ensure that Bichrom can represent genome-wide TF binding patterns with ac-

curacies approaching current state-of-the-art predictive methods, we assessed
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Bichrom’s performance on within-cell-type predictive tasks from the ENCODE-DREA

M challenge [13, 24, 25, 28]. This challenge evaluated the ability of various methods to

predict genome-wide binding of several human TFs given concurrent chromatin acces-

sibility (DNase-seq) and gene expression data. Using only sequence and concurrent

chromatin accessibility data, Bichrom predicts TF-DNA binding in held-out genomic

regions with accuracies comparable to, albeit slightly lower than, the top models de-

scribed in the challenge (see “Methods,” Additional file 1: Fig. S2). Thus, Bichrom’s bi-

modal architecture does not negatively impact its ability to represent genome-wide TF-

DNA binding patterns using sequence and chromatin features.

Ascl1 binding sites are partially predicted by preexisting chromatin information

Ascl1 is a proposed pioneer TF which can bind to relatively inaccessible sites when in-

duced in fibroblasts and early embryonic cell types [42–46]. Whether the preexisting

chromatin environment plays a role in determining induced Ascl1 binding sites re-

mains unclear [44]. To address this question, we applied Bichrom to interpret the rela-

tionships between induced Ascl1 binding and preexisting sequence and chromatin

landscapes. Specifically, we train Bichrom using previously published Ascl1 ChIP-seq

data measured 12 h after Ascl1 expression has been induced in mouse embryoid body

(mEB) cells [42] (Fig. 1c). The 12-h timepoint is the earliest at which we can obtain ro-

bust Ascl1 ChIP-seq binding data and is thus the most likely to represent the initial

binding activities that are shaped by previous chromatin states. In this analysis, the

BichromCHR sub-network is trained using 12 chromatin-related datasets from mEB and

related mouse embryonic stem (mES) cells: ATAC-seq, H2A.Z, acH2A.Z, H3K27ac,

H3K27me3, H3K4me1/me2/me3, H3K9ac, H3K9me3, H3K36me3, and H4K20me3

(Additional file 2: Table S1, Additional file 2: Table S2, Fig. 1c).

To assess whether the preexisting chromatin landscape is predictive of future Ascl1

binding locations, we compared Bichrom performance with a baseline neural network

trained only with sequence information. The baseline sequence-only network was con-

structed using the same hyper-parameters and architecture as the BichromSEQ sub-

network. Training was repeated 9 times for each network, each training round using a

separate held-out test chromosome. The sequence-only network predicts induced Ascl1

binding with a median area under the precision-recall curve (auPRC) of 0.42. In con-

trast, Bichrom predicts induced Ascl1 binding with a median auPRC of 0.59, suggesting

that information in the preexisting chromatin landscape significantly improves predic-

tion of Ascl1 binding (Wilcoxon signed rank test p value 0.003, Fig. 2a). As a negative

control, Bichrom trained using sequence and a ChIP input control experiment instead

of preexisting chromatin data does not lead to significant improvement in network per-

formance when compared to a sequence-only network (auPRC = 0.45, Fig. 2a). Add-

itionally, we confirmed that Bichrom’s additive bimodal design does not perform worse

than a model with more complex interactions between sequence and prior chromatin

features (Additional file 1: Fig. S3B).

Notably, the improved performance of Bichrom’s bimodal network is driven largely

by improved specificity. At a false positive rate of 0.05, a majority of Ascl1-bound sites

are correctly predicted by both the sequence-only network and Bichrom (Additional file

1: Fig. S3A). However, at a fixed recall of 0.5, Bichrom’s precision is substantially
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greater than that of the sequence-only network (Fig. 2b). Thus, the incorporation of

mEB and mES chromatin information significantly improves Bichrom’s ability to pre-

dict induced Ascl1 binding in a future timepoint, suggesting that although it is an

established pioneer TF, Ascl1 binding sites are partially determined by the preexisting

chromatin landscape.

Bichrom deconvolves the sequence and preexisting chromatin predictors of induced

Ascl1 binding

Beyond quantifying preexisting chromatin’s overall contribution to improving Ascl1

binding predictions, Bichrom’s unique bimodal architecture enables decomposition of

sequence and prior chromatin predictors at individual Ascl1 binding sites. For a given

genomic window, Bichrom’s TF binding score is a simple linear combination of the ac-

tivations from BichromSEQ and BichromCHR sub-networks. Thus, every genomic win-

dow can be embedded in a two-dimensional latent space defined by the sub-network

activations, enabling an intuitive visualization of how much the sequence and prior

chromatin sub-networks contributed to the overall predictive score (Fig. 1a).

Applied to the Bichrom network trained on Ascl1 binding data, we find that Ascl1-

bound genomic windows (orange) are well-separated from randomly sampled unbound

genomic windows (gray) in the two-dimensional latent space (Fig. 3a). However, Ascl1

binding sites are distributed over a broad range of BichromSEQ and BichromCHR sub-

Fig. 2 Preexisting chromatin information improves Bichrom predictions of induced Ascl1 binding sites. a
Distribution of model performance (auPRC) in predicting Ascl1 binding sites for a neural network trained
using only chromatin data (chromatin-only), a neural network trained using only sequence data (sequence-
only), Bichrom using sequence and a ChIP input control experiment (Bichrom control), and Bichrom using
sequence and 12 preexisting ES chromatin datasets. The boxplots represent data from 9 independent
training sets, each consisting of a separate held-out test chromosome. b The precision-recall curves for 9
models, each tested on 9 distinct held-out test chromosomes. The P-R curves for networks that use a
training set in which chromosome 10 is held-out for testing are highlighted in solid lines, performance for
other training sets is represented with lighter (alpha = 0.2) traces. Precision at a fixed recall of 0.5 is
highlighted for both the sequence-only network and Bichrom
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network activation scores. The variation in sub-network activations suggests that some

of Bichrom’s Ascl1 binding site predictions are driven primarily by sequence informa-

tion, while some are driven by preexisting chromatin features (Fig. 3a). Furthermore,

the diversity in Ascl1 sequence sub-network (BichromSEQ) scores is higher at sites that

are scored favorably by the BichromCHR chromatin sub-network, suggesting that the

presence of a favorable preexisting chromatin environment may enable Ascl1 binding

even at sites with relatively weaker sequence features (Fig. 3b). We confirm that this

compensatory effect is not an artifact of the linear combination between the sequence

and chromatin sub-networks by fixing the sequence sub-network weights while training

the chromatin sub-network (see “Methods,” Additional file 1: Fig. S5). Thus, Bichrom

learns a model in which Ascl1 binding sites exhibit a broad range of sequence and

chromatin sub-network scores, where favorable prior chromatin features can partially

compensate for weaker sequence features.

To investigate informative sequence features at Ascl1 binding sites, we used an inte-

grated gradients [49] feature attribution-based approach to identify local sequence win-

dows driving high BichromSEQ sub-network scores (see “Methods,” Additional file 1:

Fig. S6A, B). As expected, regions with high BichromSEQ scores contain motifs related

to the CAGSTG E-box, consistent with Ascl1’s cognate DNA binding preference [42]

(Fig. 4a). We also find a POU homeodomain DNA binding motif, suggesting that Ascl1

may bind a subset of its sites either in concert with, or at sites pre-bound by, a POU

domain TF such as Oct4 (one of the main regulators of pluripotency in the preexisting

Fig. 3 Bichrom decomposes sequence and preexisting chromatin predictors at individual Ascl1 binding
sites. a Bichrom network-derived latent representation of induced Ascl1 binding events (orange) and a
randomly sampled subset of unbound genomic regions (gray). The axes represent contributions of the
BichromSEQ sub-network and the BichromCHR sub-network toward bimodal network predictions. b
Distributions of BichromCHR scores for Ascl1 binding events conditioned on the BichromSEQ scores
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embryonic cells) (Fig. 4a). BichromSEQ scores are strongly associated with Ascl1 cog-

nate motif multiplicity; Ascl1 binding sites that receive high BichromSEQ scores contain

higher frequencies of E-box motif instances (Additional file 1: Fig. S6C) and CAGSTG

k-mers (Fig. 4b, c). The correlation between motif multiplicity and BichromSEQ scores

is maintained when scoring randomly sampled sequences in which we inserted variable

numbers of CAGSTG k-mer instances (Fig. 4d). We also investigated whether Bichrom-

SEQ scores encapsulate subtle nucleotide composition dependencies in regions flanking

Ascl1’s cognate binding motif [2, 42, 50]. Specifically, we inserted CAGSTG k-mers

flanked by variable nucleotides into an artificial uniform sequence (see “Methods”) and

found that BichromSEQ scores vary substantially according to specific motif-flanking

nucleotide compositions (Fig. 4e).

We next investigated the preexisting chromatin features driving variability in

BichromCHR sub-network scores. Ascl1 binding sites that receive the highest

BichromCHR scores are enriched in chromatin signals associated with regulatory ac-

tivity in the preexisting mES and mEB cell types (e.g., preexisting ATAC-seq,

H3K27ac, H3K4me2, H3K4me3, H3K9ac; Fig. 5a). Further, genome-wide domains

of preexisting ATAC-seq and “active” histone mark ChIP-seq enrichment are more

likely to receive higher BichromCHR scores (Fig. 5b). H3K9me3 and H4K20me3 do-

mains receive the lowest BichromCHR scores, in contrast to a previous suggestion

that preexisting H3K9me3 is predictive of induced Ascl1 binding in mouse embry-

onic fibroblasts [44] (Fig. 5b).

Fig. 4 Ascl1 cognate motif multiplicity and flanking nucleotides predict induced Ascl1 binding. a Motifs
enriched at saliency hills (regions of the input sequences that are used by the sequence sub-network to
make predictions). b Frequencies of CAGSTG k-mers at all Ascl1 binding sites. c BichromSEQ scores increase
with increasing motif multiplicity at Ascl1 binding windows. d Embedding CAGSTG motifs in simulated
sequences confirms that the BichromSEQ sub-network uses the number of motif occurrences as a score-
driving predictor. e BichromSEQ scores assigned to CAGSTG k-mers vary widely based on nucleotides
flanking the cognate k-mer
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Consistent with our analyses of individual chromatin signals, Ascl1 binding sites that

overlap various ChromHMM-defined [51] mES/mEB chromatin states receive widely

varying median BichromCHR scores (Fig. 5c). Ascl1 binding sites that overlap preexist-

ing active promoter and strong enhancer states receive the highest BichromCHR scores,

while Polycomb-repressed (marked by H3K27me3), heterochromatin (marked by

H3K9me3), and quiescent states receive the lowest BichromCHR scores (Fig. 5c). In ac-

cordance with our observations from the latent space embeddings (Fig. 3), Ascl1 bind-

ing sites located in preexisting enhancer or promoter states receive lower median

scores from the BichromSEQ sequence sub-network (Fig. 5c). Conversely, Ascl1 sites in

preexisting heterochromatin and quiescent states receive the highest median Bichrom-

SEQ scores.

Taken together, our Bichrom analysis of induced Ascl1 binding sites suggest mutual

compensation between sequence and preexisting chromatin predictors. Ascl1 binding

to sites of preexisting active chromatin does not necessarily require strong cognate and

secondary sequence motif features, whereas Ascl1 binding to preexisting quiescent or

repressed chromatin is correlated with increased motif multiplicity and favorable flank-

ing nucleotide composition.

Bichrom predicts the relative dependence of neuronal TF binding sites on preexisting

chromatin

As demonstrated by our applications to Ascl1 data, Bichrom’s analyses can be inter-

preted as characterizing a TF’s dependence on preexisting chromatin, both from a glo-

bal viewpoint and at the level of individual binding sites. We next asked whether we

could support such interpretations experimentally. To do so, we apply Bichrom to

analyze the binding patterns of TFs that become expressed downstream of Ascl1 in the

same mEB-based system [42].

Specifically, induced Ascl1 (iAscl1) differentiates mEBs into neuronal lineages [42].

Within 12 h of expression, Ascl1 binding establishes chromatin accessibility at some

previously inaccessible binding sites. Ascl1 induces expression of several key neuronal

TFs, including Brn2, Ebf2, and Onecut2, within this new chromatin accessibility land-

scape. Having previously characterized the subsequent genomic binding of Brn2, Ebf2,

and Onecut2 using ChIP-seq at iAscl1 + 48 h [42], we applied Bichrom to ask whether

each TF’s binding is informed by the chromatin accessibility landscape established by

iAscl1 (ATAC-seq, iAscl1 + 12 h).

Compared with a network trained using sequence information alone, Bichrom’s in-

corporation of preexisting iAscl1 + 12 h accessibility data significantly improves the rep-

resentation of iAscl1 + 48 h binding sites for both Brn2 and Ebf2. Specifically, we

observe improvements in recall at a fixed false positive rate (see “Methods,” Fig. 6a)

and auPRC (Brn2: sequence network auPRC = 0.23, Bichrom auPRC = 0.35; Ebf2: se-

quence network auPRC = 0.38, Bichrom auPRC = 0.53; Additional file 1: Fig. S7). In

contrast, the incorporation of prior chromatin information does not result in improved

representation of Onecut2 binding. The sequence-only network and Bichrom show

comparable values for both recall (Fig. 6a) and auPRC (sequence network auPRC =

0.54, Bichrom auPRC = 0.56, p value 0.59) (Additional file 1: Fig. S7). Therefore,

Bichrom analysis suggests that Ebf2’s and Brn2’s genomic binding specificity is
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Fig. 5 Preexisting active chromatin features positively predict induced Ascl1 binding sites. a Mean mES/
mEB chromatin feature tag enrichment at Ascl1 binding sites, divided into quartiles based on their
association with BichromCHR sub-network scores. Sites belonging to the highest-scoring quartile are
enriched for preexisting active histone modifications such as H3K4me2, H3K4me3, H3K27ac, and H3K9ac.
The lowest-scoring quartile lack enrichment of any measured histone modifications. b The distribution of
BichromCHR sub-network scores at genomic regions enriched for each of the mES/mEB chromatin features.
c Median BichromSEQ and BichromCHR sub-network scores at Ascl1 sites that overlap mES/mEB ChromHMM
states. Bubble size corresponds to relative proportion of Ascl1 binding sites. Median BichromSEQ sub-
network scores are typically lower at states with high BichromCHR sub-network scores
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dependent on preexisting accessibility to a greater degree than that of Onecut2. In

other words, Bichrom predicts that Onecut2 has a more pioneer-like behavior than

Ebf2 and Brn2.

If Onecut2 is in fact less dependent on preexisting chromatin accessibility, we should

expect it to bind many of the same sites in a different chromatin accessibility landscape.

Similar to Ascl1, expression of the proneural bHLH TF Neurog2 in mEB cells also leads

to differentiation along neuronal lineages and also causes expression of Brn2, Ebf2, and

Onecut2 [42]. However, induced Neurog2 (iNeurog2) binds to different sites and

thereby establishes a distinct chromatin accessibility landscape (Additional file 1: Fig.

S8). Consistent with our interpretation of Bichrom’s analysis, the iNeurog2 + 48 h bind-

ing activities of Brn2 and Ebf2 are affected by the shift in preexisting chromatin accessi-

bility landscapes to a greater degree than Onecut2. Specifically, only 65% of Brn2 sites

and 56% of Ebf2 sites are shared between iAscl1 and iNeurog2 cell types, whereas 86%

of Onecut2 binding sites are shared (Fig. 6b) [42]. This comparative analysis of differen-

tial binding across two cell types thus supports Bichrom’s ranking of the TFs’ depend-

ence on preexisting chromatin, which was derived from analysis of ChIP-seq data from

a single cell type (i.e., iAscl1 + 48 h). Furthermore, Bichrom’s prediction that Onecut2 is

less dependent on preexisting chromatin is consistent with recent literature that estab-

lishes Onecut TFs as neuronal pioneers [52, 53].

Turning to the predictors of individual TF binding sites, Bichrom’s two-dimensional

latent space embeddings again show wide ranges of BichromSEQ and BichromCHR sub-

network scores for all three neuronal TFs (Additional file 1: Fig. S9). For each TF, we

extract subsets of binding sites that we define as “sequence-predicted” (SP; sites in top

Fig. 6 Brn2, Ebf2, and Onecut2 vary in their relative dependence on preexisting chromatin features. a
Bichrom (incorporating preexisting ATAC-seq data) outperforms the sequence-only network at predicting
induced Brn2 and Ebf2 binding but performs at par with the sequence-only network at predicting induced
Onecut2 binding. b The percentage of Onecut2, Brn2, and Ebf2 sites that are bound in both iAscl1 and
iNeurog2 neurons (shared sites), preferentially bound in iNeurog2 (iNeurog2-only) and preferentially bound
in iAscl1 neurons (iAscl1-only). c Brn2, Ebf2 and Onecut2 iAscl1 sequence-predicted (SP) sites are more
conserved in iNeurog2 neurons compared to chromatin-predicted (CP) sites. MEME-ChIP-determined motif
frequency at SP vs. CP sites for d Brn2, e Ebf2, and f Onecut2. For all three TFs, SP sites contain a higher
number of cognate motifs. CP and SP sites also display differential secondary motif enrichment
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25th percentile of BichromSEQ scores and bottom 25th percentile of BichromCHR

scores) and “chromatin-predicted” (CP; sites in top 25th percentile of BichromCHR

scores and bottom 25th percentile of BichromSEQ scores). If our latent space embed-

dings are meaningful, we would expect the “CP” sites to be more dependent on a shift

in the preexisting chromatin landscape than the “SP” sites. Analysis of differential bind-

ing downstream of iNeurog2 again supports our interpretation. For all three neuronal

TFs, “SP” iAscl1 binding sites show consistently higher levels of retention in iNeurog2

cells than “CP” sites (Fig. 6c). For example, 74% of Brn2’s iAscl1 SP sites are also bound

in iNeurog2 cells, while only 11% of Brn2’s iAscl1 CP sites are retained (Fig. 6c). Thus,

Bichrom’s prediction that some individual binding sites are more dependent on preex-

isting chromatin features is confirmed by those sites being more sensitive to a shift in

the underlying chromatin landscape.

Our interpretations of the latent embeddings are also supported by motif analysis at

SP and CP sites (Fig. 6d–f). The cognate DNA-binding motifs for Brn2, Ebf2, and One-

cut2 show consistently higher enrichment in the SP sites compared with their CP sites

(Fig. 6d–f). In contrast, and even though the BichromCHR sub-network does not use

any DNA sequence information, we find that all three TF’s CP sites contain higher en-

richment for a Sp1-like motif and the CAGSTG E-box motif that is preferred by Ascl1.

The latter observation suggests that some CP sites bound by the neuronal TFs at 48 h

may be made accessible by Ascl1 binding at 12 h. Indeed, we find that CP sites overlap

preexisting Ascl1 sites (iAscl1 + 12 h) at a significantly higher rate than SP sites: for ex-

ample, 59% of Brn2’s CP sites overlap preexisting Ascl1 binding compared to 1% of

Brn2 SP sites. Similarly, we find a CTCF-like motif enriched at higher rates in Ebf2 CP

sites than SP sites (Fig. 6e), suggesting that CTCF binding in a prior cell stage may es-

tablish a favorable chromatin environment for Ebf2 binding. Comparing with mES

CTCF ChIP-seq data, we find that 33% of Ebf2 CP sites overlapped with CTCF binding

events, while fewer than 1% of Ebf2 SP sites do so.

In summary, the latent network embeddings identify sites that are more likely to be

differentially bound in distinct chromatin environments. Additionally, they can be used

to identify the diverse sequence, chromatin, and co-factor feature compositions that

specify genome-wide TF binding.

The predictive capacity of preexisting chromatin varies across TFs

Finally, we asked whether the ability of preexisting chromatin to explain binding speci-

ficity varies across a broader range of TFs, cellular conditions, and datasets. We applied

Bichrom to analyze the binding of 12 induced TFs from studies where aspects of the

preexisting chromatin environment were also characterized. Specifically, we used

Bichrom to analyze the binding of 9 TFs that were induced in mouse NIH-3T3 fibro-

blasts and assayed approximately 12 h post TF induction (Additional file 2: Table S3)

[47], using NIH-3T3 ATAC-seq to define the preexisting chromatin accessibility land-

scape (Additional file 2: Table S4). We also analyzed the binding of three previously

established human pioneer TFs—OCT4, GATA4, and FOXA2—that were induced in

human BJ fibroblasts and assayed 4 days post induction [23]. In these latter analyses,

the preexisting chromatin landscape was defined by ATAC-seq, H3K27ac, H3K4me2,

and H3K27me3 (Additional file 2: Table S5).
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Applied to the NIH-3T3-induced TFs, Bichrom’s incorporation of preexisting accessi-

bility increased predictive accuracy for NIH-3T3 induced Bhlhb8, Sox15, Sox2, Dlx6,

Rhox11, Hlf, and FoxA1 (Fig. 7a, Additional file 1: Fig. S10A). However, the incorpor-

ation of preexisting accessibility did not significantly increase predictive accuracy for

Duxbl or Cdx2, suggesting that the binding patterns of these TFs are not as dependent

on the preexisting chromatin landscape (Fig. 7a, Additional file 1: Fig. S10A). In the hu-

man fibroblast datasets, we find the preexisting chromatin data improves Bichrom’s

predictions of induced TF binding to a limited degree for FOXA1 and GATA4 but does

not result in improved predictive capacity for OCT4 (Fig. 7b, Additional file 1: Fig.

S10B). Therefore, our computational framework suggests that the preexisting chroma-

tin environment can predict the binding of TFs to varying degrees.

Using Bichrom’s latent embeddings of individual binding sites, we interpret the se-

quence and preexisting chromatin features that predict DNA binding of the examined

induced TFs. We find that induced TF binding sites are assigned a broad range of

BichromSEQ sub-network scores (Additional file 1: Fig. S11). For the majority of TFs,

sites scored highly by the BichromSEQ subnetwork are associated with increased

Fig. 7 Induced TFs display a wide range of relative dependencies on preexisting chromatin features. a
Distribution of model performance (auPRC) for a sequence-only network and Bichrom (sequence and
preexisting NIH-3T3 ATAC-seq) for 9 TFs induced in mouse NIH-3T3 fibroblasts. The boxplots represent data
from 5 independent training sets; each consisting of a separate held-out test chromosome. b Distribution
of model performance (auPRC) for a sequence-only network and Bichrom (sequence and preexisting
fibroblast ATAC-seq, H3K27ac, H3K4me2, and H3K27me3) for FOXA2, GATA4, and OCT4 induced in human
BJ fibroblasts
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cognate motif enrichment (Additional file 1: Fig. S12). For the TFs FoxA1 and Duxbl,

higher scoring sites are associated with an increased cognate motif enrichment as well

as cognate motifs that contain additional informative flanking nucleotide sequences

(Additional file 1: Fig. S12).

Furthermore, for a majority of TFs that bind at least 10% of their sites in previously

inaccessible chromatin (Duxbl, Cdx2, Bhlhb8, FOXA2, GATA4), we find that sites

bound in pre-inaccessible chromatin are on average assigned higher BichromSEQ scores, sug-

gesting that there exists some degree of compensation for these TFs where pre-accessible

chromatin enables binding at sites with weaker sequence features (Additional file 1: Fig.

S11B). The only TF for which this pattern is reversed is OCT4. Instead of the canonical

OCT4 motif, BichromSEQ scores are associated with GC-rich sequences (Additional file 1: Fig.

S12). In this case, previously accessible sites are assigned higher BichromSEQ scores (associated

with GC-rich sequences) than previously inaccessible sites, which are enriched for a SOX-

related motif (Additional file 1: Fig. S11, Fig. S12). These results are consistent with the obser-

vation from Donaghey et al. that 73% of OCT4 ChIP-seq peaks in their human fibroblast in-

ductions overlap CpG islands [23].

Taken together, our analyses of a broad range of induced TFs demonstrate that

Bichrom is a useful tool for analyzing the global preexisting chromatin predictors of in-

duced TF binding, and for examining the diversity in sequence and preexisting chroma-

tin features that define individual TF binding sites.

Discussion
TFs bind subsets of their cognate motif instances in a cell type-specific fashion. Such

specificity in TF binding results from an interplay between the TF’s inherent sequence

preferences and cell type-specific chromatin landscapes [6, 12]. The question naturally

arises as to which local chromatin features might enable or inhibit a given TF’s DNA

binding activities. However, if we can measure a TF’s binding occupancy using ChIP-

seq, it has by definition already had its own impact on chromatin in that cell type (e.g.,

by making its binding sites accessible or by recruiting histone modification enzymes).

Concurrent chromatin landscapes therefore predict TF binding in the same cell type,

but cannot be used to model the causal determinants of that binding.

Bichrom represents an interpretable neural network architecture that can be used to

assess the relative contributions of DNA sequence and preexisting chromatin features

in specifying an induced TF’s genome-wide binding sites. Related to our work, several

previous studies have assessed the effects of preexisting chromatin landscapes on the

binding of specific TFs [9, 11, 12, 23, 46, 54]. Our work aims to provide a unified pre-

dictive framework for quantifying and formalizing the relative contributions of se-

quence and chromatin predeterminants to TF binding across a range of TFs, both

globally and at individual sites. At the global level, we have demonstrated that compar-

ing Bichrom’s TF binding predictive performance to that of a sequence-only neural net-

work allows us to infer the degree to which preexisting chromatin shapes a TF’s

binding landscape. While incorporating prior chromatin data significantly improves

predictive performance for some TFs (e.g., Brn2, Dlx6, and Bhlhb8), others seem to dis-

play less dependence on prior chromatin (e.g., Onecut2, Duxbl, and Cdx2). Thus, our

approach may offer a metric for quantifying the “pioneering” activity of a TF; those that
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display less dependence on preexisting chromatin features may have greater “pioneer-

ing” abilities.

Although Ascl1 is a well-established pioneer TF [42, 44], Bichrom analysis at the glo-

bal level suggests that it displays a significant dependence on preexisting chromatin fea-

tures when induced in mEB cells. In line with this observation, previous work has

demonstrated that pioneer TFs bind in context-dependent and cell type-specific pat-

terns [16, 20, 23, 55]. Pioneer TFs may bind nucleosomes preferentially at certain posi-

tions with respect to the nucleosome dyad [14, 56], and nucleosomal chromatin may

only be bound by pioneer TFs in the presence of distinct favorable motifs [57]. There-

fore, it is not entirely surprising that the binding of pioneer TFs like Ascl1 can be

shaped by the underlying chromatin landscapes. Our approach aims to quantify such

dependencies between global TF binding landscapes and preexisting chromatin

environments.

As demonstrated by analysis of Ascl1 binding, the ability of the bimodal network

to deconvolve the sequence and prior chromatin features that predict TF binding

at individual sites provides a powerful tool to investigate holistic TF binding land-

scapes. Interpretation of Bichrom-derived latent embeddings at individual binding

sites suggests that sequence and preexisting chromatin landscapes are not inde-

pendent predictors of TF binding. Rather, sequence and preexisting chromatin are

mutually compensatory features that define a continuum of sites that may be

bound by the induced TF. While genomic loci with weaker sequence signatures

may be bound by TFs given a favorable local chromatin environment, the same se-

quences might not be sufficient to drive TF binding at inaccessible or unfavorable

chromatin. For example, Ascl1 is more likely to bind pre-inaccessible loci in the

presence of certain sequence features such as high motif multiplicity and favorable

motif flanks.

On the other hand, some highly accessible active promoters and enhancers are bound

even with weaker sequence signatures, as defined by low activation scores from the

BichromSEQ sub-network in our model. We note that some TF-bound regions with

high preexisting chromatin (BichromCHR) sub-network activations and low sequence

(BichromSEQ) sub-network activations might represent artifactual ChIP-seq enrichment

[58]. Alternatively, these regions may represent direct binding to weaker motifs, or in-

direct binding mediated by interactions with mES or NIH-3T3 cell regulators [19].

While previous studies have proposed sequence-conditional binding to inaccessible

chromatin for a few TFs [12, 41, 57], our work suggests that this compensatory mech-

anism may exist across a broader range of TFs.

We also allow that our estimates of a TF’s dependence on preexisting chromatin may

still be cell type-specific as opposed to an innate feature of a given TF. For example,

while our analyses suggest that binding sites for the well-characterized pioneer factor

FoxA1 are dependent on prior chromatin, this may be specific to the measured context

of NIH-3T3 cells. It is possible, for instance, that TFs that cooperate with or otherwise

predict FoxA1 binding are already present in NIH-3T3 cells, and FoxA1 may be less

dependent on preexisting chromatin in other cell types. We note that for some TFs

with only very few identified binding peaks, such as Sox15 and Hlf, the auPRCs for a

sequence-only network may be low either due to a highly imbalanced dataset, or due to

poorly trained networks. To account for this, we derive posterior distributions for the
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network recall. For TFs with fewer peaks calls, these distributions are much wider,

reflecting the uncertainty in our estimates.

A few previously described computational methods have aimed to explicitly attribute

TF binding predictions to sequence and chromatin features, albeit in the context of

concurrent chromatin data [6, 29, 30]. One might expect that such methods could also

be applied to interpret relationships between TF binding and preexisting chromatin

landscapes. However, Bichrom offers several advantages over previous methods for

such tasks. Methods that model concurrent chromatin data often rely on the assump-

tion that chromatin feature distributions are significantly different between TF bound

and TF unbound sites. In contrast, preexisting chromatin features are often only weakly

associated with induced TF binding, especially for TFs that bind relatively inaccessible

chromatin. In Bichrom, we develop training strategies that use step-wise genome-wide

training and evaluation strategies to make inferences regarding the predictive capacity

of preexisting chromatin on TF binding. Furthermore, some previous approaches for

concurrent TF binding analysis used substantially weaker sequence models, featurized

by PWM scores or individual k-mer counts, as opposed to the more expressive CNN-

LSTM model used by Bichrom [29, 30, 35, 48]. The same approaches also mix se-

quence and chromatin features together in non-additive models such as random forests

and support vector machines (SVMs), and hence, the contributions of each feature type

(sequence or chromatin) are not directly interpretable at individual sites [29, 30]. In

contrast, Bichrom’s bimodal neural network architectures are designed to be readily in-

terpretable at individual sites.

Notably, Arvey et al. trained completely independent SVMs on sequence and concur-

rent chromatin features, and added the outputs to predict TF binding [6]. While such a

framework could in principle be applied to score sequence and preexisting chromatin

features at individual binding sites, the fact that the sub-models are trained independ-

ently makes interpretation of relative contributions challenging. For example, an inde-

pendently trained sequence SVM could learn sequence features that are generally

correlated with active chromatin regions. In contrast, Bichrom’s training scheme ac-

tively discourages the sequence subnetwork from learning features that are redundant

with information provided by preexisting chromatin features.

Conclusions
Bichrom integrates sequence and preexisting chromatin features using an additive and

interpretable neural network framework to predict induced TF binding. Bichrom’s addi-

tive structure can be used to assess the relative contributions of DNA sequence and

preexisting chromatin features in specifying an induced TF’s binding sites, both

genome-wide and at individual binding sites. We apply Bichrom to several TFs, demon-

strating that preexisting chromatin environment is a differential predictor of induced

TF binding. Bichrom derived mappings of the predictors of TF binding at individual

sites suggest that stronger sequence signatures predict TF binding at previously in-

accessible chromatin. Thus, our results support the argument that so-called pioneering

abilities associated with a TF may not be absolute, but rather site-specific.

In future work, it will be of interest to examine how the relative contributions of se-

quence and preexisting chromatin vary in determining the binding of a wider range of

TFs, and across a wider array of cell types. Identifying such sequence and chromatin
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predeterminants of TF binding will be crucial for understanding gene regulation in

various dynamic systems such as development and cellular programming.

Methods
ChIP-seq and ATAC-seq data (mEB cells)

Generation of the inducible iAscl1 and iNeurog2 mouse ES cell lines and correspond-

ing ChIP-seq data is more completely described in Aydin et al. [42]. Briefly, inducible

cell lines were generated using the inducible cassette exchange (ICE) method as previ-

ously described [59]. TF gene constructs are inserted in single copy into the expression-

competent HPRT locus. The resulting iAscl1 and iNeurog2 ES cells are differentiated on

untreated plates for 2 days to form embryoid bodies, and then expression of the transgene

is induced via Doxycycline. Ascl1 and Neurog2 binding was assayed by ChIP-seq 12 h

after Dox induction using the anti-Ascl1 (Abcam, ab74065) and anti-Neurog2 (Santa

Cruz, SC-19233) antibodies. We assayed histone modifications as well as chromatin acces-

sibility in EBs with ChIP-seq and ATAC-seq, respectively (Additional file 2: Table S1). We

collected additional publicly available histone modification and histone variant ChIP-seq

datasets from mouse ES cells (Additional file 2: Table S2). Together, our dataset defining

the chromatin environment of mouse pluripotent cells consists of the following 12 data

types: ATAC-seq, H2A.Z, acH2A.Z, H3K27ac, H3K27me3, H3K9me3, H3K4me1,

H3K4me2, H3K4me3, H3K9ac, H4K20me3, and H3K36me3.

ChIP-seq and ATAC-seq data (NIH-3T3 cells and BJ cells)

ChIP-seq data for TF inductions in mouse NIH-3T3 fibroblasts was retrieved from Raccaud

et al. (GSE119784) [47]. We filtered for TFs that were not expressed as defined by RNA-seq

in the NIH-3T3 cell line [47]. We used NCIS to estimate the sequenced control-based

normalization factors for each TF ChIP-seq experiment [60]. Further, we filtered out in-

duced TFs that had a MultiGPS-reported signal fraction < 0.01 and were single-replicate

ChIP-seq experiments (Additional file 2: Table S3). We used five ATAC-seq experiments

(Additional file 2: Table S4) as replicates to construct the network’s ATAC-seq input [47].

ChIP-seq data for FOXA2, GATA4, and OCT4 inductions in human BJ fibroblasts were re-

trieved from Donaghey et al. (GSE110214) [23]. ATAC-seq, H3K27me3, H3K4me2, and

H3K27ac were used to construct the network’s chromatin input.

TF ChIP-seq and preexisting chromatin data processing

Fastq files were aligned to the mouse (version mm10) or human (version hg38) genomes

as appropriate using Bowtie (version 1.0.1) [61] with options “-q --best --strata -m 1

--chunkmbs 1024”. Only uniquely mapped reads were considered for further analysis.

MultiGPS [62] (version 0.74) was used to define transcription factor DNA binding events

and was run with default options except for “--fixedpb 5” and excluding ENCODE black-

list regions. A q value cutoff of 0.01 (assessed using binomial tests and Benjamini-

Hochberg multiple hypothesis test correction) was used to call statistically significant

binding events with respect to sequenced input material collected from the same cell line.

Peak-finding statistics are reported in Additional file 2: Table S3. Paired-end ATAC-seq

reads were aligned using Bowtie2 (version 2.2.2) using the “-q --very-sensitive” options

[63]. ChromHMM [51] (version 1.2.0) was run using default parameters.
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Training and test set construction

For testing, we divided the genome into 500 bp non-overlapping windows. For training,

we use 500 bp overlapping windows, each of which are sequentially offset by 50 bp.

Genomic windows overlapping peak calls with a p value ≤ 0.001 are labeled as bound.

Windows overlapping non-significant peaks from MultiGPS are labeled ambiguous. All

other genomic windows (~ 99%) are labeled as unbound. The sequence sub-network

(BichromSEQ) takes as input 500 bp sequences. Each nucleotide is encoded as a one-hot

vector, such that only the index corresponding to the input nucleotides is set to one, and

all other indices are set to zero. For each chromatin input data track, we extract the per-

base read counts at each genomic locus. These raw coverage counts are binned into ten

50 bp non-overlapping bins (covering 500 bp windows). The binned read counts are total

tag normalized for each replicate, and we use the replicate average at each bin as input to

our network. The chromatin datasets are stacked, resulting in a 10 x k chromatin input,

where k is the number of assayed histone modifications/chromatin accessibility. For ana-

lyses using only prior ATAC-seq (i.e., iAscl1 + 12 h, iNeurog2 + 12 h, and NIH-3T3 in-

duced TFs). k = 1. For analyses of the mEB-induced TFs using prior ATAC-seq and other

histone modification data, k = 12. For analyses of human BJ fibroblast-induced TFs, k = 4.

Neural network architecture

The bimodal network architecture was designed to produce interpretable latent embed-

dings. We note that our bimodal architecture generally fits with the recently described

concept of a Neural Additive Model [64], which linearly combines neural networks that

each attend to a single input feature or feature type. Since hybrid CNN-LSTM networks

have previously been shown to perform well at TF binding prediction tasks, we chose to

use a CNN-LSTM based architectures for BichromSEQ and BichromCHR [24, 48]. The pa-

rameters of the individual sub-networks (BichromSEQ and BichromCHR) were selected

using a limited hyper-parameter random grid search (chr10 held-out test set, chr17 valid-

ation). We used a random grid-search over the (1) number of dense layers, (2) size of the

dense layers, (3) number of convolutional filters, (4) activation functions, and the (5) drop-

out rate (see tested parameter values in Additional file 2: Table S6). To test whether our

selected CNN-LSTM based architecture performed at par with alternative CNN-based ar-

chitectures (e.g., deeper multi-layer CNNs), we generated a range of network architectures

by randomly selecting hyper-parameter value combinations over (1) number of convolu-

tion layers, (2) convolutional kernel size, (3) number of convolutional filters, (4) max pool-

ing size, (5) max pooling stride, (6) number of dense layers, (7) number of dense nodes,

and (8) dropout rate to select network hyper-parameters (see tested parameter values in

Additional file 2: Table S7). We found that Bichrom’s CNN-LSTM network performed

comparably to architectures with multiple convolutional layers when predicting Ascl1

binding in mEB cells (Additional file 1: Fig. S1).

In the BichromSEQ sequence sub-network, the 500 bp, one-hot encoded sequence in-

put is first subjected to a 1-dimensional convolution layer, with each index in the one-

hot encoding acting as a channel into this convolution. The convolutional layer consists

of 240 × 20 bp long filters. The convolutional filters within 15 bp intervals are max-

pooled, and the pooled convolutional output is used as input into a long short-term

memory (LSTM) layer. The LSTM outputs a 32-vector, which then passes through two
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dense layers, both subjected to ReLU activation and dropout. The activations from the

final dense layer are input into a single tanh activated dense node. The BichromCHR

chromatin sub-network uses convolutional filters that span two input bins. The filters

are followed by an LSTM to model any observable tag densities discriminative of TF

binding. The LSTM activations are input into a single dense layer followed by a single

tanh activated dense node. The activations of both sub-networks are weighted by a final

sigmoid activated node, used to output binding probability. The network is trained to

predict ChIP-seq by minimizing the binary cross-entropy loss J:

J ¼ −
1
N

XN

i¼1

yi log byið Þ þ 1 − yið Þ log 1 − byið Þ

Area under the precision-recall curve is used as a metric to measure network per-

formance. Chromosome 17 is held out as a validation chromosome. Chromosomes 10–

16 and chromosomes 18–19 are sequentially held out as test chromosomes in a k-fold

training procedure.

Neural network training strategies

To prevent the sequence-only network from learning accessibility-related sequences,

we customize the sampling used to construct mini-batches for gradient descent-based

training. We construct training batches such that in each batch, either only accessible

or only inaccessible bound and unbound training data is used. This sampling strategy

reduces model false positives at preexisting accessible regions, and leads to an improve-

ment in sequence-only model performance measured on held-out chromosomes, as

measured via the area under the precision recall curve (auPRC) (Additional file 1: Fig.

S4A, B). For TFs with less than 10% of their binding sites in previously inaccessible

chromatin, a chromatin-matched training results in poor predictive performance due to

the small number of positive training examples in previously inaccessible chromatin.

For these TFs, we use a less stringent strategy wherein within each batch, the fraction

of previously accessible sites is similar in both the bound and unbound training

instances.

The bimodal network aims to learn both sequence and prior chromatin signatures

that characterize genome-wide TF binding. We can thus no longer control for accessi-

bility distributions across bound and unbound training sets to prevent spurious learn-

ing of prior chromatin-related sequence signatures when training the bimodal network.

To address this problem, we transfer weights from the previously trained sequence-

only network to the BichromSEQ sequence sub-network in Bichrom’s bimodal network.

While the lower-level layer sequence sub-network weights are kept fixed during

Bichrom training, the weights for the final dense layer in the BichromSEQ sub-network

are allowed to vary to fit the genome-wide TF binding data.

Keeping the convolutional kernels fixed while re-training the final dense layers should

allow the network to optimally predict TF binding, without learning new accessibility-

related sequence features [65]. However, to ensure that the compensatory sequence-

chromatin behavior observed across TFs is not due to such a network parameterization,

we train a control network in which all dense weights within the BichromSEQ sub-

network are kept fixed. We find that the 2-dimensional embeddings for each TF
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binding site retain the same compensatory pattern as observed earlier, suggesting that

network parameterization is not responsible for the observed sequence-chromatin com-

pensation (Additional file 1: Fig. S5). Bichrom’s joint bimodal network with fixed con-

volutional kernels can therefore be trained using imbalanced batches constructed by

random sampling unbound data across the genome.

Benchmarking against the ENCODE DREAM challenge data

The ENCODE DREAM challenge data was downloaded from https://www.synapse.org/

#!Synapse:syn6131484/wiki/402026. The chromosomes available for training by the

challenge were chromosomes chr2–7, chromosomes 9–20, and chromosomes 22 and

X. Methods described in the ENCODE-DREAM challenge were tested on chromo-

somes 1, 8, and 21. As the challenge held-out data has not been made available at time

of writing, we additionally held-out chromosome 18 from our training set in order to

test our models. We used DNA sequence and concurrent DNase-seq as inputs into the

bimodal network. We used the window definitions derived from the challenge (200

base pair windows, 50 base pair step size) in order to be consistent with other methods

in the challenge. Notably, we did not make use of concurrent RNA-seq data or in vitro

PBM-derived TF motif data that was used by several other methods. We evaluated net-

work performance using the auPRC and compared our results to those reported for the

top-performing methods in the challenge (Additional file 1: Fig. S2).

Deriving the latent network embeddings

Let ϕS and ϕC represent the non-linear transformations applied to sequence feature

vectors XS and chromatin feature vectors XC respectively. Then, for each input genomic

window i, ϕSðXi
SÞ and ϕCðXi

CÞ represent real-valued outputs of the sequence and chro-

matin sub-networks at that window.

The bimodal network models the network output y as follows:

logit yð Þ ¼ β0 þ βSϕS XSð Þ þ βCϕC XCð Þ

Here, βS and βC are weights assigned to sequence and chromatin sub-networks re-

spectively, and β0 is the bias term. Due to the linear relationship between logit(y) and

the transformed predictors, the weighted sub-network activations can be interpreted as

the relative contributions of each modality to the networks output probability at a win-

dow i:

seqscore ið Þ ¼ βSϕS Xi
S

� �
∈ℝ

chromscore ið Þ ¼ βCϕC Xi
C

� �
∈ℝ

Therefore, the network embeds each input data point i in a 2-dimensional space de-

fined by seqscore(i) and chromscore(i).

Feature attribution with integrated gradients

We use integrated gradients [49] (IG) to estimate the relative importance of each nu-

cleotide ðxiÞLi¼1 within each input sequence x of length L base pairs. Due to the non-

linearity in neural networks, it is not trivial to assign relative feature importance using

the feature-associated network weights. Instead, gradient-based techniques are often
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used in order to estimate relative feature importance. Vanilla gradients estimate feature

importance as the partial derivative of the network output with respect to each input

feature (in our case nucleotide xi). However, due to the presence of multiple saturating

functions used in neural networks, vanilla gradients do not satisfy the property of sensi-

tivity. In other words, they are not guaranteed to assign non-zero attribution to all fea-

tures xi that alter the network output when compared to reference feature vectors that

inherently produce zero output probabilities. Integrated-gradients considers how pre-

dictions at input feature vectors differ from reference feature vectors. More specifically,

integrated gradients calculate the gradients at all points along a straight-line path from

the reference feature vector xb to the input feature. In our case, we define a reference

feature as a sequence vector such that at each position, each nucleotide is equally likely.

In other words, our reference sequence is a 4 * 500 matrix, with each column defined

as [0.25, 0.25, 0.25, 0.25]. We implemented integrated gradients as defined in Sundara-

jan et al. [49]

Analysis of sequence and preexisting chromatin predictors of Ascl1 binding sites

As described above, we applied integrated gradients (IG) to identify the sequence

motifs driving sequence sub-network scores for Ascl1 [49]. However, attribution

methods typically operate on individual sequences. To overcome the local behavior

of such attribution methods, we extracted 20 bp sequences surrounding the local

IG peaks; i.e., we extracted regions or “hills” that drive the neural network output

from each sequence bound by Ascl1. We clustered the IG-derived hills based on

their underlying sequence features using a K-means based clustering procedure de-

scribed previously in SeqUnwinder [66]. Briefly, only k-mers present in at least 5%

of IG-derived hills are used for clustering, and K-means clustering is performed using Eu-

clidean distance as a metric [66]. We then perform motif discovery using MEME [67] to

identify the enriched motifs within each K-means defined cluster [66].

To investigate the correlation between BichromSEQ scores and Ascl1 cognate

motif multiplicity, we divided bound loci into categories based on their motif

multiplicity and measured the BichromSEQ sub-network scores for each category.

Only 5% of all Ascl1-bound sites lacked exact matches to the core Ascl1 E-box

motif CAGSTG, and these sites were assigned the lowest median scores by the se-

quence sub-network (Fig. 4c). To ensure that increased sequence network scores at

Ascl1 binding sites with multiple motifs do not stem from the presence of con-

founding features at these sites, we directly tested the relationship between motif

multiplicity and BichromSEQ scores. We inserted between one and five randomly

spaced CAGSTG k-mers in a set of 10,000 randomly generated 500 bp sequences

(background frequencies A/T = 0.5 and G/C = 0.5). We divided the simulated 500

bp sequences into categories based on the number of embedded CAGSTG k-mers.

Each simulated sequence was input into a Bichrom network trained using Ascl1

ChIP-seq data and the distribution of BichromSEQ sub-network scores at each se-

quence category was calculated (Fig. 4d).

To investigate the effect of various nucleotides flanking the Ascl1 cognate motif, we

constructed a sequence in which each position is encoded as a [0.25,0.25,0.25,0.25]T

vector; i.e., each base [A, T, G, C]T occurs with equal probability at each position in this

Srivastava et al. Genome Biology           (2021) 22:20 Page 21 of 25



sequence. We inserted CAGSTG k-mers flanked by variable nucleotides into this refer-

ence sequence and again scored them with the Ascl1-trained BichromSEQ sub-network.

To investigate the relationships between BichromCHR scores at Ascl1 binding sites

and individual preexisting chromatin features (Fig. 5a), we divided Ascl1 binding sites

into quartiles based on their BichromSEQ scores and calculated the mean normalized

tag enrichment for each preexisting chromatin feature at each quartile. Further, we

identified genome-wide enrichment domains using the DomainFinder utility in Seq-

Code (https://github.com/seqcode/seqcode-core/blob/master/src/org/seqcode/projects/

seed/DomainFinder.java) and calculated BichromCHR scoring distributions at all preex-

isting chromatin domains for each input chromatin dataset (Fig. 5b). We also calculated

the distribution of BichromSEQ and BichromCHR scores at Ascl1 binding sites catego-

rized into 12 states based on ChromHMM state calls (Fig. 5c).

Motif discovery

De novo motif discovery for iAscl1 induced Ebf2, Onecut2, and Brn2, the mouse NIH-

3T3 induced TFs and the human BJ induced TFs was performed using MEME-ChIP

[68] (version 5.1.0) with default settings. All motifs with MEME E-values < 0.01 discov-

ered at SP and CP sites were reported. Repetitive poly-A or poly-T repeats were ex-

cluded. Motif scanning was performed using FIMO [69], all hits greater than the

default p value threshold of 1e–4 were reported.

The posterior distribution of the model recall

We used the model recall at a fixed false positive rate (FPR) to compare model per-

formance across TFs. TPs are true positives in the held-out test set, whereas FNs are

false negatives in the test set.

Recall ¼ TPs
TPsþ FNs

However, we note that ChIP-seq signal fractions and the number of peaks called vary

widely across TFs. Models trained to predict binding for TF ChIP-seq experiments that

contain smaller numbers of peaks (and correlated lower signal fractions) suffer from

having access to limited training data. In order to quantify our confidence in the model

recall, we use a probabilistic framework that models the recall for each TF given the

underlying ChIP-seq data. Specifically, analogous to Brodersen et al. [70], we consider

the observed model recall (measured on a single held-out test chromosome) to be an

actualization of an underlying true recall value r given N independent Bernoulli trials,

where N is the number of binding sites in the held-out test chromosome. Each binding

site can be either labeled a true positive (success) or a false negative (failure) by the

network.

Recall � Binomial N ; rð Þ

We derive the posterior distribution of the recall r assuming a beta prior (parameters

a = 1, b = 1; equivalent to a uniform prior—for details, see Brodersen et al. [70]). The

mode of this posterior distribution is the observed model recall. If a TF ChIP-seq ex-

periment contains a small number of peaks, the distribution of r has high variance (e.g.,
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Brn2, Fig. 6a). On the other hand, a low variance in the distribution of r reflects a

higher degree of confidence in our estimate of the recall (e.g., Ebf2, Onecut2, Fig. 6a).
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