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The spatial resolution of diffusion-weighted imaging (DWI) is limited by several physical and clinical considerations, such as
practical scanning times. Interpolation methods, which are widely used to enhance resolution, often result in blurred edges.
Advanced superresolution scanning acquires images with specific protocols and long acquisition times. In this paper, we propose
a novel single image superresolution (SR) method which introduces high-order SVD (HOSVD) to regularize the patch-based
SR framework on DWTI datasets. The proposed method was implemented on an adaptive basis which ensured a more accurate
reconstruction of high-resolution DWT datasets. Meanwhile, the intrinsic dimensional decreasing property of HOSVD is also
beneficial for reducing the computational burden. Experimental results from both synthetic and real DWI datasets demonstrate that
the proposed method enhances the details in reconstructed high-resolution DWT datasets and outperforms conventional techniques

such as interpolation methods and nonlocal upsampling.

1. Introduction

Diftusion-weighted imaging (DWI) is a noninvasive mag-
netic resonance modality which can be used to infer features
of local tissue anatomy, composition, and microstructure
from water displacement measurements [1]. Water does not
diffuse equally throughout the brain and this property has
been applied widely for in vivo analysis of white matter
architecture and neuronal diseases [2, 3]. Despite the rapid
development of this technology and the broad application of
anisotropic diffusion properties, DWI exhibits an inherently
low signal-to-noise ratio (SNR) compared with other imaging
modalities. In addition, because DWI implements EPI scan-
ning in multiple directions, the spatial resolution is relatively
poor under limited physical and clinical considerations such
as durable scanning time of patients.

It has been shown that the limited resolution of DWI
introduces a partial volume effect (PVE) which results in bias
during DWI imaging analysis [4]. The improvement of DWI
spatial resolution with high SNR provides a better sensitivity

for the analysis of brain structure and clinical disease [5, 6].
Moreover, high-resolution DWI could improve the estima-
tion accuracy of diffusion tensor imaging, thus proving to be
beneficial to fiber tractography and finer bundle analysis [7].

Several methods have been proposed in the literature to
enhance the spatial resolution of DWI. During the acquisition
stage, long acquisition times remain a primary obstacle pre-
venting the method from being of real interest clinically. For
example, Miller et al. [8] implemented five days of scanning to
obtain postmortem high-resolution DWI with high SNR. In
order to avoid the long scanning times, superresolution (SR)
acquisition emerged as an effective technology, initially pro-
posed for MRI, but soon adapted to DWI. Subpixel shifting in
the in-plane dimension was proposed to obtain multiple low-
resolution images for reconstruction into higher resolution
images [9]. Anisotropic scanning was another strategy used
to obtain low-resolution images for reconstruction. Scherrer
et al. [10] employed a maximum of a posteriori estima-
tion from anisotropic orthogonal acquisition to reconstruct
isotropic high-resolution DWT images.
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Compared with the SR acquisition implemented in spe-
cific scanning protocols, the SR algorithm in the postprocess-
ing stage has been involved with the scene image SR recon-
struction. This method category is independent of acquisition
protocol and was previously implemented on MRI. The most
intuitive methods for increasing resolution are interpolation
methods, such as bicubic and B-spline interpolation [11].
These methods estimate the new voxels according to some
smoothness assumptions which are not valid in inhomo-
geneous areas. Hence, interpolation methods usually result
in blurred edges and artifacts in lines. Nowadays, advanced
superresolution algorithms for scene images have been pro-
posed for MRI and the main idea is reconstructing high-
resolution information from the image content. Manjén et al.
[12] used a nonlocal estimator to reconstruct high-resolution
MRI using a single low-resolution dataset. Rousseau [13]
involved multimodality MRI to improve the SR quality.
Coupé et al. [7] implemented a nonlocal estimator in DWI
and also incorporated b, information to enhance the recon-
struction results. Sparse representation, a recent trend in
signal and image processing, has also been effectively imple-
mented in MRI. Rueda et al. [14] reconstructed single MRI
datasets based on prior knowledge with a pretrained over-
complete dictionary. Trinh et al. [15] extended the sparse
representation with nonnegative expressions in order to
remove noise and superresolve the two sets together.

Most of the currently used SR methods are based on the
structure MRI modality and, when applied to DWI, joint
information should be considered for better reconstruction
[16]. Joint information comes from the redundancy acquired
from adjacent scanning directions. This extra information is
beneficial for enhancing the spatial resolution of DWI. Single
value decomposition (SVD) plays a central role in reducing
high-dimensional data to lower-dimensional data and is a
classical method involved in inverse problems such as denois-
ing [17] and restoration [18]. Recently, high-order single value
decomposition (HOSVD) was used to generalize the SVD
of a matrix into a high-order matrix and offered a simple
yet elegant method for handling similar patches [19]. Addi-
tionally, the HOSVD basis was adapted from image content
and may achieve a more sparse representation than the fixed
basis. In this paper, we propose a novel SR method for DWI
datasets using HOSVD. Similar to the nonlocal patch-based
SR approaches successfully implemented on both MRI and
DWI [7, 12, 13], HOSVD was used to construct the regular-
ization framework in the proposed method. The merit of the
HOSVD SR method stems from the adaptive HOSVD basis
which results in a more accurate reconstruction. Also, the
HOSVD is only implemented over similar patches in a stack,
which effectively decreases the computational complexity
simultaneously. This is especially useful for DWI, since the
involvement of joint information from adjacent directions in
DWI datasets dramatically increases the computation burden
[16].

The remainder of this paper is organized as follows: we
first describe the proposed method in detail and then apply
it to both synthetic and in vivo DWI datasets for experi-
mental evaluation. Experimental results and computational

Computational and Mathematical Methods in Medicine

efficiency are demonstrated in Section 4 and concluding
remarks are given in Section 5.

2. Methods

Image SR leads to an ill-posed inverse problem which is
related to the LR image y and HR image x; the general model
can be expressed as follows:

y = DHXx +n, 1)

where n represents acquisition noise, D represents the dec-
imator operator, and H represents the degradation function
(7,12, 13].

Based on this model, the SR image can be estimated by
minimizing a least-square cost function as follows:

X = argmin Iy - DHXH2 . (2)

For such inverse problems, a regularization term should
be added to stabilize the convergence; thus, the HR image
x can be estimated from the LR observation y using the
following equation:

X =arg mxin {"y - DHX" + AR (X)} 5 (3)

where R(x) is the regularization term, |y — DHx]|| is a fidelity
term, and A is a balancing parameter. As demonstrated by
Coupé et al. [7], nonlocal patches methods can be an efficient
way to define the regularization term. Instead of using a
nonlocal mean estimator, we propose the implementation of
a high-order SVD to be used as the estimator in this study,
owing to its simple application and promising performance
[19].

The HOSVD estimator clusters similar patches into a
stack, in a manner similar to other patch-based methods [7,
12], and then performs an HOSVD transformation to obtain
the HOSVD basis and coeflicients. After the truncation of the
coeflicients, the patches are then reconstructed by an inverse
HOSVD transform.

With this in mind, the regularization term for the super-
resolution process in (3) can be defined as follows:

R(x) = Z 1% (i) = ¥arosvp (X (@), (4)

where yy;osyp is the HOSVD base estimator.

Given an n x n patch P; centered in i, we define K such
similar patches (including P;) as {P,}, where 1 < n < K, and
the K — 1 similar patches are obtained as follows.

Let us denote {P,} as the stack Z € L™, the HOSVD
of the stack can then be defined as [20]

L=5x,UYx, U?xu®, (5)

where S is the set of coefficient matrices for a three-order
tensor with p X p x K, x; stands for the jth mode tensor

product defined in [20], and U e 1™ U® e L™ and
U® e LXK are orthonormal unitary matrices.
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After applying the HOSVD transform, the patches can be
estimated by nullifying the coeflicients under the assumption
that the coeflicients of the clean image have a sparse distri-
bution. As indicated in [19], the coefficients can be truncated
using hard thresholding as follows:

$'=H,(S), (6)

where H_ denotes the hard threshold defined by v =

04/21og(p?K) for the stack with K patches of size n x n. As

noted in [20], the coefficients in tensor S are not necessarily
positive and the hard thresholding is defined as the absolute
value of the coeflicient array:

S; if abs(S;) >t
H, (S) = 7)
0 if abs(S;) <1,

where S; denotes the ith element of tensor S.

After truncation, the stack Z is reconstructed using an
inverting transform with truncated coeflicients to obtain the
final HOSVD estimator yyogyp:

WHOSVD = SI Xl U(l) Xz U(Z) X3 U(3). (8)

Since the DWI datasets are three-dimensional, the above
method should be extended to include fourth-order HOSVD
transforms for stacks with 3D similarity patches. Besides this,

the threshold should be modified as 7 = 04/2log(p>K) for a

stack of sizen x n x n x K.

In [I2], a mean consistency correction followed the
estimator to ensure coherence with the physical acquisition
model. This was implemented in the fidelity term:

L
Y () - %ZX (i()=0, VpeY. 9)
i=1

This was done for the entirety of location p in the LR
dataset while subsampling consistency was imposed on the
reconstructed patches. Finally, the iteration process is sum-
marized by (8) and (9) and is applied until convergence:

2 (1) = Yaosvp (Xt (i)) ,
(10)
itﬂ — itﬂ NN (DHXHI _ Y) ,

where NN is the nearest neighbor interpolation and ¢ is the
iteration number.

In order to further improve the SR performance, the
proposed HOSVD SR method can be augmented using joint
information from adjacent directions in the DW1I dataset [16].
For each patch P;, the corresponding stack Z was constructed
with K similar patches which were determined as follows: the
distance threshold selected all patches for which |P; — P, || <
7, was chosen as 7, = 30°n’, where o is the variance of
the noise. This threshold is balanced between the estimation
accuracy and the computational speed as indicated in [19].
The joint information was introduced by enlarging the search

window into the M adjacent DWI datasets, where M is
defined as M = 2m + 1 and m denotes the m directions
before and after it. In this paper, the HOSVD superresolution
method which uses joint information in multiple directions
is referred to as HOSVD-M.

3. Experiments

In order to quantitatively evaluate the quality of the recon-
struction, B-spline interpolation, which has been introduced
for DWI resolution enhancement in the literature [21, 22], is
used for comparison. In addition to this, a nonlocal approach
for image SR [12] is also involved as an effective nonlocal
patch-based SR method for comparison purposes. In this
section, both synthetic and in vivo datasets were implemented
for evaluation. The patches size n was empirically set to 5 as
suggested in [23], which was for denoising purposes pri-
marily and also demonstrated robust results in this work.
The balance parameter A was set to 0.01 in all experiments.
Since a sensitivity analysis for this parameter showed that the
values between 0.001 and 0.2 only generated less than 0.1dB
variations of the PSNR, this means that the reconstruction
has little dependence of this parameter which was also
observed in the literature [14].

The simulated dataset without noise was chosen as
ground truth, which consists of the 3D structure field pre-
sented at the 2012 HARDI Reconstruction Challenge [24]
and occupies a 16 x 16 x 5 volume, mimicking a realistic 3D
tract configuration. As shown in Figure 1(a), this dataset is
comprised of five different fiber bundles which give rise to the
nonplanar configurations of bending, crossing, and kissing
tracts. All fiber tracts were characterized with a fractional
anisotropy between 0.75 and 0.90. To better explore the
proposed method, this synthetic dataset was also corrupted
by Rician noise (SNR = 30) as demonstrated in Figure 1(e).
Both the original dataset and the noisy set were downsampled
by factor 2 using nearest neighbor interpolation along each
axis. Afterwards, the LR datasets were superresolved using
the B-spline method, the nonlocal method, and the proposed
method, respectively. In addition to the visual comparison
demonstrated in Figure 1, the angular accuracy was also
measured for quantitative evaluation purposes [24]. The
angular accuracy in the orientation of the estimated fiber
compartments was assessed by medians of the average error
(in degrees) between the estimated fiber direction and the
true direction present in each voxel:

— 180
0= 7 arccos (|dtrue : destimated') > (11)

where the unitary vectors d,;,. and dg;naeq are a true fiber
population in the voxel and the closest of the estimated
directions. For further analysis, the average error in all
voxels was calculated and demonstrated in box-and-whisker
diagrams. The upper and lower edges of the boxes are the
75 and 25 percentile, respectively; the smallest and biggest
observations are the two ends of the whisker. The mean and
median are demonstrated using red dot and line, and for each
reconstruction dataset, 2% of the worst results were selected
as outliers to eliminate the anomaly results.
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FIGURE 1: Principle eigenvectors for the tensor model applied to a synthetic phantom. (a) The original dataset, the phantom datasets
reconstructed using (b) B-splines, (c) the nonlocal method, (d) the proposed HOSVD, and (e) the proposed HOSVD-M. (f) The noisy
phantom (SNR = 30) and the phantom dataset reconstructed using (g) B-splines, (h) the nonlocal method, (i) the proposed HOSVD, and (j)

the proposed HOSVD-M.

The in vivo DWI dataset was acquired using a 7T Philips
Achieva whole body scanner (Philips Healthcare, Cleveland,
OH) equipped with a volume head coil for transmission and
32 channels. A DW dual spin-echo, SENSE accelerated msh-
EPI was used to acquire the DW1 data (b-value: 700 s/mm?; 15
diffusion directions), FOV = 210 x 30 x 21 mm?>, matrix size =
300 x 300 with 15 slices, and a spatial resolution of 0.7 x
0.7 x 2mm’. In order to validate the proposed approach
both quantitatively and qualitatively, a gold standard image
was constructed based on the in vivo HR DWI dataset. This
was calculated by averaging 10 acquisitions of high-resolution
DW images in the image space (0.7 x 0.7 x 2 mm?). LR images
were then used in the experiment and were simulated by
downsampling the gold standard by factor 2 using nearest
neighbor interpolation along each axis (i.e., [2 2 2]), which
resulted in simulated LR images of size 1.4 x 1.4 x 4 mm”.

In order to quantitatively evaluate the superresolved DWI
dataset, two objective measurement matrices, namely, the
peak signal-to-noise ratio (PSNR) and structural similarity
(SSIM) [25], were used. The PSNR measures the extent to
which noise has been suppressed and SSIM measures the
structural and perceptual similarities between the original
and reconstructed images:

(2u.y) (204 + 1)

(y§+y§+cl)+(0§+a§+cz)’

SSIM (x, y) = (12)

where 4, and p, are the mean values of images x and y.
The terms o, and o), are the standard deviation of x and
¥, respectively, o, is the covariance between them, and the
constants ¢; and ¢, are chosen as suggested [25].

Tensor estimation of the in vivo DWI dataset was evalu-
ated quantitatively between the superresolved dataset and the

gold standard. First, the diffusion tensor field and principal
eigenvectors were computed using CAMINO [26] and are
demonstrated in Figure 1; Figure 2 contains the mean angular
error estimated by (11). The fractional anisotropy (FA) map
and colormap of the estimated DTI were calculated and are
shown for comparison. Finally, the primary direction of the
tensor is also demonstrated for visual comparison.

4. Results

Figure 1 illustrates the principle eigenvector for the tensor
model in the synthetic phantom and the results reconstructed
using B-spline interpolation, nonlocal upsampling, the pro-
posed HOSVD, and the proposed HOSVD-M. It is evident
from the results in the figure that the superresolved meth-
ods dramatically outperformed the interpolation methods.
The proposed method achieved the best results, by visual
inspection, for both noisy and no-noise configurations. This
is likely due to the adaptive HOSVD bases derived from
the stacked patches, which are more suitable for reconstruc-
tion. Quantitative comparisons were provided in Figure 2
for more comprehensive evaluation. The expected inability
of reconstruction using interpolation method was clearly

reflected as the highest 6 value in both original and noisy
phantom datasets. Meanwhile, the proposed HOSVD and
HOSVD method achieved the best reconstruction quality

with the lowest 0 value and remarkable stability. It can be
seen in Figure 2(a), in the original dataset, the proposed two
HOSVD methods achieved narrower angle error distribution
compared with other methods. Besides this, in the noisy
dataset (Figure 2(b)), the proposed HOSVD-M achieved
lower mean and median results compared with the NLM
method. Moreover, both the HOSVD methods demonstrated
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FIGURE 2: The box-and-whisker diagrams of the distribution of the angular accuracy 6. In each box, the edges of the box represent the 25th
and 75th percentiles, while the mean and median are reported as red dot and line, respectively. The whiskers extend to the smallest and largest
observation in the data, with the 2% of the worst results considered as outliers individually plotted as blue dots.
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FIGURE 3: PSNR and SSIM estimation between the gold standard and images reconstructed from a simulated LR image. (a) Plots showing the
PSNR for the compared methods. (b) Plots showing the SSIM for the compared methods.

plausible stability with significantly less outliers than the
NLM method.

The reconstructed results for in vivo DWI data are
demonstrated both quantitatively and qualitatively in Figures
3 and 4, respectively. Figure 3 displays the PSNR and SSIM
for the reconstructed DWT dataset using the above methods.
As indicated previously, the patch-based SR methods obvi-
ously outperformed the interpolation methods. The proposed
HOSVD methods outperformed the nonlocal upsampling
method in most of the diffusion directions and the HOSVD-
M method achieved the best results in most of them. Figure 4
shows a visual comparison of the reconstructed DWI images.
The interpolated results (Figure 4(b)) were the blurriest.

Images reconstructed using the proposed method were the
most similar to the original images. The enlarged region
(Figure 4(1)) demonstrates that the proposed HOSVD clearly
reconstructed the spatial features of the cracked area as indi-
cated in the red arrow, as compared with the same area recon-
structed by other methods, in which the edges are blurry
and difficult to distinguish.

Figures 5 and 6 demonstrate the tensor estimation results
using the superresolved DWI datasets. Figure 5 shows the FA
map for the estimated DTI datasets. The proposed HOSVD-
M method achieved the best results in the enlarged areas and
retained most of the structure and tissue from the original
images. It can be seen more clearly that, in the residual map,
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FIGURE 4: Diffusion-weighted image reconstruction tests obtained using different methods. (a) The gold standard. (b) The downsampled
dataset. Results of (c) B-spline reconstruction, (d) nonlocal method, (e) the proposed HOSVD, and (f) the proposed HOSVD-M. Enlarged
details of the (g) gold standard, (h) downsampled dataset, (i) B-spline reconstruction, (j) nonlocal method, (k) the proposed HOSVD, and
(1) the proposed HOSVD-M.

(b) (o) (d)

® (®

k) M (m) (n)

FIGURE 5: FA maps estimated using the gold standard and several other methods. (a) FA maps estimated using the gold standard; FA maps
obtained for the reconstructed dataset using the (b) B-spline, (c) nonlocal method, (d) the proposed HOSVD, and (e) the proposed HOSVD-
M. Enlarged details of the (f) golden standard, (g) B-spline reconstruction, (h) nonlocal method, (i) the proposed HOSVD, and (j) the
proposed HOSVD-M. The red ROIs indicate a detailed reconstruction. Visually, the FA map obtained using the proposed method is closer to
the FA of the gold standard. FA residual of the (k) B-spline, (1) nonlocal method, (m) the proposed HOSVD, and (n) the proposed HOSVD-M.
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FIGURE 6: (a) FA colormap for the gold standard; FA colormaps for the reconstructed dataset using (b) B-spline, (c) nonlocal method, (d) the

proposed HOSVD, and (e) the proposed HOSVD-M.
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F1Gure 7: Diffusion tensor estimations on a central slice, centered and zoomed on the corpus callosum. (a) Tensors estimated on the gold
standard; the red ROIs indicate a detailed reconstruction. Tensors estimated on the reconstructed dataset using (b) B-spline, the (c) nonlocal
method, (d) the proposed HOSVD, and (e) the proposed HOSVD-M. The blue stick indicates the main eigenvector of the diffusion tensor.

the result of HOSVD-M remained less in structure informa-
tion compared with others. The fiber direction indicated in
the FA colormap is shown in Figure 6. It can be observed
in Figure 6(e) that the proposed HOSVD-M obtained robust
direction reconstruction results. For example, in the corpus
callosum bundle, the color of most voxels remained the
same. This coincides with Figure 7(f) in which the primary
eigenvectors for the voxels in the corpus callosum maintain
the same direction.

In addition, we applied our method directly to the in
vivo golden standard DWI dataset. Figure 8 shows the results

of the reconstruction using different method. As it can be
observed, the proposed method achieved plausible recon-
struction as well. As pointed out by red arrow, the HOSVD-
M preserved the fine detail and reconstructed explicit crack
boundary which may be beneficial for further applications.

5. Discussion and Conclusion

In this work, we investigated a novel patch-based single image
superresolution method to increase the spatial resolution of
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FI1GURE 8: Diffusion-weighted image reconstruction from in vivo golden standard dataset. The resolution was thus increased from 0.7 x 0.7 x
2mm” to 0.35 x 0.35 x I mm”. (a) The gold standard. Results of (b) B-spline reconstruction, (c) nonlocal method, (d) the proposed HOSVD,

and (e) the proposed HOSVD-M.

DWTI datasets. The proposed method introduced HOSVD
into the SR framework as a regularization term to achieve
better image reconstruction and more efficient computation.
Joint information from adjacent DWI directions was also
involved to make further improvements. Both synthetic and
in vivo DWI datasets were implemented for evaluation of the
DWTI reconstruction and DTT estimation.

Compared with conventional interpolation and patch-
based SR methods, the improvements made by the proposed
HOSVD method can be contributed to two features. The first
is adapted HOSVD basis acquired from a stack of similar
patches. This technique obtained bases adaptively, according
to image content, and achieved a more effective reconstruc-
tion result. The second feature is the introduction of joint
information from adjacent directions in the DWT datasets.
As noted in [16], the adjacent directions contain a significant
amount of image redundancy and the encapsulation of both
the processed and adjacent directions effectively benefits the
reconstruction.

Computational complexity is another important issue for
patch-based methods as well as DWI processing. All exper-
iments were performed on a PC running MATLAB R2013b
in Windows 7, with an Intel(R) core i7-4600U processor
and 8 GB of RAM. For a typical DWI dataset with a matrix
size of 128 x 128, 60 slices, and 32 directions, the runtime
for a single direction was approximately 8 minutes for
nonlocal upsampling, 3 minutes for the proposed HOSVD,
and 5 minutes for the proposed HOSVD-M. This increase
in speed is likely due to an inherent dimensional decreas-
ing property of the SVD as well as HOSVD. Specifically,
compared with nonlocal methods which average every patch
to estimate the reconstructed patches, the proposed method
only manipulates a portion of patches with high similarity.
This induced a faster convergence speed. We also expect
that the implementation of parallel computing on graphic
processing units could further speed up the reconstruction.
This will require further research in future studies.

In this paper, we proposed a patch-based single image
superresolution method which involved applying a high-
order SVD to a DWI dataset. The adaptive HOSVD bases
acquired from the image ensured a more accurate image
reconstruction and manipulation of similar patch stacks led

to a reduction in computational complexity. Quantitative and
qualitative comparisons of the traditional interpolation and
nonlocal patch-based methods demonstrate the competitive
results obtained for both DWI reconstruction and DTI
estimation.
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