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Abstract: Proper development and function of the vertebrate heart is vital for embryonic and postna-
tal life. Many congenital heart defects in humans are associated with disruption of genes that direct
the formation or maintenance of atrial and pacemaker cardiomyocytes at the venous pole of the heart.
Zebrafish are an outstanding model for studying vertebrate cardiogenesis, due to the conservation
of molecular mechanisms underlying early heart development, external development, and ease of
genetic manipulation. Here, we discuss early developmental mechanisms that instruct appropriate
formation of the venous pole in zebrafish embryos. We primarily focus on signals that determine
atrial chamber size and the specialized pacemaker cells of the sinoatrial node through directing
proper specification and differentiation, as well as contemporary insights into the plasticity and
maintenance of cardiomyocyte identity in embryonic zebrafish hearts. Finally, we integrate how these
insights into zebrafish cardiogenesis can serve as models for human atrial defects and arrhythmias.
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1. Introduction

All vertebrate hearts comprise the same fundamental structural units: the atrial and
ventricular chambers, which are specialized to reflect their functions receiving and expelling
blood, respectively. The coordinated assembly of these chambers into a functional organ
is an intricate process that is critical for normal embryonic development and throughout
life of all vertebrates. In humans, mutations in genes that disrupt chamber formation
and maintenance are associated with congenital heart defects (CHDs), which are the most
common type of birth defect [1–10]. Many of these signals affect proper development of
the atrial chamber and its ability to function, with atrial septal defects (ASDs) making up
as much as 20% of CHDs found in children and adults [5–9]. Moreover, mutations affecting
development of the sinoatrial node (SAN) can result in cardiac pacing defects, such as sick
sinus syndrome, arrhythmias, and atrial fibrillation [11–15].

While proper blood circulation is necessary in all vertebrate organisms, the number of
atrial and ventricular chambers within vertebrate hearts can vary. Mammals have a four-
chambered heart with two atria and two ventricles, which are necessary for circulation to
the lungs and the rest of the body. However, teleosts, such as the common model zebrafish,
have a relatively simple two-chambered heart consisting of only a single atrium and
ventricle. Despite these differences, the underlying molecular signals and morphogenetic
processes, particularly those that govern the specification and maintenance of cardiac
chambers during heart development, are conserved across species. Moreover, due to their
external development, the ease of genetic manipulation, and their ability to survive the
first week post fertilization without a functional cardiovascular system, zebrafish have
become an excellent tool for understanding the early processes underlying vertebrate
cardiogenesis [16–20].
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Proper heart function relies on the coordinated contraction of the atrial and ventricular
chambers. Importantly, zebrafish cardiomyocytes share key electrophysiological properties
with mammalian cardiomyocytes, allowing them to also serve as a model for human
conduction defects [16,21]. Cardiac contraction is initiated by a population of specialized
cardiomyocytes in the SAN, which is located at the base of the right atrial chamber in
mammals and the venous pole of the single atrial chamber in zebrafish. The electrical signal
then propagates across the atrium, where it pauses at the atrioventricular canal (AVC)
before moving rapidly across the ventricle [22]. The cardiomyocytes within the ventricular
and atrial chambers and the SAN are functionally distinct with characteristics conferred by
the expression of specific gene programs, contractile proteins, and ion channels [23–27].
The thin-walled atrium possesses cardiomyocytes that have a squamous morphology,
disorganized sarcomeres, and a triangular action potential [22–25,28,29]. Cardiomyocytes
of the thick-walled, highly trabeculated ventricle are more cuboidal, with organized sar-
comeres, and a flat action potential plateau [22,24,25]. SAN cardiomyocytes have a slower
rate of depolarization and are able to generate spontaneous action potentials [22,26,30,31].
In this review, we highlight mechanisms governing the development of the atrium and the
SAN within the venous pole of the zebrafish heart and explore how information from the
zebrafish can be used as a model to study human CHDs and arrhythmias.

2. Mechanisms of Atrial Chamber Development and Chamber Identity Maintenance
in the Zebrafish Heart
2.1. Cardiac Progenitor Location and Morphology of the Developing Zebrafish Heart

Like all vertebrates, the zebrafish heart is the first organ to form and function during
embryogenesis. The initial stages of zebrafish heart development involve the specification,
migration, and differentiation of cardiomyocyte progenitor cells as they are integrated into
the forming heart tube [18,19,32–34]. Cell lineage tracing studies with caged-fluorescein
have produced fate maps of the early zebrafish cardiac progenitors prior to gastrulation,
which show that precursors for both atrial and ventricular cardiomyocytes first reside in
bilateral populations in the lateral marginal zone by 5 h post-fertilization (hpf) [32,35]. Within
the late blastula embryos, atrial cardiomyocyte progenitors are located more ventrally and
slightly farther from the margin, the region of the embryo where cells will involute during
gastrulation. Ventricular cardiomyocyte precursors are located more dorsally and closer to
the margin. While there is a small region of overlap, these progenitor populations appear
to be largely distinct; labeled cells predominantly give rise to only atrial or ventricular
cardiomyocytes [32,33,35] (Figure 1A). During gastrulation, cardiomyocyte progenitor cells
within the lateral mesoderm involute and migrate anteriorly to form bilateral progenitor
fields in the anterior lateral plate mesoderm (ALPM) (Figure 1B). As indicated from the
earlier fate maps, lineage tracing of the ALPM at later stages suggest that atrial and
ventricular cardiomyocyte precursor populations retain predominantly adjacent positions:
ventricular progenitors reside more medially and atrial progenitors lay more laterally [35].
Once in the ALPM, the cardiac progenitors begin to differentiate, as indicated by the
expression of chamber-specific myosin genes. Expression of ventricular myosin heavy chain
(vmhc), also referred to as myosin heavy chain 7 (myh7), can be detected in the medial
ventricular progenitors as early as the 13 somite stage [36]. Expression of atrial myosin heavy
chain (amhc), also named myosin heavy chain 6 (myh6), begins slightly later at 19 somites [33]
(Figure 1C). While different myosins are some of the gene expression differences that define
atrial and ventricular cardiomyocytes, one study has indicated that left–right asymmetry,
reminiscent of the left and right atrial chambers in mammals, can also be seen as early as
the 19 somite stage [37]. It was shown that pitx2c and meis2b are upregulated on the left and
downregulated on the right in the zebrafish atrium, consistent with the left atrial expression
pattern of Pitx2 in mammals [37,38]. As the cardiac progenitor cells are differentiating,
they migrate to the midline, begin to fuse more posteriorly (Figure 1C), and then form the
cardiac disc in which differentiating atrial cardiomyocytes lie peripherally to ventricular
cardiomyocytes (Figure 1D).
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looping and the two chambers have formed. Here, the pacemaker is a ring at the venous pole. (G) 
By 72 hpf, the dominant pacemaker is restricted to a small population of cells in the inner curva-
ture at the venous pole of the atrium. (H) In the adult heart, the bulbus arteriosus and sinus veno-
sus, which serve as the outflow and inflow tracts, respectively, have matured. The dominant pace-
maker is located at the sinus venosus–atrial junction. 
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cells that comprise the initial heart tube are termed the first heart field (FHF) [39,40]. Pop-
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43]. For comparison, in mammals, the SHF contributes to the right ventricle, while the left 
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Figure 1. Stages of zebrafish heart development. (A) At 5 h post-fertilization (hpf), cardiac progenitors are located in the
lateral marginal zone, with atrial progenitors located more ventrally than ventricular progenitors. (B) Following gastrulation
at the tailbud stage (10 hpf), cardiac progenitors migrate to the anterior lateral plate mesoderm (ALPM). (C) In the ALPM,
progenitors begin to differentiate and express chamber-specific genes. (D) Cells then migrate to the midline and fuse,
forming the cardiac disc where atrial cardiomyocytes surround ventricular cardiomyocytes. (E) The disc elongates to form
the linear heart tube, which begins beating by 24 hpf. At 28 hpf, the dominant pacemaker covers a large area at the venous
pole. (F) By 48 hpf, the heart has finished looping and the two chambers have formed. Here, the pacemaker is a ring at the
venous pole. (G) By 72 hpf, the dominant pacemaker is restricted to a small population of cells in the inner curvature at the
venous pole of the atrium. (H) In the adult heart, the bulbus arteriosus and sinus venosus, which serve as the outflow and
inflow tracts, respectively, have matured. The dominant pacemaker is located at the sinus venosus–atrial junction.

Importantly, vertebrate hearts are formed from the progressive differentiation of progenitor
populations that grow the heart at the poles. Thus, the zebrafish cardiac disc then elongates over
the yolk to form the linear heart tube (Figure 1E). The earlier-differentiating cells that comprise
the initial heart tube are termed the first heart field (FHF) [39,40]. Populations of later differenti-
ating cells, referred to as the second heart field (SHF), then contribute to both the venous and
arterial poles as the heart tube elongates and grows [41–43]. For comparison, in mammals, the
SHF contributes to the right ventricle, while the left ventricle is primarily derived from the FHF.
Although both heart fields contribute to the left and right atrial chambers, it has been suggested
that as many as two thirds of atrial cardiomyocytes are derived from the SHF [44]. In zebrafish,
the SHF primarily contributes to the outflow tract and half of the ventricle, with a small number
of posterior SHF cells populating the venous pole of the atrium [18,34,42,45]. As the heart tube
elongates, it migrates left and begins looping, where by 48 hpf the physically distinct chambers
have formed: the venous left-sided atrium and arterial right-sided ventricle are easily distin-
guishable and separated by the AVC [18,34] (Figure 1F). From this point, the heart will continue
to mature and develop the additional structures that are characteristic of each chamber [19,46]
(Figure 1G,H). Trabeculation in the ventricle and valve leaflet development are evident by
three days post-fertilization (dpf). The mature ventricle comprises a cortical cardiomyocyte
and deeper layer that make up the trabeculae, which form through the delamination of
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cardiomyocytes from the compact layer beginning at 3 dpf [47,48]. Conversely, the atrial
myocardium becomes pectinate in structure by about 14 dpf [46,49]. Genetic lineage tracing
has shown that pectinate atrial cardiomyocytes in the mature atrium form through the pro-
liferation and branching of existing cardiomyocytes [49], suggesting that there are different
mechanisms driving the maturation of the atrial and ventricular chambers. Thus, the heart
undergoes extensive morphological changes throughout development that establish each
of the cardiac chambers.

2.2. Signals Regulating the Specification of Atrial Progenitors

Numerous early signaling pathways are involved in the regulation of cardiomyocyte
specification as part of their requirements in the establishment of the body plan, which
factors into determination of the number of atrial cardiomyocytes within the zebrafish
heart. Signals including Hedgehog (HH), canonical Wnt/β-catenin (Wnt), and Nodal exert
similar effects promoting the specification of both atrial and ventricular cardiomyocytes.
Increasing HH signaling through the injection of sonic hedgehog mRNA promotes atrial
and ventricular specification and yields hearts with increased cardiomyocytes, while loss
of HH signaling through the genetic and pharmacological inhibition of the Smoothened
receptor reduces cardiac progenitor specification, consequently resulting in hearts with
decreased atrial and ventricular cardiomyocytes [50]. Similarly, using heat-shock inducible
transgenes to increase and decrease canonical Wnt signaling by the initiation of gastrulation
leads to corresponding increases and decreases in cardiomyocyte progenitor specification,
respectively [51,52], due to effects on the induction of mesoderm. Nodal signaling, which
is required for mesoderm specification, is also required for cardiomyocyte specification.
Specifically, mutations in the Apelin receptor, which modulates Nodal signaling, also lead
to a loss of both atrial and ventricular cardiomyocytes [53,54] (Figure 2A).
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Figure 2. Signaling pathways required for different stages of atrial development and cardiac maintenance in zebrafish.
(A) Pathways required for specification of chamber progenitors in the early embryo. (B) Factors responsible for differentiation
of atrial cardiomyocytes within the ALPM and at the venous pole. (C) Genes shown to promote or repress atrial identity
within differentiated embryonic ventricular cardiomyocytes and repress ventricular gene expression in atrial cardiomyocytes.
A—atrium, V—ventricle.

Although initial studies in mice and zebrafish concluded that retinoic acid (RA) signal-
ing promotes atrial cardiomyocyte specification [55,56], pivotal work in zebrafish showed
that its earliest requirement is to restrict cardiac specification of both atrial and ventricular
progenitors within the ALPM [57,58]. Specifically, inhibition of RA signaling through use
of the neckless (nls) mutant, which harbors a mutation in the major embryonic producer of
RA aldh1a2 (formerly called raldh2), and treatment with RA signaling antagonists results
in enlarged hearts with an increase in the number of atrial and ventricular cardiomy-
ocytes [57,58]. Excess RA signaling can also inhibit the specification of both atrial and
ventricular cardiomyocytes, while intermediate increases in RA signaling can differentially
affect the specification of cardiomyocytes, which likely led to the initial interpretations that
RA signaling promotes atrial specification [59,60]. Thus, the specification of both atrial
and ventricular progenitors is effectively balanced through opposing roles of early HH,
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Wnt, and Nodal, which promote cardiomyocyte specification, and the restrictive role of RA
signaling (Figure 2A).

In contrast to signals that have similar consequences on the specification of atrial
and ventricular cardiomyocytes, early signals that affect dorsal–ventral patterning have
differential effects on chamber specification. The dorsalizing pathway fibroblast growth
factor (FGF) signaling preferentially affects the specification of ventricular progenitors with
minimal effect on the atrium [61]. Conversely, the ventralizing bone morphogenic protein
(BMP) signaling pathway is necessary and sufficient to promote atrial specification. Loss of
BMP signaling in the alk8/lost-a-fin (laf ) mutants, treatment with pharmacological BMP
signaling inhibitors, and an inducible dominant-negative Alk8 transgene all demonstrated
that BMP signaling is required early for atrial progenitor specification during gastrulation
and results in hearts with decreased atrial cardiomyocytes. Consistently, increasing BMP
signaling through the injection of constitutively-active alk8 mRNA results in increased
atrial cardiomyocytes, reinforcing the role of BMP in atrial specification [62,63]. Thus, early
signaling that ventralizes the embryo is required for the specification of atrial precursors
(Figure 2A).

2.3. Signals Directing the Differentiation of Atrial Cardiomyocytes

Subsequent to the signals that modulate atrial cardiomyocyte number and chamber
size through establishment of cardiomyocyte progenitor populations, signals then control
atrial chamber size through influencing cardiomyocyte differentiation from within the
ALPM. While RA signaling may restrict the number of both atrial and ventricular car-
diomyocytes, the lineage tracing analysis suggested that signals downstream of RA may
differentially affect atrial and ventricular productions [58]. Depletion of hoxb5b, an RA-
responsive gene within the ALPM which is posterior to the cardiac progenitors, has been
shown to result in excess atrial cardiomyocytes, suggesting it may function downstream of
RA to restrict the number of atrial cardiomyocytes [58]. However, these results require con-
firmation with genetic mutants. Additionally, cloche mutants, which we now understand
are caused by mutation of the transcription factor Npas4l [64], and downstream factors
Scl (Tal1) and Etv2 (Etsrp) function to restrict heart size through promoting hematopoietic
and vascular lineages within the ALPM. Cloche mutants or concurrent depletion of Scl
and Etv2 with morpholinos both produce enlarged hearts due to an increase in atrial
cardiomyocytes [65] (Figure 2B). In addition to its early role, canonical Wnt signaling
functions reiteratively in later roles. At the tailbud stage, excess Wnt signaling can po-
tently inhibit the differentiation, but not the specification, of both atrial and ventricular
progenitors [51]. However, in contrast to earlier requirements that have similar effects on
cardiomyocyte progenitors, during later stages of somitogenesis Wnt signaling specifically
affects the differentiation of atrial cardiomyocytes. Using heat-shock inducible transgenes
to modulate Wnt signaling at the 16 somite stage, when the cardiac progenitors reside
within bilateral populations in the ALPM, showed that increased Wnt signaling produces
an increase in the number of atrial cardiomyocytes and decreased Wnt signaling produces
fewer atrial cardiomyocytes [51]. Similarly, while BMP signaling is predominantly required
for atrial cardiomyocyte specification throughout gastrulation, it has also been shown to
play reiterative roles in atrial differentiation. Blocking BMP signaling using a heat-shock
inducible Noggin3 transgene at 16 hpf causes a specific decrease in atrial cardiomyocytes
that is independent of its earlier role ventralizing embryos [63]. In contrast to the positive
influences of Wnt and BMP signaling on atrial differentiation during late somitogenesis,
research has shown that, at these stages, Hippo signaling restricts the number of atrial
cardiomyocytes added to the venous pole. Large tumor suppressor kinase (Lats) proteins
are critical regulators of the Hippo pathway [66], because activation of Lats1/2 is required
for proper Hippo signaling. In lats1; lats2 mutants, it was shown that decreased Hippo
signaling results in an increased number of atrial cardiomyocytes, supporting that Hippo
signaling restricts atrial size. Subsequent analysis revealed that Hippo functions upstream
of BMP signaling to restrict the number of SHF-derived cardiomyocytes that arise from the
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ALPM and contribute to the venous pole of the heart [67] (Figure 2B), providing insight
into the interplay between these signaling pathways in heart development.

In addition to the aforementioned signaling pathways, specific members of the Islet
(Isl) and Nuclear receptor 2 (Nr2f /Coup-tf) transcription factor families have been shown
to be necessary to promote the differentiation of atrial cardiomyocytes at the venous pole.
Isl1 marks the venous SHF in zebrafish. Consistent with this expression, isl1 mutants have
decreased atrial cardiomyocytes, which temporal differentiation assays have shown to be
due to reduced differentiation [41] (Figure 2B). Interestingly, Isl1 is specifically required for
the differentiation of cardiomyocytes at the venous pole in zebrafish embryos, contrasting
with the requirement of Isl1 in mice, which is required for the differentiation of all SHF
progenitors at both the posterior venous and anterior arterial poles [41,44]. However, it has
been shown that isl2b is required for development of the arterial pole in zebrafish, suggest-
ing that in teleosts Islet family members have distinct roles in progenitor differentiation at
the different poles of the heart [68].

Nr2f transcription factors are the proteins that are most prominently associated with
the determination of atrial identity in vertebrates. Global knockout of Nr2f2 in mice results
in embryos with small, dysmorphic atria [69]. In zebrafish, our lab has shown that Nr2f1a
is the functional equivalent of mammalian Nr2f2 with respect to heart development. Within
the embryonic zebrafish heart, Nr2f1a is expressed specifically within atrial cardiomyocytes
and progenitors at the venous pole. Nr2f1a mutant zebrafish develop smaller atria due to
decreased differentiation of atrial cardiomyocytes at the venous pole [70]. Thus, Wnt, BMP,
and Hippo signaling and the Hoxb5b, Isl1, and Nr2f1a transcription factors all influence the
proper differentiation of atrial cardiomyocytes within the zebrafish heart (Figure 2B).

2.4. Maintenance and Plasticity of Cardiomyocyte Identity

Although the lineage tracing of blastula cell embryos has suggested that normally
the fates of cardiomyocytes are largely distinct [35], studies have indicated that there is
plasticity between atrial and ventricular progenitors and that chamber identity must be
continually reinforced in zebrafish embryos after the cardiomyocytes have overtly differen-
tiated [25,27,28,71–74]. A clue that there is greater plasticity between atrial and ventricular
cardiomyocytes in normal zebrafish heart development was indicated from genetic la-
beling of embryonic cardiomyocytes with amhc:CreERT2 and loxP-mediated color-switch
reporter transgenes [49]. Some amhc-labeled cardiomyocytes within the embryos differenti-
ate as ventricular cardiomyocytes, suggesting that there are initially cardiomyocytes which
have begun to differentiate with the potential to become either atrial or ventricular car-
diomyocytes, but then differentiate as ventricular cardiomyocytes as the embryonic heart
matures [49]. The necessity to maintain ventricular identity at the expense of atrial iden-
tity is illustrated by the Nkx2.5 and Nkx2.7 transcription factors [73,75]. Zebrafish nkx2.5
mutants initially have an equivalent number of atrial and ventricular cardiomyocytes as
their wild-type siblings. However, they progressively develop an enlarged atrium and
diminutive ventricle as the ventricular cardiomyocytes take on atrial identity (Figure 2C).
While Nkx2.5 is the primary factor necessary to maintain ventricular identity, concomitant
loss of Nkx2.7 has been shown to exacerbate the fate transformation, suggesting some
limited redundancy between these transcription factors. Nkx2.5/7 maintain ventricular
identity by promoting the expression of ventricular-specific genes, irx4 and hey2 [73,75]. Re-
markably, induction of Nkx2.5 with a heat-shock inducible transgene at late somitogenesis
is sufficient to rescue Nkx2.5 mutants to adulthood, which suggests that the requirement of
Nkx2.5 in repressing atrial identity in ventricular cardiomyocytes occurs within a specific
developmental window, but that it does not perform this role throughout life [75].

Fgf8a is expressed within the zebrafish ventricle [76]. It has been shown that the FGF
pathway sits at the top of a signaling cascade to reinforce ventricular identity at the expense
of atrial identity [74]. Inhibition of FGF signaling with a dominant negative transgene or
pharmacological inhibitors beginning at the 18 somite stage results in ectopic atrial gene
expression within the ventricle [74]. Interestingly, it was shown that overexpression of
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Nkx2.5 in embryos while concurrently inhibiting FGF signaling resulted in a partial rescue
of this fate transformation, indicating that FGF signaling functions upstream of Nkx2.5
in maintaining ventricular identity (Figure 2C), but that other unidentified factors likely
also play a role in the repression of atrial identity within ventricular cardiomyocytes [74].
While FGF signaling is necessary to maintain ventricular identity, BMP signaling may also
need to be actively repressed in ventricular cardiomyocytes to prevent the acquisition
of atrial cardiomyocyte identity (Figure 2C). Increasing BMP signaling at the 18 somite
stage with a heat-shock inducible BMP2b in embryos depleted of smad6a, which represses
BMP signaling, results in both fewer ventricular cardiomyocytes and some ventricular
cardiomyocytes that ectopically express Amhc [63]. However, the mechanisms by which
excess BMP signaling promotes atrial identity in the ventricle still needs to be elucidated.
The plasticity between atrial and ventricular cardiomyocyte identities can also be seen in
the regenerative response to cardiac injury in embryonic zebrafish hearts. Upon ablation
of ventricular cardiomyocytes in 5 dpf larval zebrafish, atrial cardiomyocytes proliferate
and transdifferentiate into ventricular cardiomyocytes to regenerate the ventricle [77].
This atrial-to-ventricular injury response is diminished in adult zebrafish, suggesting that,
like the requirement of Nkx2.5 in maintaining ventricular identity, there is an age-dependent
developmental window to this plasticity [77].

Despite the evidence that factors maintain ventricular identity in embryonic zebrafish
hearts, it is not known if there are genes responsible for maintaining atrial identity. Thus far,
factors have not been identified that clearly show differentiated atrial cardiomyocytes need
to repress ventricular cardiomyocyte identity in zebrafish. However, Nr2f transcription
factors have been shown to maintain atrial cardiomyocyte identity in mice, in addition to
their requirement in atrial cardiomyocyte differentiation. In mice, cardiac-specific knockout
of Nr2f2 with Myh6-Cre results in ectopic expression of ventricular genes within atrial
cardiomyocytes, because Nr2f2 represses ventricular-identity genes Irx4 and Hey2 [78]. Con-
sistently, overexpression of Nr2f2 was sufficient to confer atrial identity within ventricular
cardiomyocytes [78]. In addition to reduced atrial cardiomyocyte number, nr2f1a mutant
zebrafish display an expansion of AVC markers into the atrium, suggesting that Nr2f1a is
required to limit the size of the AVC [70]. Nr2f1a mutants also have an expansion of the
ventricular differentiation marker vmhc into the atrium (Figure 2C), although there was
no apparent effect on ventricular cardiomyocyte number at least through 48 hpf [70]. It is
not clear, however, that these effects represent a transdifferentiation of the atrial cardiomy-
ocytes comparable to what is found in mice. Additional studies are needed to determine if
atrial cardiomyocytes in Nr2f1a mutant zebrafish undergo the same fate transformation that
is seen in the Nr2f2 conditional knockout mice at later stages of development. Overall, these
studies have shown that differentiated embryonic cardiomyocytes in zebrafish maintain
a degree of plasticity and the ventricle will adopt atrial identity in the absence of critical
maintenance factors (Figure 2C).

2.5. Conserved Transcriptional Networks Promoting Sinoatrial Node Development

The zebrafish heart first begins beating at 24 hpf with the formation of the linear heart
tube. Initial contractions are slow and peristaltic, originating at the venous pole. As the
heart loops, the electrophysiology changes and a conduction delay in the AVC leads to the
sequential atrial–ventricular contraction pattern [22]. With the use of optogenetics, it has
been shown that the initial pacemaker region is a large area at the venous pole of the heart
tube, which then condenses to form a ring by 48 hpf (Figure 1E,F). By 72 hpf, the dominant
pacemaker has narrowed further to a small population of cells in the inner curvature of
the atrium [79] (Figure 1G). Interestingly, this location is analogous to the location of the
pacemaker in the right atrium of the mammalian heart.

The genetic mechanisms underlying development of the SAN have been extensively
studied in mice, but thus far they have not been as well characterized in zebrafish. We will
cover specifically what is known about the development of the SAN in zebrafish in com-
parison to mammals. Multiple reviews have already detailed the development of the
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cardiac conduction system as a whole [31,80,81]. Work in mice has shown that information
from a complex genetic network of transcription factors is integrated to establish SAN
identity within the atrial myocardium at the venous pole. T-box transcription factors Tbx3
and Tbx18 have been shown to be vital for proper SAN development, although they have
different functions [82]. Tbx18 deficient mice develop a severely hypoplastic SAN, however
the SAN gene program is maintained within these cells and the mice do not develop overt
bradycardia. Conversely, Tbx3 deficiency leads to a morphologically normal SAN that
ectopically expresses atrial myocardium genes. This suggests that Tbx18 is required for
SAN morphogenesis and Tbx3 is required for pacemaker differentiation [82]. Interestingly,
overexpression of Tbx3 in the mouse atrial myocardium is sufficient to confer pacemaker
identity, highlighting its role as a key driver of SAN identity [83]. In contrast to Tbx3
and Tbx18, Nkx2.5 represses SAN identity within atrial cardiomyocytes. Nkx2.5 mutant
mice have an enlarged SAN, while Nkx2.5 overexpression leads to SAN hypoplasia and
decreased expression of Tbx3 [84–86]. Isl1 and Shox2 have also been shown to be expressed
in and required for pacemaker development [87–91]. Loss of function of either of these
transcription factors results in a hypoplastic SAN and decreased expression of Tbx3 [90,91].
Shox2 also functions upstream of Nkx2.5, with Shox2 mutants developing ectopic expression
of Nkx2.5 within the pacemaker. Overexpression of Shox2 is also able to partially repress
Nkx2.5 [84,89,91,92]. Thus, these studies in mice have established a multi-tier genetic
network in which cross regulation of the transcription factors Tbx3, Isl1, and Shox2 promote
SAN identity and oppose the repressive action of Nkx2.5 to confer SAN identity within a
proper number of atrial cardiomyocytes at the venous pole of the heart.

2.6. Development of the Zebrafish Sinoatrial Node

While earlier studies in zebrafish indicated the presence of specialized pacemaker
tissue in the heart [22,79], the molecular regulation of the zebrafish SAN has historically
been largely understudied, in part due to the lack of reliable SAN markers. Isl1 was the
first molecular marker identified for the zebrafish SAN. Isl1-expressing cells form a ring
at the venous pole of the atrium in embryonic hearts [26]. Its expression is maintained in
a ring at the base of the atrium and junction with the sinus venosus through adulthood.
In addition to reduced atrial cardiomyocytes, isl1 mutants have an abnormal heartbeat,
highlighting its conserved importance in pacemaker development and function [26,41].
It has been indicated that Isl1 promotes SAN development upstream of Wnt/β-catenin,
because Wnt signaling is lost in the SAN of isl1 mutants [93]. Furthermore, at these later
stages, Wnt signaling controls heart rate through modulating the response of the pace-
maker cardiomyocytes to parasympathetic input [93]. In contrast to mice, which have
lost Shox and only have Shox2, humans and zebrafish have retained both Shox and Shox2.
Interestingly, by replacing Shox2 with Shox in mice, it has been shown that human Shox and
mouse Shox2 can similarly promote SAN development [92]. In zebrafish, Shox2 has been
shown to promote SAN identity, with shox2 morpholino-depleted zebrafish developing
bradycardia [89]. Overexpression of Isl1 in Shox2 morphants can rescue the bradycardia
phenotype, suggesting that Shox2 functions upstream of Isl1 in SAN development [94]
(Figure 3). However, the requirement of Shox2 in zebrafish and the relationship to Isl1
within the SAN should be verified through the use of genetic mutants. Consistent with
conserved requirements for Nkx2.5 repressing SAN identity within working atrial car-
diomyocytes, studies have shown that Nkx2.5 limits Isl1 expression to the venous pole
of the atrium [95] (Figure 3). Nkx2.5 zebrafish mutants have a progressive expansion
of Isl1+ atrial cardiomyocytes. Conversely, Nkx2.5 overexpression leads to diminished
Isl1 expression at the venous pole [84,85,95]. Nkx2.5 expression is largely absent from
the SAN cells, although Nkx2.5 is expressed throughout the zebrafish heart at earlier
stages; therefore, it was questioned if the Nkx2.5–SAN cardiomyocytes are derived from an
Nkx2.5+ progenitor population [96,97]. Lineage tracing in zebrafish embryos confirmed
that the pacemaker cardiomyocytes are derived from Nkx2.5+ progenitors that come from
the most lateral regions of the cardiac mesoderm [98]. Furthermore, in this population,
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Wnt5b initiates canonical Wnt signaling, which silences Nkx2.5 and activates Isl1 and Tbx18
(Figure 3). Consistent with this role in cardiomyocyte specification, loss of Wnt5b function
results in a decrease in pacemaker cardiomyocytes and corresponding increase in the num-
ber of atrial cardiomyocytes. Conversely, overexpression of Wnt5b produces the opposite
effect, with increased pacemaker cardiomyocytes and decreased atrial cardiomyocytes [98].
Interestingly, Wnt5b mutant embryos develop slower heart rates compared to wild-type,
however inhibition of Wnt signaling by overexpressing Axin1 between 36 and 52 hpf results
in an increase in heart rate, emphasizing that canonical Wnt signaling first helps establish
the SAN earlier in cardiogenesis and then modulates pacemaker function later [93,98].
Consistently, while previous work did not investigate the differentiation of pacemaker cells
specifically, the early requirement of Wtn5b is consistent with the previously identified role
for Wnt signaling in promoting the differentiation of venous atrial cardiomyocytes [51].
Canonical Wnt signaling as a driver of SAN identity has also been shown in mouse and
human embryonic stem cells, indicating its conserved role in pacemaker cardiomyocyte
differentiation [99]. Thus, while investigation of the genetic networks driving SAN forma-
tion in zebrafish to this point is less extensive than mice, the current data support that a
fundamentally conserved network of transcription factors are necessary to establish the
proper number of pacemaker cardiomyocytes within the venous pole of the zebrafish heart
(Figure 3).
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2.7. Zebrafish as a Model for Human Atrial and SAN Defects

Despite the different number of atrial and ventricular chambers within their heart,
the high degree of genetic conservation regulating early cardiac patterning and cardiomy-
ocyte function allows studies in zebrafish to provide insights into the molecular etiology of
human CHDs. While mutations that affect patterning of the atrium in zebrafish embryos
can perturb the size of the atrium, improper specification of the atrium in humans is often
associated with atrial septal defects (ASDs) and atrioventricular septal defects (AVSDs).
AVSDs, a subtype of ASD, account for 5–7% of CHDs, while ASDs are reported in as
many as 20% of CHD patients [5–9]. ASDs are also the most likely CHD to be newly
diagnosed in adults, comprising 20–40% of adult CHD diagnoses [100]. Furthermore,
septal defects, including ASDs, AVSDs, and ventricular septal defects (VSDs), account
for the majority (35–54%) of adult CHD-related hospitalizations [101,102]. With regard
to SAN development, improper specification of the SAN in humans can manifest as sick
sinus syndrome, arrhythmias, and atrial fibrillation [11–14,103–106]. Importantly, ASDs
are often associated with arrhythmias and conduction defects, which can arise as a conse-



J. Cardiovasc. Dev. Dis. 2021, 8, 15 10 of 17

quence of the structural defect itself or occur concurrently as a result of genetic mutations
in genes responsible for development of both the atrium and the SAN [10,107,108]. This
is an important distinction because surgical intervention can often correct the structural
malformations, but an underlying conduction defect may remain and cause life threatening
heart problems later in life, with arrhythmias being a leading cause of mortality in adults
with CHDs [10,108,109].

Mutations in TBX5, HH signaling, NR2F2, and NKX2.5 are some of the specific and
better studied genes associated with ASDs and AVSDs in humans. Murine models have
highlighted that improper specification of the venous SHF, leading to loss of the dorsal
mesenchyme protrusion, is a primary cause of ASDs [110]. In humans, mutations in TBX5,
which underlie Holt–Oram syndrome, and the Smoothened receptor, which is required for
HH signaling, both result in a spectrum of similar developmental defects that include ASDs
and AVSDs [10,111]. Is has been shown that Tbx5 functions upstream of HH signaling in
the posterior SHF. Haploinsufficient Tbx5 mutant mice develop AVSDs, which can be res-
cued with restoration of HH signaling [112,113]. Tbx5a mutant zebrafish, called heartstrings,
have distended hearts, although cardiac specification does not appear to be affected [114]
(Table 1). As illustrated above, one of the consequences of loss of HH signaling is de-
creased atrial chamber size in zebrafish [50]. Interestingly, RA signaling also regulates Tbx5
expression within the posterior SHF [115]. As mentioned above, RA signaling restricts
cardiomyocyte progenitor specification [57,58]. RA-deficient mice have a posterior expan-
sion of the SHF, similar to the posterior expansion found in zebrafish embryos [116,117].
Importantly, RA signaling is required to promote Tbx5 expression and repress Tbx1 expres-
sion. Blocking RA signaling at the time point when Tbx5 is required in the SHF results in
AVSDs [115].

Table 1. Genes associated with atrial and SAN defects in humans and their zebrafish orthologs. ASD—atrial septal defect; AVSD—
atrioventricular septal defect; DORV—double outlet right ventricle; LVOTO—left ventricular outflow tract obstruction; ToF—tetralogy of
Fallot; VSD—ventricular septal defect.

Human Gene Human CHD Zebrafish
Gene(s) Zebrafish Phenotype References

NR2F2 AVSD, ASD, LVOTO,
DORV, VSD nr2f1a, nr2f2

Nr2f1a: Atrial differentiation defects
Nr2f1a; Nr2f2: Ventricular specification

defects
[1,2,70,118–120]

NKX2.5 ASD, VSD, ToF,
Conduction defects nkx2.5

Defects in cardiomyocyte proliferation,
differentiation, and maintenance,

Conduction defects
[3,4,73,108,121–124]

TBX5 ASD, VSD, Holt–Oram
Syndrome tbx5a, tbx5b Looping defects, Bradycardia [10,114,125,126]

SHOX2 Atrial Fibrillation shox2 Bradycardia [13,94,105,106]

HCN4 Sick Sinus Syndrome hcn4 Bradycardia [14,104,127]

NR2F1 and NR2F2 are both expressed in human atrial cardiomyocytes [128]. However,
to this point, only mutations in NR2F2 in humans have been associated with
CHDs [1,2,119,120,129,130] (Table 1). NR2F1 and NF2F2 are required for the differen-
tiation of atrial cardiomyocytes in human embryonic stem cells (hESCs) [128]. Furthermore,
work in hESCs has also shown that NR2F1 is antagonized by ISL1 downstream of RA
signaling in the differentiation of atrial cardiomyocytes [131]. In mice, while Nr2f2 is
required for atrial development and maintenance, the mechanisms underlying the ASDs
and AVSDs in humans have not been elucidated [69,78]. Nr2f1a single mutant zebrafish
have improper atrial cardiomyocyte differentiation at the venous pole, implying that one
mechanism underlying ASDs in mammals is a failure of posterior SHF cells to differentiate.
However, nr2f1a mutants also have an expanded AVC [70], which we posit could lead to
AVSDs from improper alignment and valve specification. Interestingly, although Nr2fs
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have historically been associated with atrial development, human NR2F2 mutations are
also associated with CHDs affecting the ventricle, including VSDs, left ventricular outflow
tract obstruction (LVOTO), and double outlet right ventricle (DORV) [1,2,119,120]. Addi-
tionally, mutations in NR2F1 and NR2F2 have been associated with craniofacial defects in
humans [120,130]. Interestingly, our work has revealed that zebrafish Nr2f1a and Nr2f2
function redundantly to restrict the number of ventricular cardiomyocytes and promote
pharyngeal muscle specification at earlier stages, but do not overtly function redundantly
in promoting atrial cardiomyocyte differentiation [118]. Thus, understanding the dose
dependency of nr2f genes in zebrafish may provide an understanding of the variability
of CHDs affecting both the atrium and ventricle, and craniofacial defects associated with
NR2F mutations in humans.

Nkx2.5 haploinsufficiency in humans is associated with ASDs, AVSDs, and tetral-
ogy of Fallot (ToF), as well as conduction defects, such as atrial fibrillation, arrhythmias,
and atrioventricular (AV) block [3,4,15,108,121,123,132,133], consistent with the multiple
roles Nkx2.5 plays during cardiogenesis (Table 1). As illustrated above, Nkx2.5 has con-
served requirements in the development of both the SAN and the working myocardium
in vertebrates. Nkx2.5 knockout mice are embryonic lethal with abnormal heart develop-
ment [134,135]. Importantly, atrial-specific knockout of Nkx2.5 in mice results in ASDs
and an enlargement of the SAN [85], reminiscent of the atrial and SAN expansions due
to nkx2.5 loss in zebrafish hearts [95]. Interestingly, Nkx2.5 knock-in mouse models have
been shown to reproduce the phenotype reported in patients harboring the same muta-
tion. Heterozygous knock-in mice have been reported to develop ASDs, AV block, and
arrhythmias, the last of which is thought to be due to ectopic pacemaker activity within the
atrium [103,136,137]. Consistent with the conservation of core regulators of SAN develop-
ment, SHOX2 mutations have been reported in patients with atrial fibrillation [13,105,106]
(Table 1). Global Shox2 knockout mice are embryonic lethal and develop a hypoplastic
SAN [89]. Additionally, as mentioned previously, Shox2 functions upstream of Nkx2.5
during pacemaker specification and promotes SAN development, with Shox2-depleted
zebrafish developing bradycardia [89,94].

An additional SAN marker that has been modeled in zebrafish is the ion channel
HCN4, which lies downstream of the SAN regulatory genes mentioned above and is vital
for normal pacemaker function [30]. Mutations in HCN4 are associated with sick sinus
syndrome in humans [14,104] (Table 1). Global and cardiac-specific Hcn4 knockout mice
are embryonic lethal due to a lack of functional pacemaker cells [138], and knockdown
of Hcn4 in adult mice leads to bradycardia and eventual heart block [139]. In zebrafish,
it has been shown that morpholino-based knockdown of hcn4 causes bradycardia and
sinus pauses reminiscent of the sick sinus syndrome phenotypes found in patients with
HCN4 mutations [127]. Therefore, zebrafish can further our understanding of CHDs that
are caused by mutations in vital regulatory genes, such as Nkx2.5 and Shox2, as well as
their downstream targets, such as Hcn4.

3. Conclusions

Zebrafish are an excellent model for dissecting the molecular and genetic mechanisms
of vertebrate heart development. Contemporary advances through the use of zebrafish
have furthered our understanding of conserved factors driving the development and
maintenance of the vertebrate atrium and SAN. Mutations in genes that are required for
the specification, differentiation, and maintenance of venous pole cardiomyocytes are often
associated with a spectrum of CHDs affecting the atria in humans. While numerous factors
have been shown to be involved in the development of the vertebrate atrium and SAN, how
these signaling pathways interact and are coordinated to promote proper cardiogenesis and
maintain cardiomyocyte identity require further investigation. Future work in zebrafish
will help to dissect the critical mechanisms and regulatory networks governing venous pole
development in the vertebrate heart, providing insights in the etiology of CHDs in humans.
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