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Vibrio cholerae, the causative agent of pandemic cholera, is abundant in marine and

freshwater environments. Copepods and chironomids are natural reservoirs of this

species. However, the ways V. cholerae is globally disseminated are as yet unknown.

Here we review the scientific literature that provides evidence for the possibility that some

fish species may be reservoirs and vectors of V. cholerae. So far, V. cholerae has been

isolated from 30 fish species (22 freshwater; 9 marine). V. cholerae O1 was reported

in a few cases. In most cases V. cholerae was isolated from fish intestines, but it has

also been detected in gills, skin, kidney, liver and brain tissue. In most cases the fish

were healthy but in some, they were diseased. Nevertheless, Koch postulates were not

applied to prove that V. cholerae and not another agent was the cause of the disease

in the fish. Evidence from the literature correlates raw fish consumption or fish handling

to a few cholera cases or cholera epidemics. Thus, we can conclude that V. cholerae

inhabits some marine and freshwater fish species. It is possible that fish may protect the

bacteria in unfavorable habitats while the bacteria may assist the fish to digest its food.

Also, fish may disseminate the bacteria in the aquatic environment and may transfer it to

waterbirds that consume them. Thus, fish are reservoirs of V. cholerae and may play a

role in its global dissemination.

Keywords: fish, Vibrio cholerae, waterbird, bacteria–fish interactions, reservoir, vector

INTRODUCTION

The devastating disease, cholera, is known to occur globally causing epidemics and pandemics.
However, the way this disease is worldwide disseminated is still unknown. Vibrio cholerae, the
causing agent of cholera is ubiquitous in marine and freshwater aquatic environments. Copepods
(Crustacean) (Colwell and Huq, 2001) and chironomids (Diptera; Chironomidae) (Broza and
Halpern, 2001; Halpern et al., 2004, 2006, 2007; Senderovich et al., 2008; Halpern and Senderovich,
2015) were described as natural reservoirs of V. cholerae. Copepods and chironomids are abundant
in fresh and marine water ecosystems and are consumed by different fish species. Halpern et al.
(2008) raised the hypothesis that fish that feed on copepods and chironomids, and waterbirds that
also may feed on these invertebrates and consume fish as well, may be reservoirs and vectors of
V. cholerae. Here we review the scientific literature that indicates that fish are indeed significant
reservoirs of V. cholerae in water ecosystems.

Vibrio cholerae
V. cholerae, a Gram-negative motile rod causes massive cholera outbreaks such as the one following
the 2010 earthquake in Haiti (Sack et al., 2004; Chin et al., 2011; Katz et al., 2013). Cholera is a
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global threat to public health and it was estimated that between
2008 and 2012 cholera caused an annual average of 2.9 million
cases, and 95,000 deaths, worldwide (Ali et al., 2015). Particular
serogroups (O1 and O139) of this bacterium are responsible
for cholera epidemics and pandemics. Human infection with
V. cholerae begins with ingestion of contaminated food or
water containing the bacterium. V. cholerae colonizes the small
intestine and secretes cholera enterotoxin (CT) into the host
cells resulting in rapid efflux of chloride ions and water into the
lumen of the intestine, leading to profuse diarrhea and severe
dehydration (Kaper et al., 1995).

Non-O1/non-O139 V. cholerae serogroups are also linked to
V. cholerae gastroenteritis as well as to wound infections and
bacteremia (Deshayes et al., 2015).V. choleraeO1, O139 and non-
O1/O139 comprise a single taxonomic species and their habitats
attributes are similar (Lewin, 1996), however, recently it has been
suggested that not all strains of V. cholerae species share the
same niche (Kirchberger et al., 2016). The role of CT in the
environment is not understood.

V. cholerae is commonly associated with chitin-containing
zooplankton, particularly copepods (Huq et al., 1983) and
chironomids (Broza and Halpern, 2001; Halpern et al., 2004).
Recent evidence supports the hypothesis that fish and waterbirds
may also be intermediate reservoirs and vectors of V. cholerae
(Halpern et al., 2008; Halpern and Izhaki, 2010).

Fish as Possible Reservoirs of V. cholerae
V. cholerae O1 and O139 Serogroups in Fish
In a laboratory experiment that was conducted more than 50
years ago, Felsenfeld (1963), infected sardines (Stolephorus) and
mullets (Liza) with pathogenic V. cholerae O1 strains (Ogawa
and Inaba). Vibrio concentration in the water was 102 cells/ml.
The strains were detected in the fish intestine after the fish
were exposed to the bacteria (Table 1). In another laboratory
experiment, Runft et al. (2014) used V. cholerae O1 strains to
colonize zebrafish gut. They found that the bacteria attached to
the fish intestinal epithelium and formed micro-colonies. They
suggested that zebrafish can act as a host model for pathogenic
V. cholerae strains (Rowe et al., 2014; Runft et al., 2014) (Table 1).
Evidence for the presence of pathogenic serogroups ofV. cholerae
in fish was published by du Preez et al. (2010) who detected
large numbers of V. cholerae O1 and O139 in fish scale samples
collected in Mozambique. These researchers obtained their

evidence by a direct fluorescent antibody technique. V. cholerae
O1, positive for cholera toxin gene, was isolated from Tilapia
gills in Tanzania (Hounmanou, 2015). V. cholerae O1 isolates,
positive to ctxA and tcpA genes were detected from two marine
fish in Cochin, India (no details were given as to the fish species)
(Kumar and Lalitha, 2013). In the same study, Kumar and
Lalitha (2013) also identified 141 non-O1/O139 isolates from
unidentified marine fish species (Table 1).

V. cholerae Non-O1/O139 in Fish
Carvajal et al. (1988) identified V. cholerae non-O1/O139
serogroups in healthy Lorna fish (Sciaena deliciosa) sampled
from inshore marine sites during a Peruvian cholera epidemic
(Table 1). Senderovich et al. (2010) examined freshwater and

marine fish species. Ten freshwater (71%) and one marine
(2.3%) fish species tested positive for the presence of V. cholerae
non-O1/O139 in their intestine (Table 1). V. cholerae non-
O1/O139 was also detected in four fish species collected
from the Fowl River in the Gulf of Mexico (Jones et al.,
2013) (Table 1). The prevalence of V. cholerae isolates in
Tilapia (Oreochromis niloticus) intestines, sampled from a
water reservoir in Ouagadougou, Burkina Faso in Africa, was
6.3% (Traoré et al., 2014) (Table 1). In Qingdao in China,
V. cholerae was detected by means of metagenomic tools in the
gastrointestinal tract of a farmed adult turbot fish (Scophthalmus
maximus) (Xing et al., 2013). In India, V. cholerae was isolated
from two fish species (Bulls eye, Priacanthus hamrur and
Hard tail scad, Megalaspis cordyla) caught off Royapuram coast
(Sujatha et al., 2011) (Table 1). When the microbial quality
and safety of Pangasius fish processed for export in Vietnam
was evaluated, V. cholerae was isolated from tra fish (Pangasius
hypophthalmus) fillets and from the water used to rinse them (Thi
et al., 2014) (Table 1).

V. cholerae Isolated from Diseased Fish
A few studies have reported the isolation of V. cholerae non-
O1/O139 from diseased fish. V. cholerae was isolated from
internal organs of diseased ayu (Plecoglossus altivelis) and guppy
fish (Poecilia reticulate) in Japan and Iran, respectively (Yamanoi
et al., 1980; Kiiyukia et al., 1992; Kiani et al., 2016) and from Nile
tilapia (Oreochromis niloticus) that were cultured in floating cages
in Thailand (Dong et al., 2015) (Table 1). Rehulka et al. (2015)
demonstrated that an intraperitoneal injection of V. cholerae into
common carp, rainbow trout and common nase caused the death
of the injected fish (Table 1).

Indirect Evidence on the Possible Presence of

V. cholerae in Fish
According to the Hong Kong Food and Environmental Hygiene
Department, V. cholerae serotype Ogawa biotype El Tor was
found in a supermarket fish tank water in Pok Fu Lam in
September 2003 (Press Release, 2003). They were not able to
explain the source of the bacteria. V. cholerae O1 was detected
from aquarium water and fish imported from Thailand and Sri
Lanka to Czech Republic (Plesník and Procházková, 2006). Using
molecular methods, Smith et al. (2012), identified V. cholerae
from aquarium water containing common goldfish (Carassius
auratus) purchased from aquarium shops in Rhode Island
(Table 1). When the bacterial community of zebrafish intestinal
tracts was studied using cloning of the 16S rRNA gene,V. cholerae
was found as the dominant OUT in the Gammaproteobateria
class (Lan and Love, 2012).

Epidemiological Evidence of Fish
Consumption as the Cause of Cholera
Evidence from the literature correlated fish with a few cholera
cases or epidemics. The first records date back over more than
50 years. It was postulated that cholera endemicity in India was
due to hilsa fish (Pandit and Hora, 1951) (Table 2). Morgan et al.
(1960), suggested that the origin of El Tor vibrios outbreaks
in Thailand might have been fish that are often eaten raw in
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TABLE 1 | Isolation of V. cholerae strains from healthy fish species that were sampled from different habitats and regions around the world.

Fish species Habitat Site of isolation Isolated from fish organ/comments References

V. cholerae O1

Sardines (Stolephorus sp.) Intestine colonization lab

experiment

Medical Research Laboratory,

Bangkok, Thailand

Intestine, survival in the intestine lasted

only 5 days

Felsenfeld, 1963

Mullet (Liza sp.) Intestine colonization lab

experiment

Medical Research Laboratory,

Bangkok, Thailand

Intestine, O1 survival in the intestine lasted

only 5 days

Felsenfeld, 1963

Unidentified sea fish, Beira beach The Pungwe estuary at Beira,

Mozambique

V. cholerae O1/O139 were detected on

fish scale using direct fluorescent antibody

du Preez et al., 2010

Unidentified sea fish Marin environment Cochin, India V. cholerae O1, and non O1 Kumar and Lalitha, 2013

Zebrafish (Danio rerio) Intestine colonization lab

experiment

(demonstrating a host

model)

Wayne State University IACUC,

Michigan, USA

O1, Intestine, micro-colonies were

observed on the intestinal epithelium

Runft et al., 2014

Tilapia sp. Mzumbe sewage

stabilization ponds

Morogoro, Tanzania V. cholerae O1, and non-O1 from gills

V. cholerae non-O1 from intestine samples

Hounmanou, 2015

V. cholerae NON O1/O139

lorna fish (Sciaena deliciosa) Marine inshore waters Peru Information not available Carvajal et al., 1988

Tilapia sp. Fish pond Haifa and Nir David, Israel Intestine Halpern et al., 2008

Common St. Peter’s fish

(Tilapia sp. and Tilapia zillii)

Fish pond Nahalal, Israel Intestine Senderovich et al., 2010

Josephus cichlid

(Astatotilapia flaviijosephi)

Fish pond Nir David, Israel Intestine Senderovich et al., 2010

Grass carp, white-amur

(Ctenopharyngodon idella)

Fish pond Atlit, Israel Intestine Senderovich et al., 2010

Common carp (Cyprinus

carpio)

Fish pond Atlit, Israel Intestine Senderovich et al., 2010

Flathead gray mullet (Mugil

cephalus)

Fish pond Nahalal, Israel Intestine Senderovich et al., 2010

Galilee St. Peter’s fish

(Sarotherodon galilaeus)

Fish pond Kfar Rupin, Israel Intestine Senderovich et al., 2010

Jordan St. Peter’s fish

(Oreochromis aureus)

River Nir David, Israel Intestine Senderovich et al., 2010

Carasobarbus canis Lake The Sea of Galilee, Israel Intestine Senderovich et al., 2010

Longhead barbel (Barbus

longiceps)

Lake The Sea of Galilee, Israel Intestine Senderovich et al., 2010

Flathead gray mullet (Mugil

cephalus)

Lake The Sea of Galilee, Israel Intestine Senderovich et al., 2010

Blotcheye soldierfish

(Myripristis murdjan)

Mediterranean Sea

(Marine water)

Akko, Israel intestine Senderovich et al., 2010

Bulls eye (Priacanthus

hamrur)

Royapuram coast

(Marine water)

Chennai, Tamil Nadu, India Intestine and the muscles Sujatha et al., 2011

Hard tail scad (Megalaspis

cordyla)

Royapuram coast

(Marine water)

Chennai, Tamil Nadu, India Gills, intestine, muscles and skin Sujatha et al., 2011

Zebrafish (Danio rerio) Adult zebrafish cultured

in tanks

Auckland, New Zealand V. cholerae was detected in intestine

samples using cloning of 16S rRNA gene

Lan and Love, 2012

Turbot fish (Scophthalmus

maximus)

Marine aquaculture Qingdao, China V. cholerae was detected by metagenomic

tools

Xing et al., 2013

Sheepshead (Archosargus

probatocephalus)

Fowl River (estuarine) Gulf of Mexico Intestine Jones et al., 2013

Sea catfish (Arius felis) Fowl River (estuarine) Gulf of Mexico Intestine Jones et al., 2013

Pin fish (Lagodon

rhomboides)

Fowl River (estuarine) Gulf of Mexico Intestine Jones et al., 2013

Crevalle jack (Caranx

hippos)

Fowl River (estuarine) Gulf of Mexico Intestine Jones et al., 2013

Frozen tra fish (Pangasius

hypophthalmus) fillet

Food industry Vietnam Final packaged products (fillets) Thi et al., 2014

Tilapia (Oreochromis

niloticus)

Tanghin freshwater

reservoir

Ouagadougou, Burkina Faso

(Africa)

6.3% (15 out of 238) Traoré et al., 2014

(Continued)
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TABLE 1 | Continued

Fish species Habitat Site of isolation Isolated from fish organ/comments References

INDIRECT INDICATION FOR V. cholerae PRESENCE IN FISH

Unknown tropical fish Water from Fish tank UK Reported to be the cause of a wound Booth et al., 1990

Common goldfish

(Carassius auratus)

Aquarium water Rhode Island Indication using molecular methods Smith et al., 2012

V. cholerae ISOLATED FROM DISEASED FISH

Ayu fish (Plecoglossus

altivelis) and Guppy Fish

(Poecilia reticulate)

River Japan Livers, spleens, or kidneys of diseased fish Yamanoi et al., 1980;

Kiiyukia et al., 1992

Goldfish (Carassius auratus) No data available No data available No data available Reddacliff et al., 1993

Nile tilapia (Oreochromis

niloticus)

Floating cage cultured

Nile tilapia farms

Mekong River, Thailand V. cholerae from internal organs of

diseased fish

Dong et al., 2015

Guppy Fish (Poecilia

reticulate)

Aquaculture ponds Kasha, Iran Skin, gill, kidney and brain tissue from

diseased fish

Kiani et al., 2016

Cardinal tetra

(Paracheirodon axelrodi)

Fish aquarium Czech Republic Diseased fish Rehulka et al., 2015

Raphael catfish (Platydoras

costatus)

Fish aquarium Czech Republic Diseased fish Rehulka et al., 2015

Common nase

(Chondrostoma nasus)

Fish aquarium Czech Republic Diseased fish Rehulka et al., 2015

the Pacific area. Cholera was associated with eating salted fish,
sardines and other fish from an atoll lagoon in the Pacific Ocean
(Merson et al., 1977; Kuberski et al., 1979; McIntyre et al.,
1979). A cholera outbreak in Tanzania (67 patients, including
11 deaths) was correlated with handling and eating fish at
social gatherings (Killewo et al., 1989). Out of 12 cholera cases
caused by V. cholerae O1, serotype Ogawa, biotype El Tor, in
the southern Italian region of Puglia, in 1994, three patients
reported consumption of raw fish (Maggi et al., 1997) (Table 2).
Consumption of dried fish correlated significantly with cholera
risk in Tanzania (Acosta et al., 2001). In July 2001, a case
of cholera, caused by V. cholerae O1, serovar Inaba, biovar
El Tor, was reported in Berlin. Interestingly, the patient had
most likely been infected while handling and preparing fish
imported from Nigeria (Schürmann et al., 2002). A food trace-
back investigation following three cases of cholera in Sydney,
Australia, found that the only exposure common to all cases
was consumption of raw whitebait imported from Indonesia
(Forssman et al., 2007). V. cholerae O1 serovar Ogawa was
identified as the causative agent in all three cases. V. cholerae

non-O1 was isolated from stools of a fisherman who had fished,
cooked and eaten a lake fish in Italy (Piantieri et al., 1982).
The source of Vibrio cholerae non-O1 that was found in a
wound, was linked with a tropical fish tank (Booth et al., 1990)
(Table 2).

V. cholerae and Fish—Mutualistic
Interactions?
A few publications (mentioned above and in Table 1), correlated
the presence of V. cholerae with a disease in fish (Yamanoi et al.,
1980; Kiiyukia et al., 1992; Dong et al., 2015; Rehulka et al.,
2015; Kiani et al., 2016). Kiiyukia et al. (1992), who isolated
V. cholerae non-O1/O139 from diseased ayu fish in Japan,
emphasized that healthy ayu fish caught in Lake Biwa, Japan

in the rivers running into this lake, also harbored V. cholerae
but without showing any signs of a disease. Kiani et al. (2016)
isolated V. cholerae along with other pathogens from diseased
Nile tilapia that were cultured in floating cages in Thailand.
However, it was not proven that V. cholerae was indeed the
causative agent of the disease (Table 1). All the above studies
simply assumed that because they isolated V. cholerae from
the diseased fish, this species was responsible for the disease.
Rehulka et al. (2015) injected a fish with relatively large dose
of bacteria (e.g., 2 × 108 cells) to obtain fish mortality but
without following all Koch postulates rules. Hence we argue that
at least for some cases other bacterial species or viruses and
not V. cholerae were probably responsible for the fish disease
(Table 1).

Senderovich et al. (2010) isolated V. cholerae from 15 different
heathy fish species. They found 5 × 103 and 1.4 × 102 colony
forming units (cfu) of V. cholerae per gr intestine content in
Sarotherodon galilaeus (Galilee St. Peter’s fish) and in Mugil
cephalus (Flathead gray mullet), respectively. None of these fish
showed any signs of disease. Nevertheless, there is a scarcity of

quantitative studies of V. cholerae in fish. Many other studies
reported the presence of V. cholerae in different healthy fish
species that were sampled from both marine and freshwater
habitats (listed in Table 1) but these studies did not quantify the
numbers of V. cholerae in the fish.

Not all the fish species are inhabited by V. cholerae. For
example, Jones et al. (2013) detected V. cholerae only in 4 out of
10 fish species sampled in the Gulf of Mexico (estuarine habitat).
Similarly, Senderovich et al. (2010) did not detect V. cholerae in
4 out of 14 freshwater and in 43 out of 44 marine fish species.
Scrutiny of the list of the fish species found to host V. cholerae
revealed that all belonged to Actinopterygii class (Table S1).
V. choleraewas identified from 30 species belonging to 9 different
orders within this class.
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TABLE 2 | Fish consumption as the source of cholera disease.

Etiology Fish source Site Serogroup References

Hilsa fish (Hilsa ilisa) was connected to the

transmission of endemic cholera. Hilsa fish,

infected with V. cholerae breeds abundantly

in the Hoogly river that runs through Calcutta

India Cholera endemicity in India

due to the Hilsa fish

V. cholerae O1 Pandit and Hora, 1951

Eating of raw fish Thailand Outbreaks in Thailand, 1959 V. cholerae O1El Tor Morgan et al., 1960

Correlated with handling and eating fish at

social gatherings

Tanzania Cholera outbreak in Tanzania V. cholerae O1 Killewo et al., 1989

Fishing, cooking and eating a lake fish A lake in Italy Italy V. cholera non O1 Piantieri et al., 1982

Eating of raw fresh and smoked fish Guinea Conakry, Guinea V. cholerae O1 St. Louis et al., 1990

Eating of small salted fish The Pacific Ocean Island of Guam, 1974 Merson et al., 1977

Salted fish The Pacific Ocean Gilbert Island 1977 McIntyre et al., 1979;

Kuberski et al., 1979

A cholera outbreak in (67 patients, including

11 deaths) was correlated with handling and

eating fish at social gatherings

Tanzania Butiama village of the Mara

Region, Tanzania

V. cholerae O1 Killewo et al., 1989

Consumption of raw fish illegally imported

from Albania

Unknown fish species,

imported from Albania

to Italy

Italy, 1994 V. cholerae O1 Maggi et al., 1997

Eating of dried fish Rural area (Ifakara) in

southern Tanzania, Africa

Vibrio cholerae O1, biotype El

Tor, serotype Ogawa

Acosta et al., 2001

A patient contracted the infection while

handling a fish imported from Nigeria

Nigeria Germany, 2001 V. cholerae O1 serovar Inaba,

biovar El Tor

Schürmann et al., 2002

Eating of whitebait imported from Indonesia Indonesia Sydney Australia, 2006 Vibrio cholerae O1 biotype El

Tor, serotype Ogawa

Forssman et al., 2007

Fish may actually benefit from V. cholerae that inhabit their
intestine. Strains ofV. cholerae secrete extracellular enzymes such
as proteases (Halpern et al., 2003) and chitinases (Pruzzo et al.,
2008; Senderovich et al., 2010). These enzymes may have a role
in the digestion of macromolecules like proteins and chitin in
the fish gut. Chitin, a polymer of β 1,4 N-acetylglucoseamine,
is the main component of crustaceans’ (copepods) and insects’
(chironomids) exoskeletons. This insoluble polymer is a source
of carbon and nitrogen (Cohen-Kupiec and Chet, 1998; Laviad
et al., 2016). Senderovich et al. (2010) found that all V. cholerae
strains isolated from 15 different fish species were able to degrade
chitin. Thus, it is possible that the fish intestine serves as hosts
for V. cholerae while the bacteria may play a role in helping
the fish digest its chitinous zooplankton prey. As the fish that
carry the bacteria swim from one location to another (some fish
species move from rivers to lakes or sea and the reverse), they
serve as vectors for V. cholerae. Nevertheless, fish are consumed
by waterfowls, which disseminate the bacteria on a global scale
(Halpern et al., 2008; Halpern and Izhaki, 2010).

CONCLUDING REMARKS

V. cholerae non-O1 as well as O1 and O139 inhabit highly diverse
fish species. In most cases it seems that the bacteria cause the fish
no harm; on the contrary,V. choleraemay be a part of the normal
flora of at least some of the fish species, like tilapia and carp. Fish
might have a mutualistic relationship with V. cholerae. The fish
provide food and shelter for this bacterium while the bacterium
may assist the fish to digest its food (e.g., chitin and protein).

From an epidemiological point of view, the fish carry the cholera
bacteria from one place to another. So eventually, if waterbirds
feed on the fish,V. choleraemay be transferred in some waterbird
species’ digestive tracts and thus be globally spread.

UNRESOLVED QUESTIONS AND FUTURE
RESEARCH

1. Copepods and chironomids are natural reservoirs of
V. cholerae. Do fish that feed on these zooplankton species get
infected with V. cholerae?

2. Is V. cholerae transferred vertically or horizontally among
fishes? Does an infected female transfer V. cholerae to her
offspring?

3. Can the bacteria be transferred from one fish species’
droppings to another fish species that lives in the same habitat?

4. When the fish intestine becomes infected with V. cholerae,
does the bacteria become part of its normal microbiota?

5. What are the differences between fish species that carry
V. cholerae in fresh and marine waters?

6. Does V. cholerae prevalence in fish vary by season? Or by
different fish age and gender?

7. Can we determine a model fish species that carries V. cholerae
as against those fish species that do not?
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