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Abstract: The prediction of drug–target affinity (DTA) is a crucial step for drug screening and
discovery. In this study, a new graph-based prediction model named SAG-DTA (self-attention graph
drug–target affinity) was implemented. Unlike previous graph-based methods, the proposed model
utilized self-attention mechanisms on the drug molecular graph to obtain effective representations
of drugs for DTA prediction. Features of each atom node in the molecular graph were weighted
using an attention score before being aggregated as molecule representation. Various self-attention
scoring methods were compared in this study. In addition, two pooing architectures, namely,
global and hierarchical architectures, were presented and evaluated on benchmark datasets. Results
of comparative experiments on both regression and binary classification tasks showed that SAG-
DTA was superior to previous sequence-based or other graph-based methods and exhibited good
generalization ability.

Keywords: drug–target affinity; graph neural network; self-attention

1. Introduction

Developing a new drug that gains marketing approval is estimated to cost USD
2.6 billion, and the approval rate for drugs entering clinical development is less than
12% [1,2]. Such massive investments and high risks drive scientists to explore novel and
more efficient approaches in drug discovery. Under such circumstances, computer-aided
drug design methods, especially the recent deep learning-based approaches, have been
rapidly developing and have made key contributions to the development of drugs that
are in either clinical use or clinical trials. Among the broad range of drug design phases
that computational approaches involve, the prediction of drug–target affinity (DTA) is
one of the most important steps, as an accurate and efficient DTA prediction algorithm
could effectively speed up the process of virtual screening of potential drug molecules,
minimizing unnecessary biological and chemical experiments by refining the search space
for potential drugs.

Computational approaches for DTA prediction generally comprise two major steps.
First, features of drugs or proteins, or representations/descriptors as alternative expres-
sions, are obtained from raw input data by feature extraction methods. Compared to the
original input data, the embedded representations are normally more applicable to the
subsequent phase and can achieve better performance. The next step, as previously men-
tioned, is the classification/regression procedure, where the representations act as inputs
and the network outputs as either data labels (i.e., active or inactive) or specific values
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(i.e., the affinity for each drug–target pair). For the feature extraction methods, earlier
research represented drugs and proteins based on human experience or skillfully designed
mathematical descriptors, i.e., hand-crafted features [3,4]. In this regard, KronRLS uses
pairwise kernels that are computed as the Kronecker product of the compound kernel and
the protein kernel for the representations [5]. In the SimBoost model, He et al. defined three
types of features separately for the drug, target, and the drug–target pair, each of which
contained multiple hand-crafted features [6]. These approaches, despite achieving good
performance in the DTA prediction task, depend on chemical insights or expert experiences,
which, in turn, restrict further optimizations of these models.

With the rapid advancements in deep learning in the last decade, various data-driven
methods were proposed for the description of drugs and target proteins [7–11]. These
deep learning approaches differ from hand-crafted features, and features can be extracted
automatically through deep learning methods and are proved to be more effective. For deep
learning approaches specifically in the DTA area, they can be categorized into non-structure-
based and structure-based methods. The former learns the representations from sequential
data, which are fingerprints of molecule and acid sequences of protein. For example,
DeepDTA [12] used only 1D representations of targets and proteins, and convolutional
neural networks containing three layers were applied to both acid sequence and drug
SMILES to obtain the representations. Similarly, WideDTA [13] also relied only on the
1D representation, but it differed from DeepDTA in which the drug SMILES and protein
sequence were represented as words (instead of characters) that correspond to an eight-
character sequence and a three-residual sequence, respectively. In addition, the ligand
maximum common substructure (LMCS) of drugs and motifs and domains of proteins
(PDM) were utilized and formed a four-branch architecture together with the ligand
SMILES and protein sequence branches. DeepCPI [14] leveraged techniques from natural
language processing to learn low-dimensional feature representations, including latent
semantic analysis for drug embedding and Work2vec for protein embedding. On the other
hand, the structure-based methods utilized two-dimensional topology (i.e., graph) [15] or
three-dimensional structures [16] for representation extraction. As a type of non-Euclidean
data, the molecular graph is irregular with variable size, which makes it difficult to apply
traditional deep learning methods such as convolutional neural network (CNN) to it. This
type of data graph differs from Euclidean structural data, which are not applicable to many
basic operations of traditional deep learning methods. In this regard, the graph neural
network (GNN) was proposed to handle graph data, and it put no limit on the size of
the input graph, thus providing a flexible format to extract in-depth information within
the graph [17]. Following this work, a number of variants of the GNN have emerged in
recent years, such as the graph convolutional network (GCN) [18], the graph attention
network (GAT) [19], and the gated graph neural network (GGNN) [20], and systems
based on these GNN variants have demonstrated ground-breaking performance in many
relevant application tasks [21]. Focusing on the drug–target prediction tasks, Tsubaki et al.
proposed the application of the GNN to DTA (or compound–protein interaction, CPI)
prediction, where the compounds were represented as graphs, and, consequently, the 2D
structural information could be kept and extracted using the GNN. The r-radius subgraphs
and n-length subsequence were introduced and were proved to be crucial in improving
model performance [22]. Similarly, Gao et al. utilized the GNN for drug representation,
whereas the protein descriptors were obtained using long short-term memory (LSTM) [23].
GraphDTA also introduced graph representation to take advantage of the 2D structural
information of the drug molecular graph [24]. GraphDTA also discarded the CNN in
the drug branch, and it used a three-layer GCN as an alternative for drug representation,
while keeping the CNN in the protein branch as in DeepDTA. GraphDTA provided better
results than those of the baseline 1D approaches, suggesting a prominent role of structural
information. Chemical context can also be considered in order to provide additional
features other than the molecular graph itself; for example, DeepGS used embedding
techniques of Smi2Vec and Prot2Vec to exploit the chemical context within the drug SMILES
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and amino sequences. This chemical context was then combined with graph-derived
features for DTA prediction [25].

The performance of either the 1D or structure-based representation can be enhanced
by introducing attention mechanisms. The attention mechanisms allow the network to
focus on the most relevant parts of the input and have been proven to be useful for various
tasks [19,26]. For instances, AttentionDTA added an additional attention block following
the two branches of the drug and protein, and, therefore, the learned features could
be further weighted according to the attention score before they were fed into the fully
connected classifying layers [27]. Lim et al. proposed a distance-aware attention algorithm
that could capture the most relevant intermolecular interactions within the 3D protein–
ligand complex. Such attention mechanisms were proved to be effective when applied to
DTA prediction tasks with structural information of a complex [16]. Recently, Lee et al.
proposed a novel attention structure that introduced self-attention mechanisms for node
pooling named self-attention graph pooling (SAGPool), and it achieved state-of-the-art
performances in many graph learning tasks [28]. Inspired by this work, we implemented an
SAG-DTA network in this study, which adopted a self-attention graph pooling approach to
molecular graph representation. Two architectures, namely, global pooling and hierarchical
pooling, were implemented and evaluated, with a detailed comparison of the pooling ratio
and scoring method for each architecture.

2. Materials and Methods

SAG-DTA is an end-to-end prediction algorithm that takes the SMILES of drug
molecules and the acid sequence of proteins as inputs and the affinity value that is mea-
sured by either the disassociation constant or KIBA (kinase inhibitors bioactivity data) score
as the output. SAG-DTA regards DTA prediction as a regression task, and training data
of drug–target pairs are sent to the network, which then learns the intrinsic relationship
between the input sample and the output affinity value. Based on the GraphDTA, we im-
plemented a more complicated graph representation of the drug molecule by introducing
the self-attention pooling mechanism into the network. Specifically, the atom nodes were
weighted by attention scores that were learned based on the features of the nodes them-
selves. Moreover, the atom nodes were also sorted according to the attention scores, and
only those nodes with higher scores were kept. We hypothesized that such modification
would allow the network to give more attention to the most important part and thus learn
more complex and efficient feature representations for the prediction task. The overall
architecture of SAG-DTA is presented in Figure 1. It can be seen that the SMILES of the
drug molecule was used to build a molecular graph, and then the graph was sent to the
GCN network with SAGPooling layers to learn drug features. For the protein, the acid
sequence was sent to the CNN network to learn protein representation.

Figure 1. The overall architecture of SAG-DTA.
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2.1. Datasets

The proposed model was first evaluated on two benchmark datasets of DTA prediction,
namely, the Davis [29] and KIBA [30] datasets. The Davis dataset contains selectivity
assay data of the kinase protein family and the relevant inhibitors with their respective
disassociation constant (Kd) values. The KIBA dataset is about four times the size of the
Davis dataset regarding the number of interaction entries. Additionally, it differs from
the Davis dataset in that the interaction value was recorded using the KIBA score that
was computed from the combination of heterogeneous information sources, i.e., IC50, Ki,
and Kd. The dataset is of high quality, as the integrated heterogeneous measurements
mitigated the data inconsistency arising from the use of a single information source. For
consistency with previous studies [12,13], the values were transformed into log space (pKd)
using Equation (1).

pKd = − log10

(
Kd

109

)
(1)

In addition to the DTA prediction datasets, the proposed model was also evaluated on
two benchmark binary classification datasets of CPI prediction, namely, the BindingDB [23]
and Human [31] datasets. The Human dataset includes positive CPI pairs derived from
DrugBank [32] and Matador [33], and it is characterized by the highly credible negative
CPI samples. The BindingDB is another well-designed CPI dataset derived from a public
database [34], and it contains pre-processed training, validation, and test sets. Statistics of
these four datasets are summarized in Table 1.

Table 1. Datasets.

Dataset Proteins Compounds Binding Entities Task Type Ref

Davis 442 68 30,056 DTA (regression) [29]
KIBA 229 2111 118,254 DTA (regression) [30]
Human 852 1052 3369 (+)/3359 (−) CPI (binary-class) [31]
BindingDB 1696 53,253 39,747 (+)/31,218 (−) CPI (binary-class) [23]

2.2. Input Representation

The datasets consist of numerous binding entities, and each entity comprises a drug
molecule and target protein pair. The drug molecules were originally stored in the SMILES
format, and they were converted to molecular graphs where the atoms and bonds were
taken as the nodes and edges, respectively. Self-connection was considered so that the
diagonal elements were set to 1. In this study, features for atoms were kept the same as
those in GraphDTA and are listed in Table 2. The process was implemented using the
RDKit tool (version: 2020.03.4) [35], as shown in Figure 2. For proteins, unique letters that
represent categories of amino acids were extracted, and each letter was further represented
by integers. The protein sequences could thus be encoded using these integers, which is
similar to the method of representation in DeepDTA [12].

Table 2. Atom features.

Feature Description Size

Atom type
C, N, O, S, F, Si, P, Cl, Br, Mg, Na, Ca, Fe, As, Al, I, B, V, K, Tl, Yb, Sb,
Sn, Ag, Pd, Co, Se, Ti, Zn, H, Li, Ge, Cu, Au, Ni, Cd, In, Mn, Zr, Cr, Pt,
Hg, Pb, or “Unknown” (one-hot)

44

Degree Number of directly bonded neighbors (one-hot) 11
Num of H Number of H bound to the atom 11
Valence Number of implicit H bound to the atom 11
Aromaticity Whether the atom is aromatic 1
Total 78
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Figure 2. The process of molecular graph construction.

2.3. Network Architectures

SAG-DTA network architectures are shown in Figure 3. In this study, we consider two
types of architecture in regard to the pooling strategy, namely, the global pooling architecture
and hierarchical pooling architecture. The global pooling architecture, as illustrated in the
left panel of Figure 3, consists of three graph convolutional layers, and the outputs of these
three layers are concatenated before being fed into an SAGPooling layer, i.e., pooling in a
global way. The remaining nodes then go through the readout layer and are finally passed to
fully connected layers for drug molecule representations. The hierarchical pooing architecture
demonstrated in Figure 3b is composed of three blocks, and each of them contains a graph
convolutional layer and an SAGPooling layer. The convolutional results of each layer are thus
hierarchically pooled and read out. These outputs are then summed before being passed to
the fully connected layers to obtain the final drug representations.

Figure 3. Network architectures of SAG-DTA. Substructures surrounded by dashed lines indicate molec-
ular graph representation, which is the major difference of the two architectures. (a) Global pooling
architecture. (b) Hierarchical pooling architecture.
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2.3.1. Graph Convolution Layer

The graph convolution layer is formulated as Equation (2):

h(l+1) = σ(D̃−
1
2 ÃD̃−

1
2 h(l)Θ) (2)

where Ã ∈ RN × N is the graph adjacency matrix with a self-loop, D̃ ∈ RN × N is the
diagonal degree matrix of Ã, h(l) ∈ RN × F is the node feature matrix (see Table 2) of the l-th
layer, and Θ ∈ RF × F′ is the trainable convolution weight with input feature dimension F
and output feature dimension F′. Finally, the rectified linear unit (ReLU) function σ is used
as the activation function in our model.

2.3.2. Self-Attention Graph Pooling Layer

The self-attention graph pooling (SAGPool) layer comprise a scoring method and a
subsequent mask operation. The process is depicted in Figure 4. Briefly, self-attention
scores for all of the atoms in the molecular graph are obtained using certain scoring method;
then, all of the nodes are ranked, and the top dkNe nodes are selected based on their scores
Z. k ∈ (0,1] is the pooling ratio that indicates the portion of retained nodes.

Figure 4. The process of self-attention graph pooling. V represents the node itself, and u1, u2, and u3 are the neighbors of
node v; hv and hu are the feature vectors.

The mask operation can be formulated as Equation (3):

idx = top− rank(Z, dkNe )
Zmask = Zidx

(3)

where idx is the indexing operation used to obtain the feature attention mask Zmask.
In this study, four types of scoring methods were evaluated, namely, the GNN, GCN,

GAT, and SAGE. These four networks are representative GNN variants and were proved
to achieve good performance in graph-related tasks.
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GNN Scoring Method

The GNN scoring method is defined as Equation (4):

Z = σ(hvΘ1 + ∑
u∈N (v)

huΘ2) (4)

where v represents the node itself and N (v) is the set of all neighborhoods of node v.
h(l)v ∈ R1 × F is the feature of node v in the l-th layer, and Θ1, Θ2 ∈ RF × 1 are the train-
able convolution weights with input feature dimension F. σ(·) represents the activation
function ReLU.

GCN Scoring Method

The GCN scoring method is defined as Equation (5):

Z = σ(D̃−
1
2 ÃD̃−

1
2 hΘ) (5)

Equation (5) is identical to Equation (2), except for the fact that the dimension of
convolutional weight is changed to RF × 1 to obtain the attention score value Z.

GAT Scoring Method

The GAT scoring method is defined as Equation (6):

Z = σ((αv,vhv + ∑
u∈N (v)

αu,vhu) ·Θ) (6)

where Θ ∈ RF × 1 is the trainable convolution weight that is shared by all of the nodes. αv,u
is the attention coefficient that is computed as Equation (7):

αu,v =
exp(LeakyReLU(a T[Θ hu

∣∣∣∣∣∣Θhv]))

∑u∈N (v)∪{v} exp(LeakyReLU(a T[Θ hu

∣∣∣∣∣∣Θhv]))
(7)

where a is the shared attention operation that maps R2F′ to R.

SAGE Scoring Method

The SAGE scoring method is defined as Equation (8):

Z = σ(meanu∈N (v)({hv} ∪ {hu}) ·Θ) (8)

where the mean(·) indicates an averaging operation.

2.3.3. Readout Layer

The readout layer aggregates node features globally or hierarchically that depend on
the pooling architecture. In this work, the readout layer is the concatenation of the average
of the max of the node features, which can be written as follows Equation (9):

r =
1
N

N

∑
i=1

xi ‖
N

max
i=1

xi (9)

where N denotes the number of nodes and xi is the feature vector of the i-th node.

3. Results and Discussion

The proposed SAG-DTA model contains a number of hyperparameters, and com-
binations of these hyperparameters form a vast search space. This section presents the
evaluation of the two most critical aspects in the self-attention scheme, which are the
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self-attention pooling ratio and the calculating method for obtaining the attention score.
The comparison experiments are detailed in Sections 3.3 and 3.4. For all of these model
evaluation experiments, five-fold cross-validation was used. Specifically, the benchmark
training set was shuffled and randomly split into five folds, with four of them being used
as the training set and the remainder as the validation set. The model was trained on the
four-fold training set and validated on the validation set, and this process was repeated five
times. The average result was recorded to assess the model performance. After all of the
hyperparameters were determined in this way, we used all five folds to train the model and
tested it on the benchmark test set. Finally, we compared SAG-DTA with several existing
DTA and CPI prediction methods in Sections 3.5 and 3.6.

SAG-DTA was implemented using the open-source machine learning framework
PyTorch (version:1.4.0) [36] and its extension library PyTorch Geometric (PyG) (version:
1.6.0) [37].

3.1. Metrics

In order to make comparisons with the baseline models, the concordance index (CI)
and mean squared Error (MSE) were used to evaluate the performances of the model. CI
can be used to evaluate the ranking performance of the models that output continuous
values [38], and it is computed as Equation (10):

CI =
1
Z ∑

δx>δy

h(bx − by) (10)

where δx and δy are the larger and smaller affinity values, respectively, and bx and by are
the corresponding prediction values of the model. Z is a normalization constant, and h(x)
is the step function that takes the form of the following Equation [11]:

h(x) =


1, if x > 0

0.5, if x = 0
0, if x < 0

(11)

The other metric, MSE, measures the difference between the vector of predicted values
and the vector of the actual value, and it is widely used in regression tasks. It can be
calculated as Equation (12):

MSE =
1
n

n

∑
i=1

(pi − yi)
2 (12)

where pi is the predicted value and yi is the actual value.
The proposed model was also evaluated on several compound–protein interaction

(CPI) datasets. CPI prediction is a binary classification task, and the following metrics
(Equations (13) and (14)) were used to assess the performance of our models:

Presition =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

where TP, FP, and FN represent the sample numbers of true positive, false positive, and
false negative, respectively.

In addition, the area under the receiver operating characteristic curve (AUROC) and
the area under the precision recall curve (AUPRC) of the presented model were also
calculated to facilitate comparisons with other models.

3.2. Setting of the Hyperparameters

The hyperparameters that were used in SAG-DTA model are listed in Table 3. Most of
these hyperparameters were derived from the baseline model (i.e., GraphDTA [24]), while
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the pooling ratio and the scoring method as two key factors for the performance of SAG
were determined in detail using fivefold cross-validation. In this study, we evaluated the
performances of these two hyperparameters thoroughly on both the global and hierarchical
architectures. The search spaces of the hyperparameters and architectures are highlighted
in bold in the last three lines of Table 3.

Table 3. Hyperparameters used in this study.

Hyperparameters Setting

Epoch 2000
Batch size 512
Optimizer Adam
Learning rate 0.001
Dropout rate 0.1
Convolutional layers 3
SAG pooling architecture global, hierarchical
SAG pooling ratio 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0
SAG scoring method GNN, GCN, GAT, SAGE

3.3. Performances of Various Pooling Ratios

The pooling ratio of SAGPool, which determines the percentage of nodes that should
be retained, is a key factor to be considered in the model. To identify the best graph pooling
ratio, values from 0.1 to 1 were evaluated for both the global and hierarchical pooling
architectures, as illustrated in Figure 5.

Figure 5. Fivefold cross-validation results when using different pooling ratios. (a,b) are the MSE and CI results for the
global pooling architecture, respectively; (c,d) are the MSE and CI for the hierarchical pooling architecture, respectively.

For the global architecture, the MSE showed a generally downward trend and achieved
its lowest value of 0.217 at a pooling ratio 1.0. Another metric CI exhibited oscillation
between 0.892 and 0.894 when the pooling ratio was larger than 0.4. The best pooling ratio
was finalized as 1.0 in this architecture based on the major indicator MSE.
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For the hierarchical architecture, the MSE showed a similar downward trend, with
the minimum value of 0.218 achieved at several pooling ratios, including 0.6, 0.8, and
1.0. The ratios were then compared using the candidate CI metric, as demonstrated in the
right bottom panel of Figure 5, which is roughly in agreement with the MSE that showed
better performance with the increase in the pooling ratio. The ratio value of 1.0 was finally
chose, as it achieved the best performance regarding both the MSE (0.218 ± 0.003) and CI
(0.895 ± 0.004). The results demonstrate that all atoms in drug molecules had their specific
contributions to the drug’s interactions with protein targets. Although assigning weights
to nodes could differentiate the contribution of different atoms and therefore benefit the
performance of the prediction model, the results suggest that those atoms with lower
attention scores cannot be completely ignored.

3.4. Performances of Various Attention Scoring Methods

The self-attention pooling layer assigns each node an attention score. The attention score
has two functions. First, scores of atoms are used as a criterion for ranking and pooling
nodes within the graph. Second, the score is used directly as a weighting factor on the node
features to differentiate the contribution of different atoms. Since the attention scores directly
decide the importance of nodes within each layer, the scoring method thus acts as another
important factor in determining the performance of the model and, therefore, needs to be
carefully decided. As part of the self-attention pooling strategy, we used the feature of the
node itself as the only input feature in the scoring model to obtain the scores of each node,
i.e., self-attention. For the scoring method, we adopted the GNN rather than hand-crafted
functions to automatically learn the weights. In this section, we compare four GNN variants
as scoring methods using fivefold cross-validation, namely, the GNN, GCN, GAT, and SAGE
(introduced in Section 2.3.2). The results are illustrated in Figure 6.

Figure 6. Fivefold cross-validation results when using different scoring methods. (a,b) are the MSE and CI results for the global
pooling architecture, respectively; (c,d) are the MSE and CI results for the hierarchical pooling architecture, respectively.
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For the global architecture, the GNN achieved an MSE of 0.217, which was the lowest
among the four scoring methods. The obtained CI values showed slight discrepancies,
but the GNN, GAT, and SAGE all achieved a CI value of 0.893. For the hierarchical
architecture, the GNN also achieved the best MSE (0.218 ± 0.003) and CI (0.895 ± 0.004).
These results together demonstrate that the GNN is the most effective method of the four
scoring methods for both the global and hierarchical architectures.

3.5. Comparisons with Other Baseline Models

The optimal hierarchical and global SAG models that were obtained via the above
hyperparameter tuning were compared to traditional machine learning methods (i.e., Kron-
RLS [5,39] and SimBoost [6]) and recent cutting-edge DTA prediction approaches, including
DeepDTA [12], WideDTA [13], AttentionDTA [27], DeepGS [25], and GraphDTA [24]. In
these models, different descriptors were used to represent proteins and compounds (the
column ‘Proteins and Compounds’ in Table 4), including the Smith–Waterman (S-W) [40]
descriptor; the PubChem Sim descriptor [41]; and the descriptors obtained from convo-
lutional networks, such as CNN (for SMILES) and GCN (for graph representation). For
WideDTA, the protein sequence (PS) and protein motifs and domains (PDM) were specif-
ically used for protein description, whereas ligand SMILES (LS) and ligand maximum
common substructure (LMCS) were used for drug description.

Table 4. Performances of various cutting-edge approaches on the Davis dataset.

Models Proteins and Compounds CI MSE Ref

KronRLS S-W and PubChem Sim 0.871 0.379 [5,39]
SimBoost S-W and PubChem Sim 0.872 0.282 [6]

1D Representation (SMILES)-Based Approaches

DeepDTA CNN and CNN 0.878 0.261 [12]
WideDTA PS + PDM and LS + LMCS 0.886 0.262 [13]

AttentionDTA CNN and CNN 0.887 0.245 [27]

2D Representation (Graph)-Based Approaches

DeepGS CNN and Graph 0.880 0.252 [25]
GraphDTA(GAT) CNN and Graph 0.892 0.232 [24]
GraphDTA(GIN) CNN and Graph 0.893 0.229 [24]

SAG-DTA (HierPool) CNN and Graph 0.901 0.212 Ours
SAG-DTA (GlobPool) CNN and Graph 0.903 0.209 Ours

For all of these methods, the same benchmark test sets were used, and the overall
performances measured by MSE and CI are summarized in Table 4. It can be seen that
SAG-DTA approaches were superior to 1D representation-based approaches or other graph-
based approaches. Among the two pooling architectures, the global architecture achieved
better performance with an MSE of 0.209 and a CI of 0.903. Though slightly inferior to the
global architecture, the hierarchical variant also obtained good results that were better than
those of the other baseline models.

To further test the generalization of the proposed method, we evaluated the model
on the KIBA dataset with the same hyperparameters as those in the Davis dataset. The
experimental results are shown in Table 5, and can be observed that SAG-DTA is the most
accurate among the evaluated methods. In detail, the global SAG-DTA achieved an MSE of
0.130 and a CI of 0.892, and the hierarchical SAG-DTA achieved an MSE of 0.131 and a CI
of 0.893. These results demonstrate the effectiveness and good generalization ability of our
model in DTA prediction.
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Table 5. Performances of various cutting-edge approaches on the KIBA dataset.

Models Proteins and Compounds CI MSE Ref

KronRLS S-W and Pubchem Sim 0.782 0.411 [5,39]
SimBoost S-W and Pubchem Sim 0.836 0.222 [6]

1D Representation (SMILES)-Based Approaches

DeepDTA CNN and CNN 0.863 0.194 [12]
WideDTA PS + PDM and LS + LMCS 0.875 0.179 [13]

AttentionDTA CNN and CNN 0.882 0.162 [27]

2D Representation (Graph)-Based Approaches

DeepGS CNN and Graph 0.860 0.193 [25]
GraphDTA(GCN) CNN and Graph 0.889 0.139 [24]

GraphDTA(GAT_GCN) CNN and Graph 0.891 0.139 [24]
SAG-DTA (HierPool) CNN and Graph 0.893 0.131 Ours
SAG-DTA (GlobPool) CNN and Graph 0.892 0.130 Ours

3.6. Model Evaluations of the Compound–Protein Interaction Task

We also assessed the performances of SAG-DTA in CPI prediction. In this study, we
refer to the binary classification task of drug–target interaction as CPI to distinguish it from
the DTA, which is a regression task. The two architectures of SAG-DTA were separately
evaluated on two widely used benchmark datasets of CPI prediction, namely, the Human
and BindingDB datasets. These datasets contain compound and protein pairs in addition to
a binary label that indicates whether or not they interact. SAG-DTA was slightly adjusted
for the binary classification task by adding a Sigmoid layer only in order to ensure that the
model was able to predict probabilities and binary labels for samples.

On the Human dataset, SAG-DTA was compared to traditional machine learning
algorithms, including k-nearest neighbors (k-NN); random forest (RF); L2-logistic (L2);
support vector machines (SVMs); and some recent graph-based approaches, such as CPI-
GNN [22], DrugVQA [42], and TransformerCPI [43]. The performances of these models
were obtained from [43] and are summarized in Table 6. It can be observed that both
SAG-DTA architectures were superior to other methods in terms of AUROC, precision, and
recall. Notably, SAG-DTA achieved a significant improvement in the baseline GraphDTA
such that the AUROC was improved to 0.984 (±0.003) from 0.960 (±0.005).

Table 6. Performances of various CPI prediction approaches on the Human dataset.

Models AUROC AUPRC Precision Recall Ref.

k-NN 0.860 0.927 0.798 [43]
RF 0.940 0.897 0.861 [43]
L2 0.911 0.913 0.867 [43]

SVM 0.910 0.966 0.969 [43]
GraphDTA 0.960 ± 0.005 0.882 ± 0.040 0.912 ± 0.040 [24]

GCN 0.956 ± 0.004 0.862 ± 0.006 0.912 ± 0.010 [18]
CPI-GNN 0.970 0.918 0.923 [22]
DrugVQA 0.964 ± 0.005 0.897 ± 0.004 0.948 ± 0.003 [42]

TransformerCPI 0.973 ± 0.002 0.916 ± 0.006 0.925 ± 0.006 [43]
SAG-DTA (HierPool) 0.985 ± 0.002 0.986 ± 0.002 0.945 ± 0.014 0.933 ± 0.011 Ours
SAG-DTA (GlobPool) 0.984 ± 0.003 0.984 ± 0.003 0.946 ± 0.009 0.931 ± 0.014 Ours

The evaluation results on the BindingDB dataset are summarized in Table 7. Among
these graph-based methods, SAG-DTA of the global architecture achieved the best perfor-
mance in terms of AUROC (0.963) and AUPRC (0.966), and the hierarchical architecture
variant was also superior to other methods. Notably, hyperparameters of both the two
SAG-DTA variants were not fine-tuned for both the Human and BindingDB datasets.
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Table 7. Performances of various CPI prediction approaches on the BindingDB dataset.

Models AUROC AUPRC Precision Recall Ref.

CPI-GNN 0.603 0.543 [22]
GCN 0.927 0.913 [18]

GraphDTA 0.929 0.917 [24]
TransformerCPI 0.951 0.949 [43]

SAG-DTA (HierPool) 0.954 0.950 0.849 0.942 Ours
SAG-DTA (GlobPool) 0.963 0.966 0.900 0.882 Ours

In summary, the superior performance of SAG-DTA on both DTA and CPI tasks
suggests its good generalization ability. To provide insight into the improved results by
introducing the self-attention algorithm, we discussed the mechanism here in terms of the
machine learning aspect as well as chemical intuition.

From a machine learning perspective, the self-attention algorithm in SAG-DTA is a func-
tion of the weighting operation that assigns weights, i.e., attention scores, to each atom node
within a molecule graph. The features/information of different nodes are therefore weighted
before they are aggregated as the final molecule descriptor. Molecular graph descriptors ob-
tained in this way can be more effective, because, in some cases, such as DTA and CPI tasks, the
nodes are not equally important for the final prediction. In contrast, for these graph prediction
models without self-attention, the node features are indiscriminately aggregated. As a result,
the features of some critical nodes are not ‘highlighted’ in the final graph representation.

The above discussions can be naturally extended to the drug molecular graph and
DTA/CPI tasks. It can be assumed that atoms in a drug molecule typically do not contribute
equally to the final affinity value, and the attention scores can therefore differentiate the
importance of different atoms. These critical atoms that play chemical roles in the process
of drug–protein interaction will gain more weight when involved into affinity prediction.
Consequently, effective representations of molecules are obtained with the help of the
self-attention algorithm.

4. Conclusions

Predicting drug–target affinity is of great importance to drug development, and an
accurate DTA algorithm will benefit the drug screening by minimizing experimental costs
and reducing development durations. In this paper, we proposed a graph-based DTA
prediction method named SAG-DTA, which utilizes self-attention mechanisms on the drug
molecular graph to obtain drug representation. Evaluation of the model on benchmark
datasets demonstrated that both hierarchical architecture-based and global architecture-
based SAG-DTA achieved superior performance to that of various existing DTA prediction
methods, suggesting the effectiveness of the proposed approach in predicting the affinity
of drug and protein pairs. Furthermore, the good performance of SAG-CPI, which is the
CPI version of SAG-DTA, demonstrated the good generalization ability of the proposed
method as well as the effectiveness of the self-attention mechanisms.
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Abbreviations

AUPRC area under the precision recall curve
AUROC area under the operating characteristic curve
CI concordance index
CNN convolutional neural network
CPI compound–protein interaction
DTA drug–target affinity
GAT graph attention network
GCN graph convolutional network
GGNN gated graph neural network
KIBA kinase inhibitor bioactivity data
k-NN k-nearest neighbors
L2 L2-logistic
LMCS ligand maximum common substructure
LMCS ligand maximum common substructure
LS ligand SMILES
LSTM long short-term memory
MSE mean squared error
PDM motifs and domains of proteins
PS protein sequence
PyG PyTorch Geometric
ReLU rectified linear unit
RF random forest
SAG self-attention graph
SAGPool self-attention graph pooling
SMILES simplified molecular input line entry specification
SVM support vector machines
S-W Smith–Waterman
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