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Abstract

SARS-CoV-2 continues to evolve, causing waves of the pandemic. Up to May 2022, 10 million genome sequences have accumulated,
which are classified into five major variants of concern. With the growing number of sequenced genomes, analysis of the big dataset
has become increasingly challenging. Here we developed systematic approaches based on sets of correlated single nucleotide varia-
tions (SNVs) for comprehensive subtyping and pattern recognition of transmission dynamics. The approach outperformed single-SNV
and spike-centric scans. Moreover, the derived subtypes elucidate the relationship of signature SNVs and transmission dynamics. We
found that different subtypes of the same variant, including Delta and Omicron exhibited distinct temporal trajectories. For example,
some Delta and Omicron subtypes did not spread rapidly, while others did. We identified sets of characteristic SNVs that appeared
to enhance transmission or decrease efficacy of antibodies for some subtypes. We also identified a set of SNVs that appeared to sup-
press transmission or increase viral sensitivity to antibodies. For the Omicron variant, the dominant type in the world, we identified
the subtypes with enhanced and suppressed transmission in an analysis of eight million genomes as of March 2022 and further
confirmed the findings in a later analysis of ten million genomes as of May 2022. While the “enhancer” SNVs exhibited an enriched
presence on the spike protein, the “suppressor” SNVs are mainly elsewhere. Disruption of the SNV correlation largely destroyed the
enhancer-suppressor phenomena. These results suggest the importance of fine subtyping of variants, and point to potential complex
interactions among SNVs.
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Significance Statement:

In this study, we develop a dimension reduction method for a viral subtyping and pattern recognition for transmission dynamics.
This new method is computationally efficient and allows to analyze millions of genome sequences. Multiple analyses of two—ten
million SARS-CoV-2 genomes identify viral subtypes for the contagious variants Omicron and Delta. The analysis also identifies the
transmission enhancer SNVs associated with temporal rise in proportion and transmission suppressor SNVs associated with the
suppression of the temporal rise. The finding is further confirmed with larger sample sizes and in more countries. The transmission
enhancer-repressor hypothesis may explain a significant part of the current situations in the pandemic. This study improves our
understanding of SARS-CoV-2 and controlling for the COVID-19 pandemic.

Introduction
Relative to the original Wuhan strain, SARS-CoV-2 Variants of
Concern (Alpha, Beta, Gamma, Delta, and Omicron) and other
known variants (e.g. Eta, Iota, Kappa, Lambda, Epsilon, Zeta,
Theta, and Mu) have been identified and caused multiple waves
of the pandemic. These variants are reported to confer high
transmissibility and possible antibody escape, thus posing chal-
lenges to the pandemic control measures. Therefore, track-

ing variants and predicting their risks are crucially important
for pandemic control and the development of pharmacological
treatments.

Analysis of the SARS-CoV-2 genome sequences has provided
unprecedented opportunities for tracking variants (1–3), charac-
terizing the viral genomes (4–6), investigating molecular and cel-
lular mechanisms (7–9), understanding the viral origin and evolu-
tion (2, 10–17), and scrutinizing many other aspects related to the
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pandemic. These utilities demonstrate the importance of analyz-
ing the viral genome database (18).

Since the beginning of the pandemic, Global Initiative on Shar-
ing Avian Influenza Data (GISAID) (https://www.gisaid.org/) has
provided a data depository for viral genome sequences from con-
firmed cases. As of May 2022, ten million genome sequences have
been reported, which provide an opportunity for fine subtyping of
SARS-CoV-2 variants. However, as the size of the dataset grows,
analysis of the big data have become increasingly challenging.
Model- or likelihood-based subtyping approaches such as a phy-
logenetic classification are popular but require more model as-
sumptions and intensive computation compared to a model-free
approach.

We develop a model-free approach for using correlated SNV
sets (CSSs) with allelic association (i.e. covariance structure) for
dimension reduction of the large collection of genomes. The CSSs
allow a computationally tractable ways for viral subtyping and
pattern recognition of transmission dynamics. The results elu-
cidate the relationship of signature single nucleotide variations
(SNVs) of CSSs and transmission dynamics of viral strains that the
relationship may be obscure in a hierarchical lineage/sublineage
structures by using a phylogenetic classification.

Using this method, we found that within the commonly identi-
fied Delta (aka B.1.617.2) and Omicron (aka B.1.1.529) variants, the
temporal trajectories (i.e. the frequency over time) differ signifi-
cantly among their subtypes. We further identified sets of SNVs
that behave as transmission “enhancers,” which are associated
with increased temporal trajectory of the Delta and Omicron vari-
ants, respectively, and sets of transmission suppressors, which are
associated with the “suppression” of the variants with the trans-
mission enhancers. The results for Alpha variant are provided
in the preprint of this work (19). These findings suggest the im-
portance of fine subtyping and possible SNV interactions that be
important determinants of viral fitness in the context of public
health measures.

Results
Using CSSs for dimension reduction
Allelic association of SNVs is a hallmark of rising variants (Supple-
mentary Text 1, Figs. S1 to S4, and Table S1). This characteristic al-
lows us to use allelic association as a way to reduce the dimension
of the big data and subtype the variants. We grouped SNVs with
pairwise associations R2 > 0.5, and used an exponential weighted
moving average (EWMA) to detect CSSs, while ignoring SNV sets
with occurrence frequency lower than 20 (Refer to the “Materi-
als and Methods” section and Fig. S5A). The sensitivity, specificity,
and robustness of CSS detection are discussed in Supplementary
information (Fig. S5A).

The genome of viral strains can then be represented by a com-
bination of SNVs in CSSs with a residual term (Fig. S6). Through a
three-stage dimension reduction, a 29,409 by 2,119,724 matrix of
genome sequence is reduced to a 1,366 by 9,848 matrix of CSS (Fig.
S6). Note that the definition of CSSs can change depending on the
purpose of analysis to include any subset of the genomic database,
for example, strains identified in different time span, different
countries, or different segments of the genome. Additionally, the
thresholds for allelic association can also vary to highlight the fea-
tures of interest.

We identified a total of 1,057 CSSs, each containing 4 to 33 SNVs
with a total of 1,366 signature SNVs. We found that 1,053 of 1,057
CSSs can characterize > 99.9% of the dominant strain type [Type
VI defined in our previous work (5)], which accounts for 2,000,622

(94.38%) of the strains since March, 2020. The statistics are pro-
vided (Table S2).

Fig. 1A shows that the frequency of strains represented by CSSs
increased with time, and CSSs almost completely represent the
genome variations after July 2020. Fig. 1B shows that the resid-
ual SNVs became insignificant. Temporal change of the numbers
of CSSs provides information for the dynamic evolutionary pro-
cesses. We analyzed four datasets that were collected from De-
cember 2019 to 23 June and 15 December in 2021 and 23 Febru-
ary and 27 April in 2022 with a sample size of 2,119 K, 6,166 K,
8,475 K, and 10,089 K, respectively, to infer the number of CSSs
(Fig. S7). The Omicron variant exhibited an increase in number of
CSSs and superseded the other variants, indicating a rapid trans-
mission and continued evolution of Omicron. Apart from the Al-
pha, Delta, and Omicron, other variants have a limited change
and less evidence of ongoing host adaptation. If we use each CSS
to define a subtype, these subtypes can effectively represent the
whole population in recent dates (Supplementary Text 2 and Fig.
S8). Therefore, CSSs can serve as a basis for both dimension re-
duction and subtyping, which captures the genome evolution in a
computationally tractable manner. We evaluated the relationship
between the number of genomes (n) and computation time (h) in
our CSS analysis (Fig. S9). Our CSS analysis consisting of varia-
tion frequency calculation and CSS construction has a linear-time
computational complexity. This highlights the computational ef-
ficiency of our CSS analysis.

Remarkably, the CSSs for the variants with the same Pango
nomenclature exhibited different temporal trajectories. These
subtypes carried similar core SNVs (defining SNVs), but some
additional SNVs may be different and influence the fitness and
transmission of the CSSs. Examples for the Delta variant (aka
B.1.617.2) and Omicron variant (aka B.1.1.529) are given in Fig. 2A
and Fig. 3A, respectively. Detailed composition of the Delta CSSs
and Omicron CSSs are provided in Table 1 and Table S3, respec-
tively.

The Delta transmission enhancer and
suppressor SNVs
To characterize and subtype strain variations in more detail, the
CSS approach can be applied to individual countries. As the highly
contagious variant Delta was first discovered in India, we further
subtyped the Delta strain sequenced in India using the proposed
CSS approach, which resulted in eleven subtypes. For illustration,
we focus on the first six subtypes (Delta-01 to 06). The strains in
the six Delta subtypes carry all or the majority of the signature
SNVs defined for the Delta variant (T19R, T478K, D950N, D614G,
L452R, P681R in the spike protein, and 7 SNVs in other proteins)
(Green cells in column “SNV” in Table 1). Yet, the subtypes exhib-
ited distinct temporal trajectories (Fig. 2A).

The first three subtypes “enhanced CSSs” (Delta-01 to 03) exhib-
ited increasing temporal trajectories and the other three subtypes
“suppressed CSSs” (Delta-04 to 06) had much lower temporal tra-
jectories (Fig. 2A). Remarkably, the same pattern of the differential
temporal trajectories for the subtypes were found in many other
countries consistently (Fig. S10), indicating that the subtypes and
their differences are reproducible.

The first three subtypes with rising temporal trajectories
(Delta-01 to 03 in Fig. 2A and Table 1) are defined by eight, nine,
and eleven signature SNVs, respectively, with 100% allelic asso-
ciations (Yellow cells in column “Delta-01 to 03” in Table 1). Ex-
cluding the Delta defining SNVs, we define the remaining signa-
ture SNVs as “transmission enhancers” (Red cells in column “SNV”
in Table 1), since they are strongly associated with the rapid rise

https://www.gisaid.org/
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Fig. 1. High proportions of viral strains and SNVs can be represented by correlated SNV sets (CSSs) (n = 2,119 K genomes as of 2021 June 23). (A)
Majority of viral strains can be represented by CSSs. The temporal proportions of viral strains represented (blue curve) and under-represented (red
curve) by CSSs are displayed. The number of total strains (gray bar) and the number of under-represented stains (red bar) are displayed with the two
histograms in the background. (B) Only a small number of SNVs cannot be represented by CSSs. Distributions of the number of residual SNVs (i.e.
the SNVs under represented by any of CSSs, green bar), and the number of entire SNVs in a strain (i.e. union of SNVs represented and under
represented by any of CSSs, red bar) are displayed. The median number of residual SNVs is 4. The median number of entire SNVs is 29.

in proportion. The remaining three subtypes with lower tempo-
ral trajectories (Delta-04 to 06 in Fig. 2A and Table 1) all contain
a set of 100% associated signature SNVs, in addition to the Delta
defining SNVs and CSS enhancer SNVs in some strains. It appears
that these signature SNVs “suppressed” the rise of the temporal

trajectories. Thus, we define them as “transmission suppressors”
(Cyan cells in column “SNV” in Table 1).

As the enhancer SNVs are 100% associated in Delta-01 to 03,
we looked for similar strains without the complete set of the en-
hancer SNVs. The result showed that strains missing any one of
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Fig. 2. The CSS analysis identifies multiple Delta subtypes with differential temporal trajectories (n = 2,119 K genomes as of 2021 June 23). (A) Eleven
Delta (aka B.1.617.2) CSSs are identified in India. Three CSSs (Delta-01 to 03) have an increasing temporal trajectory and eight CSSs (Delta-04 to 11)
have a much lower temporal trajectory, revealing that CSSs provide a more detailed information for the subtypes and their transmission patterns for
Delta. (B to D) Missing transmission enhancer SNVs causes a dramatically decrease in the temporal trajectory in the enhanced CSS Delta-01. The
curve with a symbol o indicates the temporal trajectory of Delta-01. The curve with a symbol x indicates the Delta-01 variant with the maximum
temporal trajectory among the different Delta-01 variants without or with a missing of specific SNVs. Nmax indicates the maximum number of strains
in a temporal trajectory. Delta-01 carries 8 transmission enhancer SNVs (Table 1), where there are 3 SNVs in the spike protein and 5 SNVs in the
non-spike proteins. In (B), it shows that missing any of 8 transmission enhancer SNVs causes a decrease in the temporal trajectory in Delta-01. In (C),
it shows that missing any of 3 transmission enhancer SNVs in the spike protein causes a decrease in the temporal trajectory in Delta-01. In (D), it
shows that missing any of 5 transmission enhancer SNVs in the non-spike proteins causes a decrease in the temporal trajectory in Delta-01. When
any of the transmission enhancer SNVs are missing (the curve without a symbol x), the temporal trajectories are dramatically reduced. This
phenomenon explains that the transmission enhancer SNVs work cooperatively. (E to G) Missing all of the transmission suppressor SNVs causes an
increase in the temporal trajectory in the suppressed CSS Delta-04. The curve with a symbol o indicates the temporal trajectory of Delta-04. The
curve with a symbol x indicates the Delta-04 variant with the maximum temporal trajectory among the different Delta-04 variants without or with a
missing of specific SNVs. Nmax indicates the maximum number of strains in a temporal trajectory. Delta-04 carries five transmission enhancer SNVs
and four transmission suppressor SNVs (Table 1). Among the four suppressor SNVs, one is located in the spike protein and the other three are located
in the non-spike proteins. In (E), it shows that missing all of the four transmission suppressor SNVs causes an increase in the temporal trajectory. In
(F), it shows that missing the only transmission suppressor SNV in the spike protein (conditional on that the three non-spike suppressor SNVs are
remained) does not cause an increase in the temporal trajectory. In (G), it shows that missing any of the transmission suppressor SNVs in the
non-spike proteins (conditional on that the spike suppressor SNV is remained) does not cause an increase in the temporal trajectory. When all of the
four transmission suppressor SNVs are remained, the temporal trajectory of Delta-04 is dramatically reduced. This phenomenon illustrates that
transmission suppression can be contributed by a single spike SNV or a set of transmission suppressor SNVs.
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Fig. 3. The CSS analysis identifies multiple Omicron subtypes with differential temporal trajectories (n = 8,475 K genomes as of 2022 February 23). (A)
Seven Omicron (aka B.1.1.529) CSSs are identified in the United Kingdom. Six CSSs (Omicron-01 to 06) have an increasing temporal trajectory and
one CSS (Omicron-07) has a much lower temporal trajectory, revealing that CSSs provide a more detailed information for the subtypes and their
transmission patterns for Omicron. (B to D) Missing transmission enhancer SNVs causes a dramatically decrease in the temporal trajectory in
Omicron-01. The curve with a symbol o indicates the temporal trajectory of Omicron-01. The curve with a symbol x indicates the Omicron-01 variant
with the maximum temporal trajectory among the different Omicron-01 variants without or with a missing of specific SNVs. Nmax indicates the
maximum number of strains in a temporal trajectory. Omicron-01 carries 44 transmission enhancer SNVs, where there are 24 SNVs in the spike
protein and 20 SNVs in the non-spike proteins (Table S3). In (B), it shows that missing any of 44 transmission enhancer SNVs causes a decrease in the
temporal trajectory in Omicron-01. In (C), it shows that missing any of 24 transmission enhancer SNVs in the spike protein causes a decrease in the
temporal trajectory in Omicron-01. In (D), it shows that missing any of 20 transmission enhancer SNVs in the non-spike proteins causes a decrease in
the temporal trajectory in Omicron-01. When any of the transmission enhancer SNVs are missing (the curve without a symbol x), the temporal
trajectories are dramatically reduced. This phenomenon explains that the transmission enhancer SNVs work cooperatively. (E to G) Missing all of the
transmission suppressor SNVs causes an increase in the temporal trajectory in Omicron-07. The curve with a symbol o indicates the temporal
trajectory of Omicron-07. The curve with a symbol x indicates the Omicron-07 variant with the maximum temporal trajectory among the different
Omicron-07 variants without or with a missing of specific SNVs. Nmax indicates the maximum number of strains in a temporal trajectory. Omicron-07
carries five transmission enhancer SNVs and four transmission suppressor SNVs. Among the four suppressor SNVs, one is located in the spike protein
and the other three are located in the non-spike proteins. In (E), it shows that missing all of the four transmission suppressor SNVs causes an increase
in the temporal trajectory. In (F), it shows that missing the only transmission suppressor SNV in the spike protein (conditional on that the three
non-spike suppressor SNVs are remained) cause a slightly increase in the temporal trajectory. In (G), it shows that missing any of the transmission
suppressor SNVs in the non-spike proteins (conditional on that the spike suppressor SNV is remained) does not cause an increase in the temporal
trajectory. When all of the four transmission suppressor SNVs are remained, the temporal trajectory of Omicron-07 is dramatically reduced. This
phenomenon illustrates that transmission suppression can be contributed by a single spike SNV or a set of transmission suppressor SNVs.
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the 8 signature SNVs in Delta-01 dramatically reduced the tem-
poral trajectory (Fig. 2B). This phenomenon suggests that the sig-
nature SNVs work cooperatively to gain viral fitness (i.e. a syner-
gistic or positive cooperativity effect), and disfavors the possible
hitchhiking passenger roles played by some SNVs. We also eval-
uated the effects of the signature SNVs in the spike protein and
non-spike proteins, separately. Compared to Delta-01, the strains
that they had the five non-spike SNVs [G29742Del (3’UTR), S26L
(ORF3a), V82A (ORF7a), R203M (N), and D377Y (N)] but missed any
one of the 3 signature SNVs in the spike protein had a dramatically
reduced temporal trajectory (Fig. 2C). Similarly, the strains that
they had the three spike SNVs [L452R (S), P681R (S), and D614G (S)]
but missed any one of 5 SNVs in the non-spike proteins also had
a dramatically reduced temporal trajectory (Fig. 2D). The results
suggest that both the spike and non-spike protein SNVs play a
critical role in transmission dynamics. Similar patterns were also
found in Delta-02 and Delta-03.

In contrast to the first three subtypes, the other three sub-
types (Delta-04 to 06) exhibit different temporal patterns (Fig. 2A).
The majority of the strains in these three subtypes also carried
the defining SNVs in the spike protein for the Delta variant (i.e.
the T19R-L452R-T478K-D614G-P681R-D950N haplotype) (Table 1).
Nevertheless, the temporal trajectories of the three subtypes are
suppressed dramatically after acquiring the suppressor SNVs lo-
cated mainly on the non-spike proteins (Fig. 2A and Table 1). At
most one suppressor SNV is located in the spike protein in each
of the suppressed CSSs.

Delta-04 carries the transmission suppressors H6686Y (nsp15),
R385K (N), V1061V (S), and H2092Y (nsp3) (Table 1), and exhibits
the low temporal trajectory (Fig 2A). Delta-05 and Delta-06 carry
overlapping but different sets of transmission suppressors with
some synonymous SNVs (Table 1). These two subtypes also gen-
erally suppressed the rise of the temporal proportion, although
not as effective as Delta-04 (Fig. 2A).

We examined the influence of missing suppressor SNVs. Com-
pared to the Delta-04 strains, the strains containing only the 5
Delta defining SNVs but missing all transmission suppressor SNVs
of Delta-04 exhibited a rising temporal frequency (Orange line in
Fig. 2E). We further evaluated the effects of missing suppressor
SNVs in the spike and non-spike proteins, separately. Compared to
the Delta-04 strains, when the Delta strains missed the only sup-
pressor SNV in the spike protein [i.e. V1061V (S)], the temporal tra-
jectory was not increased (Fig. 2F). When the Delta strains missed
any of the three transmission suppressors in the non-spike pro-
teins, the temporal trajectory was not increased either (Fig. 2G).
The potential mechanism of transmission suppressor SNVs is dis-
cussed in the subsection “Suppression effect” below.

Remarkably, the identified enhancer and suppressor SNVs can
be further confirmed in an analysis of six million SARS-CoV-2
genomes (Fig. S11). This reflects the robustness of the identified
transmission enhancer and suppressor SNVs.

The Omicron transmission enhancer and
suppressor SNVs
As of 2022 February 23 (n = 8,475 K), we applied the proposed CSS-
based approach to subtype the Omicron variants in the United
Kingdom with a larger sample size compared to other countries
(Fig. 3A). Omicron is known as the variant with a large number
of SNVs especially in the spike protein. The first six subtypes
(Omicron-01 to 06) present the much higher temporal trajec-
tory than the seventh subtype (Omicron-07). These Omicron sub-
types were also found in many other countries, and showed the
consistent temporal trajectory patterns (Fig. S12). Excluding

the Omicron defining SNVs, we defined the signature SNVs of
Omicron-01 to 06 as transmission enhancers, as they enhanced
the transmission of the variant (Red cells in column “SNV” in Table
S3). Reduced transmission may be found after a viral competition
with other subtypes or the newly emergent variants. Omicron-03
and Omicron-06 exhibited a stronger viral competition among the
enhanced CSSs. In addition to the Omicron defining SNVs (Green
cells in column “SNV” in Table S3), Omicron-07 contained some of,
but most importantly, they acquired a set of suppressors that ap-
peared to suppress the rise of the temporal trajectory (Cyan cells
in column “SNV” in Table S3). Furthermore, these findings were
successfully confirmed in an analysis of ten million SARS-CoV-2
genomes accumulated as of 2022 April 27 (n = 10,089 K) (Fig. S13).

The proportion of the strains pertaining to the first six subtypes
were reduced dramatically if any of the transmission enhancers
were missing (e.g. the pattern of Omicron-01 in Fig. 3B). This find-
ing suggests that the enhancers work cooperatively. We also eval-
uated the effects of the signature SNVs in the spike and non-spike
proteins in Omicron-01, separately. Missing any of the spike signa-
ture SNVs (Fig. 3C) or non-spike signature SNVs (Fig. 3D) resulted
in a dramatically reduced temporal trajectory. The results suggest
that both the spike and non-spike protein SNVs play a critical role
in transmission dynamics.

Omicron-07 carries the transmission suppressors L3290L
(nsp5), I1081V (S), L106F (ORF3a), and D343G (N) (Table S3), and
exhibits the low temporal trajectory (Fig. 3A). Missing some num-
ber of transmission suppressor SNVs (Fig. 3E) or any suppressors
in the non-spike proteins (Fig. 3G) do not cause a large rising tem-
poral trajectory, but missing the suppressor in the spike protein
(Fig. 3F) causes a slightly increase, suggesting that transmission
suppression can be contributed by a single spike SNV or a set of
transmission suppressor SNVs. The mechanism of transmission
suppressor SNVs is discussed in the subsection “ Suppression ef-
fect” below.

We looked for the composition of the seven identified Omicron
CSSs (Table 2). Omicron sublineages such as BA.1 from the Pango
nomenclature can be classified into several CSSs that they had
respective sets of signature SNVs and exhibited different trans-
mission dynamics. Therefore, CSSs provide a fine subtyping for
the lineages and sublineages of Omicron. In addition, a CSS can
be composed of multiple lineages and/or sublineages. For exam-
ple, Omicron-03 consisted of part of BA.1, BA.1.1, and BA.2 strains
that they carried the common transmission enhancer SNVs with
high allelic association. Therefore, CSSs provide a subtyping sys-
tem alternative to the SARS-CoV-2 nomenclature system from a
phylogenetic classification. Remarkably, the viral subtyping by us-
ing CSSs found important signature SNVs directly related to trans-
mission dynamics. The results pave a way for a better understand-
ing about the viral transmission in the pandemic.

Suppression effect
Transmission suppression can be contributed by a single spike
SNV or a set of suppressor SNVs. Delta-11 (Fig. 2 and Table 1)
and Omicron-07 (Fig. 3 and Table S3) are illustrated as examples.
Compared to the strains without A222V (S), the strains with A222V
(S) exhibited a lower temporal trajectory in the world and many
countries for all variants (Fig. S14A), Delta (Fig. S14B), and Omi-
cron (Fig. S14C), illustrating that A222V (S) indeed has a suppres-
sor effect. In addition, Delta with A222V (S) has a higher tempo-
ral trajectory than Delta-11, which carries a full set of transmis-
sion suppressor SNVs: T1773T(nsp3)–T3750I(nsp6)–L4252L(nsp9)–
A222V(S), indicating that the set of four transmission suppressor
SNVs work cooperatively and have a stronger synergistic effect in
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Table 2. Differential strain compositions of in the Omicron CSSs (subtypes).

Omicron variant Enhanced CSSs Suppressed CSS

Pango lineage Omicron-01 Omicron-02 Omicron-03 Omicron-04 Omicron-05 Omicron-06 Omicron-07

BA.1 62.36% 65.08% 46.88% 57.07% 57.22% 0.00% 99.77%
BA.1.1 37.64% 34.89% 35.31% 42.87% 42.71% 0.00% 0.19%
BA.2 0.00% 0.00% 17.60% 0.00% 0.00% 100.00% 0.00%
BA.3 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
None 0.00% 0.03% 0.21% 0.06% 0.07% 0.00% 0.04%

Six enhanced CSSs and one suppressed CSS were identified in the United Kingdom. In these CSSs with differential transmission dynamics, their strain compositions
are different. For examples, Omicron-03 consists of 46.88% BA.1 strains, 35.31% of BA.1.1, and 17.60% of BA.2 strains, and 0.21% of other Omicron strains.
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Fig. 4. Set of transmission suppressor SNVs work cooperatively and has a stronger synergistic effect in suppressing transmission suppression than a
single suppressor in Delta-11 (n = 6,166 K genomes as of 2021 December 15 ). We analyzed the effects of transmission suppression contributed by a
single SNV and a set of SNVs. Delta-11 (Fig. 2 and Table 1) is illustrated as an example. In each subfigure, three curves indicate the temporal
trajectories for three subgroups: (i) “Delta-11” carries a full set of transmission suppressor SNVs: T1773T(nsp3)–T3750I(nsp6)–L4252L(nsp9)–A222V(S)
(green color and circle symbol); (ii) “Delta-11 with T1773T(nsp3)–T3750I(nsp6)–L4252L(nsp9)” indicates the Delta strains that they carry the signature
SNVs similar to Delta-11 but miss a suppressor SNV A222V(S), i.e. the Delta strains, which carry only the suppressor triplet
T1773T(nsp3)–T3750I(nsp6)–L4252L(nsp9) (blue color and x symbol); (iii) “Delta with A222V(S)” indicates the Delta strains with a transmission
suppressor SNV in the spike protein A222V (red color and triangle symbol). The number of total strains per date (gray bar) is displayed with the
histogram in the background. “Delta with A222V(S)” has a higher temporal trajectory than “Delta-11,” indicating that the set of four transmission
suppressor SNVs work cooperatively and have a stronger synergistic effect in suppressing transmission suppression than a single SNV A222V(S). The
curves for “Delta-11” and “Delta-11 with T1773T(nsp3)–T3750I(nsp6)–L4252L(nsp9)” are very close, reflecting that the four suppressor SNVs
T1773T(nsp3)–T3750I(nsp6)–L4252L(nsp9)–A222V(S) have a high allelic association, and therefore it’s hard to observe any missing suppressor SNVs
from the set of transmission suppressor SNVs. (A) The World; (B) The United Kingdom; (C) Mexico; (D) Spain.

suppressing transmission suppression than a single suppressor
A222V (S) (Fig. 4). Since some of the suppressor SNVs in Delta-
04 to 06 are synonymous SNVs, the effect may come from codon
usage or RNA-level interactions, although the hitchhiking effect
cannot be ruled out. The result also explains the necessity of a
CSS analysis compared to a SNV by SNV analysis that it fails to
account for genetic epistasis.

Similarly, both Omicron-07 and Omicron with I1081V (S) have
a lower temporal trajectory compared to the one in Omicron with
L3290L(nsp5)–L106F(ORF3a)–D343G(N), indicating that I1081V (S)
and/or L3290L(nsp5)–I1081V(S)–L106F(ORF3a)–D343G(N) have an

effect in suppressing a viral transmission of Omicron (Fig. 5). Be-
cause of a high allelic association in the transmission suppres-
sor SNVs L3290L(nsp5)–I1081V(S)–L106F(ORF3a)–D343G(N), more
data are needed to distinguish that the suppressing effect is con-
tributed by I1081V solely and/or the full set of transmission sup-
pressor SNVs.

Single-SNV scan and spike-centric CSS scan
A genome-wide single-SNV scan examines the temporal trajec-
tories SNV by SNV. In an analysis of two million SARS-CoV-2
genomes accumulated as of 2021 June 23 (n = 2,119 K) and an
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Fig. 5. Single spike suppressor SNV and set of transmission suppressor SNVs contributes to transmission suppression in Omicron-07 (n = 8,475 K
genomes as of 2022 February 23). We analyzed transmission suppression contributed by a single suppressor SNV and a set of suppressor SNVs.
Omicron-07 (Fig. 3 and Table S3) is illustrated as an example. In each subfigure, three curves indicate the temporal trajectories for the following three
subgroups: (i) “Omicron-07” carries a full set of four transmission suppressor SNVs: L3290L(nsp5)–I1081V(S)–L106F(ORF3a)–D343G(N) (green color and
circle symbol); (ii) “Omicron-07 with L3290L(nsp5)–L106F(ORF3a)–D343G(N)” indicates the Omicron strains that they carry the signature SNVs similar
to Omicron-07 but miss a transmission suppressor SNV I1081V in the spike protein, i.e. it only carries the suppressor triplet
L3290L(nsp5)–L106F(ORF3a)–D343G(N) (blue color and x symbol); (iii) “Omicron with I1081V(S)” indicates the Omicron strains carrying a transmission
suppressor SNV in the spike protein I1081V (red color and triangle symbol). The number of total strains per date (gray bar) is displayed with the
histogram in the background. “Omicron-07” and “Omicron with I1081V(S)” have very close temporal trajectories, representing that the suppressor SNV
I1081V(S) and triplet L3290L(nsp5)–L106F(ORF3a)–D343G(N) co-appeared in the Omicron variants. They have a lower temporal trajectory compared to
the one in “Omicron-07 with L3290L(nsp5)–L106F(ORF3a)–D343G(N),” indicating that I1081V(S) and/or L3290L(nsp5)–I1081V(S)–L106F(ORF3a)–D343G(N)
have an effect in suppressing a viral transmission of Omicron. More data are needed to distinguish that the suppressing effect is contributed by I1081V
solely and/or the full set of transmission suppressor SNVs: L3290L(nsp5)–I1081V(S)–L106F(ORF3a)–D343G(N). (A) The World; (B) The United Kingdom;
(C) The United States; (D) Canada.

analysis of eight million SARS-CoV-2 genomes accumulated as of
2022 February 23 (n = 8,475 K), the single-SNV scans can identify
the transmission enhancer SNVs for Delta (Fig. S15A) and Omi-
cron (Fig. S15B), respectively. However, single SNVs fail to provide
a reasonable viral subtyping because almost all viral subtypes
carry multiple signature SNVs with allelic association. In addi-
tion, a single-SNV scan also identified a large number of false-
positive transmission suppressors. The results illustrate the limi-
tation of a single-SNV scan compared to a genome-wide multilo-
cus CSS scan. A spike-centric CSS scan can also identify the trans-
mission enhancer SNVs on the spike protein for Omicron (Table
S3). However, the transmission suppressors SNVs cannot be de-
tected. The set of transmission suppressor SNVs L3290L(nsp5)–
I1081V(S)–L106F(ORF3a)–D343G(N) contained at most one SNV on
the spike protein (Table S3). No other SNVs on the spike protein
had an allelic association with I1081V (S). The result illustrates a
genome-wide multilocus CSS scan provides a more intact trans-
mission enhancer and suppressor detection than a spike-centric
CSS scan.

Discussion
SARS-CoV-2 is an RNA virus and can readily acquire mutations
during the replication process and generate new variants and sub-

types. The subtypes arising from the recent common ancestral
variant may have highly correlated SNVs but remarkably different
genomic sequences and transmission patterns. In this study, we
developed a systematic dimension reduction approach to charac-
terizing the viral subtypes based on the correlated SNV sets with
allelic association and monitoring their emergence and growth.
We also developed a pattern recognition approach to grouping
CSSs and detecting the sets of transmission enhancers and sup-
pressors. By analyzing 10 million genome sequences of SARS-CoV-
2, we provided real-world evidence for the viral subtypes. The
identified subtypes exhibit differential temporal trajectories. The
patterns can be characterized by the sets of transmission en-
hancers and suppressors located both on the spike protein and
elsewhere. This highlights the importance of SNVs in both spike
and non-spike proteins.

Spike-protein signature SNVs are often used as a proxy for di-
agnosing variants and explaining increasing viral transmissibil-
ity. Our result shows that almost all CSSs contain SNVs on the
spike protein (1,053/1,057 = 99.62%), and only 4 CSSs do not con-
tain any defining SNVs on spike. In total, 37.16% of the defining
SNVs of a CSS are located in the spike protein, which is signifi-
cantly larger than the proportion of SNVs in the spike protein in
the whole genome (3,822/29,903 = 12.78%) with p = 2.2 × 10−16

by using parametric t and Wilcoxon signed-ranked tests; the two
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tests yielded the same p-value. Remarkably, spike-protein is highly
related to allelic association; spike-protein is characterized by
the high ratio of non-synonymous SNVs vs. synonymous SNVs
with allelic association, frequent intergenic allelic association (i.e.
Spike-nucleocapsid association), and frequent intragenic allelic
association. These results indicate that spike is constantly under
selection and that it is the most important protein coded by the
viral genome, which determines the overall viral fitness and trans-
mission effectiveness.

The non-spike protein signature SNVs have been commonly
found in the important variants; however, their roles have been
largely under-appreciated. Our results reveal that the non-spike-
proteins signature SNVs provide subtle information for the sub-
types of a variant. In addition, the non-spike-proteins signature
SNVs are also relevant to the viral transmissibility. Allelic asso-
ciation provides a direction for investigating mechanistic inter-
actions. The non-spike-proteins SNVs can directly elevate or re-
duce the viral transmissibility through a direct genetic epistasis
with other SNVs (i.e. genetic buffering). On the other hand, the
observed association of non-spike protein SNVs may be explain-
able by genetic hitchhiking. However, this explanation is disfa-
vored because we did not find “hitchhikers” of less than the whole
set of suppressors. The current vaccines have been designed tar-
geting at the spike protein. Our results suggest that the non-spike-
proteins SNVs should also be considered to improve the sensitivity
of SARS-CoV-2 variants such as Omicron and Delta to pharmaco-
logical intervention. The results for Alpha are only provided in the
preprint of this work (19).

Our results show that the ratio of nonsynonymous vs. synony-
mous amino acid change (r) is much higher in the transmission
enhancer SNVs compared to the suppressor SNVs. Interestingly,
the Alpha variant has a high r value (r = 4.500) for the transmis-
sion enhancer SNVs, and the Delta variant has an even higher
r value (r = 11.500). Moreover, the Delta variant has a r value
(r = 1.375) for the transmission suppressor SNVs much lower
than the Alpha variant (r = 4.000). A higher nonsynonymous vs.
synonymous proportion may suggest a possible positive selection
(20). The results reveal that the Delta variant may have a higher
positive selection in the transmission enhancer SNVs and a lower
negative selection in the transmission suppressor SNVs. This par-
tially reflects the dominance of Delta compared to other variants.
Compared to the previous variants, Omicron is known as a vari-
ant with a significant enrichment of spike signature SNVs. SNVs
in the receptor binding domain (RBD) of the spike protein (S) can
alter the affinity to the angiotensin converting enzyme 2 (ACE2)
receptor and potentially cause vaccine escape (7, 21, 22). Omicron
has exhibited a more rapid transmission than previous Variants
of Concern.

Because of a lasting evolution of SARS-CoV-2, there is an un-
met need to systematically track the dynamic changes of the vi-
ral subtypes and understand their signature SNVs. However, the
computation becomes a hurdle when the number of genomes ex-
ceeds a ten-million scale. We find that allelic association is a hall-
mark for an emergence and growth of a subtype and therefore
can be employed to detect a strain subtype. Viral strains in a sub-
type share the signature SNVs with high allelic association (i.e.
CSS). A CSS-based approach provides a multilocus analysis that it
is more informative than a SNV by SNV analysis. A SNV by SNV
analysis ignores allelic association and genetic epistasis, causing
an increased false positive in identifying transmission suppres-
sors and an underestimated effect of transmission suppression.
In addition, a large number of SNVs are neutral and do not ben-
efit the fitness gain of SARS-CoV-2 (23). It is redundant to con-

sider all SNVs in the 30 K genome of SARS-CoV-2. The CSS-based
analysis addresses this problem. A CSS-based analysis based on a
set of correlated SNVs significantly overcomes the computational
bottleneck in the strain-by-strain and SNV-by-SNV whole-genome
analysis.

Overall, the proposed method allows to analyze tens of millions
of genomes, identify the emerging subtypes and their transmis-
sion enhancer and suppressor SNVs, and therefore improve our
understanding of SARS-CoV-2. A continuous trend monitoring of
viral subtypes and their evolution as new genomes are added to
the database promotes risk assessment of SARS-CoV-2 transmis-
sion and pandemic control of COVID-19. Future work is warranted
to extend the current method to an online version and provide a
real-time monitoring system.

Materials and Methods
Data download and preprocessing
We downloaded and preprocessed 2,215 K, 6,316 K, 8,940 K, and
10,663 K whole-genome sequences data from the Global Initia-
tive on Sharing Avian Influenza Data (GISAID) database (https:
//www.gisaid.org/) on 07 July, 29 December in 2021 and 02 March
and 04 May in 2022, respectively (Fig. S16). Strain information was
extracted from the meta information in GISAID. After data qual-
ity control (discarding the duplicated samples, the samples with
an aligned sequence of < 29 K bases, and the samples without
sample recruitment date), it remained the complete sequences
of 2,119 K, 6,166 K, 8,475 K, and 10,089 K genomes, respectively.
Multiple sequence alignment was performed by using MAFFT v.7
(24). The Wuhan-Hu-1 that the strain was originally isolated in
China and had 29,903 nucleotides (25) was employed as the refer-
ence genome. Our major sequence analysis discarded two ends
(5’ leader and 3’ terminal sequences) and focused on the SNV
base positions from 266 to 29,674. Nucleotides different from the
Wuhan-Hu-1 strain were assigned as a SNV. Deletions were also
detected. Annotation of the SNVs was collected from CNCB (https:
//bigd.big.ac.cn/ncov/release_genome). Statistical analyses were
performed by using our self-developed R codes.

CSS analysis
CSS subtyping was established based on the proposed analysis
procedures (Fig. S5A). Matrix representation for a dimension re-
duction of the proposed CSS analysis procedure is provided (Fig.
S6). Identification of preliminary SNV groups (PSGs) based on al-
lelic association and determination of CSSs by using an exponen-
tial weighted moving average (EWMA) (26) are explained. We cal-
culated variation (allele) frequencies of SNVs in different coun-
tries and in the whole world by using a direct allele counting. For
the SNVs with a frequency > 0.01, we calculated pairwise allelic
association for any pairs of SNVs by using the square of the cor-
relation coefficient (27) as follows:

R2 =
(

Cov (I [ SNV1 = a ] , I [SNV2 = b ])√
Var (I [ SNV1 = a])

√
Var (I [ SNV2 = b])

)2

= (pab − pa pb)2

pa (1 − pa ) pb (1 − pb)

where Cov and Var indicate covariance and variance, respectively.
I[A] indicates an indicator variable with a value of 1 if event A
holds, 0 otherwise. Frequency pab indicates occurrence frequency
(haplotype frequency) with allele a at the first SNV and allele b at
the second SNV. pa (pb) indicates the frequency of allele a (b) at the
first (second) SNV.

https://www.gisaid.org/
https://bigd.big.ac.cn/ncov/release_genome
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An algorithm was developed to group SNVs as a preliminary
SNV group (PSG) that a PSG contains more than 3 SNVs and all
pairwise allelic associations ≥ 0.5. We removed very rare PSGs,
which contained less than and equal to 20 strains in the last
90 days in a country or in the world. On the one hand, signature
SNVs in PSGs were extended if the SNVs on the spike protein had
a very high proportion. On the other hand, a major SNV subset (i.e.
a haplotype) in a PSG was also regarded as PSG if the subset had a
proportion ≥ 0.1. The number of major SNV subsets correspond-
ing to a PSG is few, particularly at the PSG, which carries SNVs
with high pairwise allelic associations, because: (1) if a major SNV
subset in a PSG was regarded as PSG, then the subset must contain
more than 3 SNVs with all pairwise allelic associations ≥ 0.5 in the
current analysis; (2) SNVs in a PSG have high allelic associations
so that genetic diversity of SNV subsets is limited and the number
of major SNV subsets with a high proportion (i.e. haplotype fre-
quency) is few typically. In an analysis of two million SARS-CoV-
2 genomes accumulated as of 2021 June 23 (n = 2,119 K), about
21.38% of 1,057 CSSs were identified through a subset of PSGs. The
percentage will reduce when we increase the thresholds of pair-
wise allelic associations and proportion of a major SNV subset.
EWMA control chart for testing H0 : E(Zt ) ≤ μ0 vs. Ha : E(Zt ) > μ0

was applied to detect correlated SNV sets (CSSs) and track the
growth change of a variant over time as follows: Let Yt denote the
temporal proportion at time point t for a PSG, where the time in-
dex t corresponds to a time window of nine dates (four dates of a
specific date in each side were considered for yielding a smoothed
temporal proportion) in the current analysis. The EWMA statistic

Zt = (1 − λ) Zt−1 + λYt

represents a weighted average characteristic of the past and cur-
rent occurrence proportion of a variant, where λ indicates a
(smoothing) weight for the current temporal proportion. A PSG
was identified as an emerging CSS (i.e. Zt is out-of-control) if

Zt > UCLt

where the upper control limit UC Lt = μ0 + 6 · σ (Zt ) and

σ (Zt ) =

√√√√{
1 − (1 − λ)2t

}
λ

2 − λ
· σY

where σY denotes the standard deviation of Yt . Default μ0 = 0.01
and λ = 0.2 were considered. The analysis was conducted by us-
ing R package qcc (28).

Once CSSs had been determined, genome sequence of a CSS
was determined by substituting the genome of the Wuhan-Hu-
1 strain with the signature SNVs with high allelic association of
the CSS. A CSS-based phylogenetic analysis (Fig. S8) based on
maximum parsimony (MP) was conducted by using MEGA X (29).
Subtree-pruning-regrafting algorithm (30) was employed for a tree
topology search heuristic.

Detection of transmission enhancer SNVs and
transmission suppressor SNVs
Transmission enhancer SNVs and transmission suppressor SNVs
were detected by using the proposed procedures (Fig. S5B).
Decision rule, parameter vector, and parameter updating by us-
ing Particle Swarm Optimization (31) are explained below.

On the basis of the identified CSSs and their temporal propor-
tions for a variant, we proposed a decision rule to classify the CSSs
into enhanced, suppressed, and undetermined CSSs for a variant.
First, we only included the CSSs with a temporal proportion >θ1 at

some time (hitting time) and focused on the temporal proportions
after the first hitting time. Second, CSSs were initially grouped if
an average difference of their temporal proportions over time was
<θ2. Third, when all CSSs belong to the same group: (i) if the max-
imum temporal proportion was <θ3, then these CSSs were clas-
sified as the undetermined CSS group. (ii) If the maximum tem-
poral proportion was located between θ3 and θ4: (ii-a) we further
monitored the slope of the temporal trajectory. Let D denote the
increment that we subtracted the sum of negative slopes from the
sum of positive slopes. If D was ≤ θ5, then the CSSs were classified
as the undetermined CSS group. (ii-b) If D was >θ5, then the CSSs
were classified as the enhanced CSS group. (iii) If the maximum
temporal proportion was ≥ θ4, then the CSSs were classified as the
enhanced CSS group. Finally, when CSSs were grouped into multi-
ple groups: (i) if the maximum temporal proportion was <θ4: (i-a)
If D was ≤ θ5, then these CSSs were classified as the undetermined
CSS group. (i-b) If D for all CSS were >θ5, then these CSSs were clas-
sified as the enhanced CSS group. (i-c) If D for some CSSs were >θ5

and some CSSs were ≤ θ5, then the former CSSs were classified as
the enhanced CSS group and the latter CSSs were classified as the
suppressed CSS group. (ii) if the maximum temporal proportion
was ≥ θ4, then the CSSs were classified as the enhanced CSS group.
Therefore, given a parameter vector θ = (θ1, θ2, θ3, θ4, θ5) , CSSs can
be classified into enhanced, suppressed, or undetermined CSSs.

An optimal parameter vector is critical for the decision rule (a
classifier of CSSs). The parameter vector θ = (θ1, θ2, θ3, θ4, θ5) was
updated and optimized by using Particle Swarm Optimization (31)
as follows:

θt+1
j = θt

j + Vt+1
j , j = 1, · · · , M

Vt+1
j = wVt

j + c1

(
Pt

j − θt
j

)
+ c2

(
Gt − θt

j

)
, j = 1, · · · , M

where w is the weight of Vt
j (default: w = 0.9); acceleration

constant for individuals (“particle”) c1 ∼ Uniform(0, a) (default:
a = 0.2); acceleration constant for population (“swarm”) c2 ∼
Uniform(0, b) (default: b = 0.2); M is the number of initial random
particles (default: M = 200). Pt

j is the best state for individual j at
iteration t and Gt is the best state for population at iteration t. In
each updating of θt

j and Vt
j, the best states Pt

j and Gt were updated
simultaneously as follows:

Pt+1
j ← θt+1

j if f
(
θt+1

j

)
< f

(
Pt

j

)
,

Gt+1 ← θt+1
j if f

(
θt+1

j

)
< f

(
Gt) .

Here we considered an objective function (i.e. misclassification
frequency in n CSSs) as follows:

f (θ) =
n∑

i=1

{
1 − I [yi ≡ � (CSSi, θ)]

}

where yi and �(CSSi, θ) indicate the true and predicted states
(i.e. “enhancer,” “suppressor,” or “undetermined”) of the i-th CSS
given a parameter vector θ. The true state of a CSS was initially
determined based on a heuristic discussion about the pattern of
the temporal trajectory of the CSS in a multidisciplinary expert
team. The predicted state of a CSS was obtained according to
the aforementioned decision rule given a parameter vector θ.
For a CSS, if the true and predicted states are identical, then
the misclassification error 1 − I[yi ≡ �(CSSi, θ)] is 0, otherwise, 1.
The parameter updating procedure was iterated to minimize the
misclassification error ( f (θ)). The iteration was stop if: 1) f (Gt )
reached the minimum of f (In our case, 0 is the minimum of f ,
this represents every predicted state of CSSs is the true state.) or
2) it reached the maximum number of iterations (default: 25), Gt



Yang et al. | 13

is the optimal estimator of θ. The optimization was performed by
using R package pso (32).

The optimal parameter vector was plugged into the decision
rule to find the candidate transmission enhancers and suppres-
sors for variant(s) and their corresponding signature SNVs. Finally,
the results need to be confirmed in at least 80% of the studied
countries and further confirmed in a later dataset with a larger
sample size. The established decision rule can be directly apply to
determine the CSS states, or serve as a good initial in an adaptive
decision rule for more other variants.
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