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Abstract

Arteriosclerotic cardiovascular diseases (ASCVDs) are the leading cause of morbidity and mortality worldwide and
its risk can be independently decreased by regular physical activity. Recently, ASCVD and its risk factors were found to
be impacted by the gut microbiota through its diversity, distribution and metabolites. Meanwhile, several experiments
demonstrated the relationship between physical exercise and diversity, distribution, metabolite of the gut microbiota
as well as its functions on the lipid metabolism and chronic systematic inflammation. In this review, we summarize
the current knowledge on the effects of physical exercise on ASCVD through modulation of the gut microbiota and
intestinal function.
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Background
Cardiovascular diseases (CVDs) are the leading cause
of morbidity and mortality worldwide [1]. Arterio-
sclerotic CVD (ASCVD) manifests as chronic ische-
mia in the affected organs over time or as acute
symptoms such as myocardial infarction and ischemic
stroke as a consequence of plaque destabilization or
thrombus formation [2, 3].
Physical exercises could independently decrease the

risk of ASCVD and also has a positive intensity-related
impact on other cardiovascular risk factors, such as
hyperlipidemia, hypertension, abdominal obesity, dia-
betes, and psychosocial factors. In addition, there is a
positive correlation between exercise intensity and pro-
tective effects against ASCVD. Most authorities recom-
mend higher-intensity aerobic exercise and resistance
training to prevent and treat CVDs [4, 5].
Although physical exercise had been commended by

lots of guidelines and expert consensus for its prevention
and protection effects on ASCVD, its underline mecha-
nisms were still not well understood. Several beneficial
effects that acted on ASCVD had been found. First, the
increased flow-mediated shear stress on the artery walls
during exercise improves endothelial function. Second,
aerobic exercise training is associated with reduced

serum C-reactive protein levels. Furthermore, endurance
exercise decreases blood pressure and serum triglyceride
(TG) levels and improves high-density lipoprotein chol-
esterol levels (HDL-C), insulin sensitivity, and glucose
homeostasis. Endurance exercise training also has poten-
tial anti-ischemic effects and increases coronary flow by
augmenting capillary density and blood flow area [6].
Recently, ASCVD were found to be impacted by the

gut microbiota through its diversity, distribution and
metabolites. There were also some relations between gut
microbiota, gut inflammation and ASCVD. Meanwhile,
several experiments demonstrated the relationship
between physical exercise and gut microbiota, and its
influences on ASCVD risk factors such as the lipid
metabolism and chronic systematic inflammation. In this
review, we summarize the current knowledge on the
effects of physical exercise on ASCVD through modula-
tion of the gut microbiota and intestinal function.

Gut microbiota and ASCVD
Species, distribution and diversity of gut microbiota and
ASCVD
Gut microbiota is the general term for bacterial microor-
ganisms in the human digestive tract. The variety of mi-
crobes colonizing the human gut is almost 10 times that
of the total cells in a human, and the genetic materials
are more than 150-fold that of humans [7]. Classified by
phyla, the gut microbiota mainly comprises Firmicutes
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and Bacteroides, which account for 80%–90% of all gut
microbes, followed by Actinobacteria and Proteobacteria.
Among these phyla, Firmicutes mainly includes Rumino-
coccus, Clostridium, Lactobacillus, Eubacterium, Faecali-
bacterium, and Roseburia, while Bacteroides mainly
comprises Prevotella and Xylanibacter [8].
Researchers who screened the human gut microbiota

composition based on the difference in bacteria gene
discrepancy according to microorganism metagenome
found that there are three types of human gut micro-
biota rather than a simple random assortment [9, 10].
Accordingly, a new typing method was developed that
stratifies gut microbiota into three enterotypes as deter-
mined by the abundance of key bacterial genera, namely,
type 1 (mainly Bacteroides), type 2 (mainly Prevotella),
and type 3 (mainly Ruminococcus, and smaller propor-
tions of Bacteroides, Roseburia, and Blautia). Moreover,
enterotypes are not related with age, sex, weight, or race,
but with eating habits and means of energy utilization
and vitamin synthesis. Relevant research on atheroscler-
osis and gut microbes has shown that patients with ath-
erosclerosis are mainly enterotype 3, with a minority of
enterotype 1 [10].
In the following studies they found the atherosclerotic

plaque area in female rats was positively correlated with
Clostridiales (Firmicutes), Ruminococcus (Firmicutes,),
and Lachnospiraceae (Firmicutes), and was negatively
correlated with the S24–7 family of Bacterioidetes, which
is similar to human enterotype research findings [11].
Intensive study of bacterial genera and families has

proven that some rare genera or families are associated
with ASCVD. A method based on the gut metagenome
showed that the proportion of the genus Collinsella is
increased in sympathetic atherosclerotic patients, while
the proportions of Roseburia and Eubacteriumare
greater in healthy individuals [10].

Metabolites of gut microbiota and ASCVD
Short chain fatty acid (SCFA) and ASCVD
Short-chain fatty acids (SCFAs) are the major end prod-
ucts from the microbial degradation of carbohydrates and
protein in the gut. The majority of SCFAs are absorbed
from the gut and metabolized in various body tissues,
contributing to some important physiological processes,
especially effects daily energy requirements [12, 13].
Through the absorption and metabolism of SCFA, the

host is able to obtain energy from foodstuffs that are not
fully digested. SCFAs have numerous effects throughout
the body, such as affecting epithelial cell transport and
metabolism, growth and differentiation, and controlling
lipid and carbohydrates metabolite in hepatocytes and
providing energy sources [14]. For instance, propionates
could reduce the cytokine-induced expression of cyto-
kine induced adhesion molecules such as vascular cell

adhesion molecule 1 (VCAM-1) and intercellular adhe-
sion molecule 1 (ICAM-1) in endothelial cells by inhibit-
ing nuclear factor-κ B (NF-κB) [15, 16], lowers blood
glucose and cholesterol, alter lipid metabolism [17],
inhibit cholesterol synthesis in hepatocytes [18], which
are all pathogenesis and risk factors of ASCVD.

Trimethylamine N-oxide (TMAO) and ASCVD
Other than the abovementioned effects, the gut micro-
biota participate in the pathology of ASCVD through
the metabolic product trimethylamine (TMA). In the
setting of specific dietary nutrients characterized by
TMA (e.g., choline, phosphatidylcholine, carnitine), the
gut microbiota participate in the formation of the
proatherogenic compound TMAO.
An accumulating amount of evidence suggests that, in

humans, elevated concentrations of plasma TMAO are a
marker of increased cardiovascular risk. Tang et al. [19]
enrolled 4007 adults undergoing elective diagnostic car-
diac catheterization to determine their fasting serum
TMAO levels. Participants who had major adverse car-
diovascular events had higher baseline levels of TMAO
[20]. Compared with participants in the lowest quartile,
those in the highest quartile had significantly increased
risk of adverse cardiovascular events, indicating that
TMAO remained a significant predictor of cardiovascu-
lar events risk [21].
Wang et al. first found that TMAO potentially pro-

motes atherosclerosis by enhancing foam cell formation
and decreasing reverse cholesterol transport (RCT) [22].
Subsequently, they screened a structural analog of cho-
line, 3,3-dimethyl-1-butanol (DMB), which non-lethally
inhibited TMA formation and decreased foam cell and
atherosclerosis [11].
A detailed mechanism in vitro confirmed the mech-

anistic role of TMAO on foam cell formation through
the upregulation of scavenger receptor A1 (SR-A1),
ATP-binding cassette transporter A1 (ABCA1) and
CD36 [22, 23]. However, at high baseline TMAO
levels (> 0.05 ppm), the decrease in TMAO levels is
associated with reduced aortic lesion area. Further-
more, TMAO and aortic lesion area in apolipoprotein
E–null (apoE−/−) mice expressing human cholesteryl
ester transfer protein (CETP) were not related. These
results demonstrate that TMAO does not affect foam
cell formation or endothelial cell dysfunction, the two
first steps in atherosclerotic disease progression [24].
The discrepancies between these studies may be
attributed to differences in diet composition, interven-
tion drug dosage, and the sex and species of the
experimental mice.
In patients with ASCVD, increased TMAO levels are

associated with myocardial infarction, stroke, and all-
cause mortality, mainly because TMAO enhances
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platelet aggregation and thrombosis. The most recent
research shows that TMAO promotes platelet hyper-
responsiveness by enhancing the inositol-1,4,5-trisphos-
phate (IP3) signaling pathways and activating calcium
ion (Ca2+) release from intracellular Ca2+ stores [25].

Gut microbiota and risk factors of ASCVD
Gut microbiota and lipid metabolism
Bacteroidetes is more common and Firmicutes is less
ubiquitous in obese people than in lean people [26]. In
addition, germ-free mice have lower fatty acid oxidiza-
tion and decreased lipolysis [27, 28]. Metabolomic
research that compared the blood lipid profiles between
germ-free mice and typical breeding mice confirmed this
conclusion, finding lower serum TG levels in germ-free
mice, which was in accordance with the increased TG
clearance [29].
Alterations in the intestinal microbiota, especially

lactic acid bacteria (LAB), have yielded important modi-
fications to lipid metabolism in animals [30–32] and
humans [33]. Some yeast species can remove cholesterol
[34], besides, Bifidobacteria decreases cholesterol levels
by assimilation and precipitation [35], and is associated
with serum HDL-C levels [36]. Furthermore, many
experiments have shown a relationship between Erysipe-
lotrichi and host lipid metabolism [36, 37]. In addition,
gut microbial modification by antibiotic or probiotics
use ameliorates dyslipidemia [38].
Research in vitro and in vivo has clarified the detailed

mechanisms of the cholesterol-lowering effects of the
gut microbiota, such as decreased gut assimilation, in-
hibition of the connection between cholesterol and the
cell surface [39, 40], influencing the production of short-
chain fatty acids [41], and accelerated bile acid and
catalytic enzyme deconjugation [42, 43].

Gut microbiota, endotoxins, and chronic systematic
inflammation
Gram-negative bacteria colonization leads to abundant
endotoxins, especially LPS, in human and animal gut
lumina. Several studies have reported low levels of
serum LPS in humans, demonstrating that LPS is
absorbed at a slow rate from the gastrointestinal lumen
[44]. One major means of LPS absorption is infiltration
of the tight junctions of the intestinal epithelium.
Decreasing tight junction protein levels augments LPS

permeation, causing chronic inflammation such as
visceral fat inflammation and macrophage infiltration
[44, 45], which are risk factors of ASCVD [46].
Endotoxin levels are increased in obese rats and are

accompanied by decreased intestinal endothelial zonula
occludens-1 (ZO-1) and occludin levels [47]. The levels
of serum endotoxins (especially LPS), proinflammatory
cytokines, and hepatic inflammation in mice fed a HFD

were decreased by broad-spectrum antibiotics, which al-
tered the gut microbiota. These effects are associated
with increased tight junction protein levels and de-
creased intestinal permeability [45]. Moreover, probiotics
such as Lactobacillus improved the expression of tight
junction proteins and ameliorated the absorption of LPS
and its proinflammatory effects by improving the gut in-
nate immune response [48]. Human Prevotella histicola
reduces intestinal permeability and inflammation by
upregulating the expression of enzymes that produce
antimicrobial peptides and the expression of the tight
junction proteins ZO-1 and occludin [49].
Among different inflammatory pathways, innate im-

munity, and particularly toll-like receptor (TLR)-acti-
vated pathways, have played an important role in the
pathological process. TLR2 and TLR4 are the main re-
ceptors of LPS [50, 51], and TLR5 is a specific receptor
of flagellin [52]. Gene mutation and gene knockout in
TLR2 or TLR4 decrease TLR4 signaling and ameliorate
atherosclerosis. Twelve-week treatment with broad-
spectrum antibiotics reduces intestinal microbiota di-
versity and inhibits TLR4 signaling [53]. TLR2 and
TLR4 participate in tight junction protein regulation
[44, 53, 54]. Gut microbiota dysbiosis also increases the
levels of endotoxin and flagellin released by gram-
negative bacteria, combining with TLR5 and contribut-
ing to intestinal endothelial inflammation and injury.
Moreover, this disruption of the intestinal environment
is modestly related with damage to the tight junction
proteins claudins (CLDN) and occludins [55].

Physical exercise and gut microbiota
The modern lifestyle, such as diet and exercise, influ-
ences gut microbiota composition and the health of the
host to an extent. Compared with research on diet,
research on the relationship between physical exercise
and gut microbiota is less well developed.

Physical exercise, microbial distribution, and diversity
There are several studies demonstrate that physical exer-
cise increases microbiota diversity and modulates its dis-
tribution (Table 1). Bacterial diversity is decreased in
sedentary elderly individuals as compared with elderly in-
dividuals who have physical exercise. The gut microbiota
of professional rugby players were more diverse than that
of non-athlete healthy subjects [56]. Santacruz [57] com-
pared changes in the gut microbial distribution of obese
adults who had moderate to severe aerobic exercise for
10 weeks and found increased Bacteroidetes and de-
creased Firmicutes. These studies suggest that exercise
can alter microbiota diversity and distribution in humans.
Experiments in rats have also yielded the same result,

in which there was an effect on microbial distribution
between HFD and voluntary exercise. In that study,
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exercise increased the percentage of Bacteroidetes and
decreased the percentage of Firmicutes regardless of diet;
moreover, the ratio of Bacteroidetes to Firmicutes corre-
lated inversely with the amount of exercise performed
[58]. In a recent experiment, Emmanuel et al. [59] found
that high-intensity interval training increased the Bacter-
oidetes to Firmicutes ratio of the distal gut and fecal
microbiota during diet-induced obesity.
Firmicutes and Bacteroidetes are the most abundant

microorganisms at phylum level and account for more
than 90% of the total microbiota. Moreover, intestinal
flora are complicated, spurring intensive research on
particular populations but not on the Firmicutes to
Bacteroidetes ratio.
Research on the effect of physical exercise on diabetic

and normal mice has shown that physical exercise corre-
lates with decreased proportions of Bacteroides/Prevo-
tella spp. and Methanobrevibacter spp. and increased
proportions of Lactobacillus spp. [48].
The most recent study comparing the effects of phys-

ical exercise on different diets showed that exercise al-
tered the gut microbiota distribution in both HFD and
normal diet, and the unique genera associated with
physical exercise are Faecalibacterium prausnitzii
(Firmicutes), Clostridium spp. (Firmicutes), and Alloba-
culum spp. (Mycoplasmataceae) [60]. Moreover, the pro-
portions of Allobaculum spp. and Clostridiales were
increased after exercise (either HFD or normal diet) as
compared with sedentary groups (either HFD or normal
diet), and F. prausnitzii was only present in the exercise
groups regardless of animal species [61], which is
consistent with previous study findings.

Physical exercise and SCFA
There are also a few studies proved that exercises could
promote formation of SCFA. In animal models, it has

been observed that running exercise increases fecal bu-
tyrate levels, and this change is associated with changes
in butyrate producer bacteria groups [62]. Voluntarily
wheel exercise was also found to increase cecal acetate
and propionate. Therefore, increased SCFAs production
induced by microbiota profile changes could be one of
the mechanisms by which physical exercise promotes
health, since SCFA butyrate has the ability to inhibit his-
tone deacetylases, and subsequently it has an impact on
gene regulation, immune modulation, intestinal barrier
regulation, oxidative stress reduction, diarrhea control,
visceral sensitivity, and intestinal motility modulation
[63], which all participate in the modulation of ASCVD.
Moreover, SCFAs catabolited by the microbiota were
found to activate AMPK pathway that controls the activ-
ity of various factors implicated in the regulation of
cholesterol levels and metabolism of lipids and glucose
in the muscle [64].

Physical exercise influences ASCVD risk factors through
intestinal functions
There are several evidences that habitual physical activity
is anti-inflammatory and protective against developing
chronic inflammatory diseases. Recent studies have related
intestinal dysbiosis to pathogenic microbes and there are
also results indicates increased inflammatory disease sus-
ceptibility [65]. There were some animal and human re-
searches demonstrate that exercise may have a beneficial
role in preventing and ameliorating chronic inflammatory
diseases by having an effect on gut immune function and
microbiome characteristics. These researches showed that
different forms of exercise training differentially impact
the severity of intestinal inflammation during an inflam-
matory circumstance and could be linked to gut immune
cell homeostasis and microbiota-immune interactions.

Table 1 Studies about exercise and gut microbiota

Model Exercise Changes of microbial groups or SCFA Position Reference

diet-induced obesity
C57 BL/6 mice

high-intensity interval training
(HIIT) for 6 weeks

↑Bacteroidetes/Firmicutes
↑Fecal microbiota genetic capacity

distal gut
feces

[59]

Normal diet SD rats voluntary access to exercise
(i.e., wheel running)

↑Bacteroidetes
↓Firmicutes↑Lactobacillus, Bifodobacterim
↑Blautia Coccoides Eubacterium rectale
↓Clostridium Enterococcus

feces [70]

6w Male Wistar rats voluntary running exercise ↑butyrate
↑phylum of Firmicutes (SM7/11, T2-87)

colon [62]

Rugby players rugby ↑microbial diversity
↑Akkermansia
↑Firmicutes in athletes
↓Bacteroidetes

feces [71]

Diabetic Mice(db/db) low-intensity treadmill running ↑ Firmicutes
↓ Bacteroides/Prevotella

cecal
feces

[60]

Chen et al. Lipids in Health and Disease  (2018) 17:17 Page 4 of 7



Research on the field of physical exercise and intestinal
permeability mostly shows that strenuous exercise in-
creases gut permeability induced by intestinal ischemia.
This is the cause of abdominal discomfort and diarrhea
in athletes while they are competing [66, 67]. However,
these findings may not be the only connection between
exercise and gut permeability. A decrease of about only
50% in the intestinal blood stream causes intestinal
permeability deterioration. Moreover, the intestinal
blood stream of foxhounds did not decrease further after
8–12 weeks of exercise training [68]. These findings in-
dicate that the increased gut permeability induced by in-
testinal ischemia is associated with the intensity,
duration, and adaptability of exercise.
The mRNA levels of CLDN1 and ZO-1, major compo-

nents of the tight junction, were increased in rat ileum
after intermediate endurance swimming for 1 h a day, in-
dicating that endurance exercise may decrease gut perme-
ability [69]. However, other studies have reported
conflicting results. For example, both the elements and
the proportions of tight junction proteins differ between
different running exercises. Nevertheless, the conflicting
results indicate a relationship between physical exercise,
gut permeability, and the tight junction. It was also
affirmed that exercise reduces LPS-induced systemic
inflammation. Moreover, many studies have proven that
physical exercise suppresses chronic inflammatory dis-
eases by influencing the gut microbiota. Overall, the ef-
fects of exercise type and exercise level, and the
underlying mechanism, should be investigated intensively.

Conclusions and prospects
Although no direct evidence supports the premise that
physical exercise prevents ASCVD by modifying the gut
microbiota and by alleviating systematic inflammation,
many studies have confirmed this hypothesis. Some in-
testinal floras are specifically related with exercise and
ASCVD, and may contain species that could ameliorate
atherosclerosis by exercise Fig. 1.
As we gain a deeper understanding of the specific rela-

tionships between physical exercise, gut microbiota and
ASCVD, we expose potential therapeutic ways. However,
in the field of CVDs, the gut microbiota is a newly emer-
ging topic and has raised many questions. For example,
how does exercise-induced change in the precise gut
microbiota composition decrease TMA or TMAO pro-
duction? What strength grade, aerobic exercise, or resist-
ive exercise should patients undertake to achieve the
best therapeutic effect? Should we undertake higher in-
tensity exercise, low-intensity activity, or endurance
training? What is the most suitable time to exercise?
These questions all warrant further research.
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Fig. 1 Schematic summary of effects that exercise had on ASCVD
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