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Abstract: Non-viral vector-mediated transfection is a core technique for in vitro screening of
oligonucleotides. Despite the growing interests in the development of oliogonucleotide-based drug
molecules in recent years, a comprehensive comparison of the transfection efficacy of commonly
used commercial transfection reagents has not been reported. In this study, five commonly used
transfection reagents, including Lipofectamine 3000, Lipofectamine 2000, Fugene, RNAiMAX and
Lipofectin, were comprehensively analyzed in ten cell lines using a fluorescence imaging-based
transfection assay. Although the transfection efficacy and toxicity of transfection reagents varied
depending on cell types, the toxicity of transfection reagents generally displayed a positive correlation
with their transfection efficacy. According to our results, Lipofectamine 3000, Fugene and RNAiMAX
showed high transfection efficacy, however, RNAiMAX may be a better option for majority of cells
when lower toxicity is desired. The transfection efficacy of Lipofectamine 2000 was compromised by
its high toxicity, which may adversely affect its application in most cells. We firmly believe that our
findings may contribute to the future In vitro delivery and screening of single-stranded therapeutic
oligonucleotides such as antisense oligonucleotides, antimiRs, and DNAzymes.

Keywords: single-stranded oligonucleotide; transfection reagent; cationic lipid; gene transfection;
cytotoxicity

1. Introduction

Nucleic acid-based therapeutics have received significant attention in recent years for the
treatment of several diseases, however, the delivery of therapeutic nucleic acids still remain a major
challenge [1]. Although an effective in vivo transfection strategy for single-stranded oligonucleotide
(SSO) molecules such as antisense oligonucleotide (ASO), antimiR and DNAzyme is not available, as a
standard practice, various transfection reagents have been employed for their in vitro screening [2,3].
Double stranded plasmid DNAs can be transfected effectively by using high efficient viral vectors, but,
non-viral vectors are generally used for screening single-stranded oligonucleotide in vitro. However,
despite the pivotal role of non-viral transfection reagents playing in SSO screening, a comprehensive
comparison of the transfection efficacy of current commercially available transfection reagents has
not been reported, although they are generally compatible with different types of genetic materials,
including ASO, siRNA, antimiR, and plasmids. Previous comparative studies of transfection reagents
have mainly focused on plasmid DNA constructs [4–6]. The transfection efficiency of non-viral
transfection reagents is not only associated with cell type, cell and media conditions, but also
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the type of nucleic acid molecule [7,8]. Herein, we report the transfection efficiency and toxicity
comparison of commonly used commercial transfection reagents for in vitro delivery of SSOs in ten
established cell lines, to assist researchers working in this rapidly progressing field of oligonucleotide
therapeutic development.

2. Results

2.1. Method to Measure the Transfection Efficacy of SSO

Ideally the efficacy of a transfection reagent for SSO transfection should be measured by functional
assays such as western blotting or qPCR to test the gene regulation effect of SSO at the RNA or protein
levels. To facilitate this comprehensive comparison, we adopted a simple and effective approach to
investigate the transfection efficacy of different transfection reagents by fluorescence imaging and
quantifying the cellular fluorescence of a FAM-labelled SSO sequence. This is based on the hypothesis
that, the chance of SSO to meet their intracellular targets in cytoplasm/nucleus would depend mainly
on the amount of oligonucleotide delivered to cells [9]. To confirm this, first we tested the transfection
efficacy of a 24-mer DNA-SSO (miR21 targeting DNAzyme) in three different cell lines including
Huh-7 cells, U87MG cells, MDA-MB-231 cells, by incubating with different transfection reagents in
line with the manufacturer’s recommendations. After 24 h, total miRNAs from different treatments
were collected, followed by performing a TaqMan qPCR assay to measure the expression of the miR21
target. As demonstrated in Figure 1, the imaging assay results showed same trend with the functional
assay, with correlation coefficients of 0.8937, 0.9126, 0.8237 for Huh-7, U87MG and MDA-MB-231
cells, respectively.
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Figure 1. Comparison of two methods for efficacy assay of different transfection reagents using SSO.
This assay was conducted by two independent experiments as indicated. The data from both tests
were normalized by setting the highest transfection data as 100%. L3K: Lipofectamine 3000, L2K:
Lipofectamine 2000.

2.2. Evaluation of Transfection Reagent (TR)/SSO Ratio

Before conducting the transfection analysis in the selected cell lines, the transfection conditions
were evaluated first with MDA-MB-231 cells by using 3 µL transfection reagent/500 µL medium in
24-well plates (the amount of transfection reagent was within the manufacturer’s suggested dose
range for all reagents under test) while varying the amounts of the SSO sequence at different TR/SSO
ratios in order to form the complexes. As demonstrated in Figure 2, the variation of SSO generally
did not show a significant difference in the transfection efficiency, but Lipofectamine 3000, RNAiMAX
and Fugene displayed slight differences. This result is consistent with a previous comparison study
performed on plasmid DNA [4]. Considering TR/SSO ratio of 2:1 did not show significant differences
among the treatment groups for all six transfection reagents, this ratio (3 µL TR plus 1.5 µg ASO/500 µL
medium in a 24-well plate) was used in all subsequent transfection studies.
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with three different amounts of SSO. L3K: Lipofectamine 3000, L2K: Lipofectamine 2000. * p < 0.01.

2.3. Comparative Analysis of the Transfection Efficacy and Cytotoxicity in Ten Cells

2.3.1. Huh-7 Liver Cancer Cells

Out of the five transfection systems tested, Fugene and RNAiMAX demonstrated the highest
relative transfection efficacy in Huh-7 cells (55.42% and 46.12% respectively) compared to other tested
reagents (Figure 3). Lipofectamine 3000 showed the third highest transfection efficacy (37.02%).
Lipofectamine 2000 showed the lowest transfection efficacy, with 8.91% relative transfection efficacy,
approximately 6 folds lower than RNAiMAX. However, the highest transfection efficacy of Fugene
was compromised by high cytotoxicity, with 40.74% cell viability as measured by MTT assay, similar
with that of Lipofectamine 3000 and Lipofectamine 2000. Lipofectin and RNAiMAX showed lower
cytotoxicity to Huh-7 cells, with 75.34% and 67.25% cell viability respectively. If the toxicity is an
important factor to consider, RNAiMAX would be a better reagent for Huh-7 cells, otherwise, Fugene
performed better in terms of transfection.
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2.3.2. SHSY5Y Neuroblastoma Cells

As shown in Figure 4, for SHSY5Y cells, Lipofectamine 3000 and RNAiMAX showed better
transfection efficacy (47.17% and 37.26%, respectively). Lipofectin (26.40%) displayed similar
transfection efficacy to Fugene (24.07%) and Lipofectamine 2000 (22.21%). As for cytotoxicity, this cell
line displayed a better resistance to most reagents, except Lipofectamine 3000 (61.01% viability) and
Lipofectamine 2000 (59.14% viability). RNAiMAX displayed both good transfection efficacy and low
cytotoxicity on SHSY5Y cells, with the viability of 90.74%. Although Lipofectamine 3000 displayed the
highest transfection efficacy, its high cytotoxicity effect poses a concern for functional studies.
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2.3.3. HepG2 Liver Cancer Cells

Lipofectamine 3000, RNAiMAX and Fugene displayed similar transfection efficacy to HepG2 cells
(25.44%, 24.32%, and 32.50%, respectively, Figure 5). Although Lipofectin showed the lowest toxicity
to HepG2 cells (89.54% viability), it displayed the lowest transfection efficacy too (8.29%). Generally,
HepG2 cells displayed resistance to the toxicity of majority of the reagents tested, with Lipofectamine
3000 (70.59 % viability), being the most toxic reagent. For HepG2 cells, Fugene could be recommended
considering its high transfection efficacy and low cytotoxicity (82.64%).
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2.3.4. JU77 Lung Mesothelioma Cells

JU77 cells were relatively easy to transfect (Figure 6). Lipofectamine 3000 showed the highest
transfection efficacy (normalized as 100%) in this study, followed by Lipofectamine 2000 (90.21%),
but these two transfection reagents also displayed high cytotoxicity to JU77 cells (68.21% and 69.27%
viability). The transfection efficacies of RNAiMAX and Fugene were very similar, with medium high
efficacy of 57.86% and 55.12%. However, differing from the good safety profile displayed by RNAiMAX
(87.13% viability), Fugene showed the most toxic effect, with cell viability of 60.08%. Although the
treatment of Lipofectin was quite safe (86.90% viability), it did not show high transfection efficacy
(23.75%).
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2.3.5. HL60 Promyelocytic Leukemia Cells

As a type of suspension cell, HL60 cells displayed strong resistance to all the tested transfection
reagents. As shown in Figure 7, only Lipofectamine 3000 (8.93%) and Lipofectamine 2000 (7.89%)
displayed transfection at very low levels, and that was accompanied by high cytotoxicity, with 51.89%
and 46.21% cell viability for Lipofectamine 3000 and Lipofectamine 2000, respectively. Other reagents
did not demonstrate effective transfection to this cell line.
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2.3.6. Primary Muscle Myoblasts

Lipofectamine 3000, RNAiMAX, Fugene and Lipofectamine 2000 all displayed high transfection
efficacy (97.78%, 80.34%, 77.86% and 60.01%, respectively) to primary myoblast cells (Figure 8). Among
them, although RNAiMAX displayed the second highest transfection efficacy, and it had the best safety
profile, with 83.65% cell viability. Fugene was found to be the most toxic reagent for this cell line, with
a viability of 68.45%. Again, the good safety profile (89.92% viability) of Lipofectin was accompanied
by low transfection efficacy (22.33%). Therefore, for primary myoblast cells, Lipofectamine 3000 or
RNAiMAX could all be considered.
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2.3.7. HEK293 Embryonic Kidney Cells

For HEK293, Lipofectamine 3000, Fugene and RNAiMAX showed the highest transfection
efficacies (42.52%, 40.51%, and 25.60%, respectively) (Figure 9). However, unlike Fugene and
Lipofectamine 3000 that displayed strong toxicity to HEK293 cells (65.83% and 61.70% viability),
RNAiMAX showed the highest cell viability of 89.30%, followed by Lipofectin (87.29%). Lipofectamine
3000, Fugene and RNAiMAX could be used for screening SSO in HEK293 cells.
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2.3.8. MCF-7 Breast Cancer Cells

As for MCF-7 cells (Figure 10), Lipofectamine 3000 demonstrated the highest transfection efficacy
(58.13%), followed by Lipofectamine 2000 (33.29), RNAiMAX (31.92%) and Fugene (27.80). Although
Lipofectin showed the best safety profile with a cell viability of 92.49%, it did not show prominent
transfection efficacy (6.62%). Generally, MCF-7 cells are resistant to transfection reagents mediated
cell damage, and only Lipofectamine 3000 treatment (62% cell viability) displayed a lower than 80%
cell viability.
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2.3.9. MDA-MB-231 Breast Cancer Cells

Similar to MCF-7 cells, Lipofectamine 3000, RNAiMAX and Fugene showed the highest
transfection efficacy in MDA-MB-231 cells, with 59.32%, 55.49% and 43.92% respectively (Figure 11).
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While Lipofectin (23.73%) did not perform well, Lipofectamine 2000 (33.08%) displayed a medium
high transfection efficacy. Again, similar to MCF-7 cells, MDA-MB-231 displayed low sensitivity to
transfection reagents mediated cell damage, with Lipofectamine 3000 (78.37% cell viability) displaying
the lowest cell viability.

2.3.10. U87MG Brain Cancer Cells

Generally, U87MG is vulnerable to majority of the transfection reagents. As shown in Figure 12,
the highest transfection efficacy of 58.21% was recorded for Lipofectamine 3000. Only Lipofectin
(38.64% transfection efficacy) recorded a higher than 80% cell viability. Therefore, both Lipofectamine
3000 and Lipofectin are suggested for U87MG cells.
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2.4. High Transfection Efficacy Generally Accompanied by High Cytotoxicity

According to the statistical analysis displayed in Figure 13, it appears that the efficacy of different
transfection reagents does display a positive correlation with their cytotoxicity (higher toxicity being
accompanied by higher transfection efficacy). According to Pearson’s product-moment correlation
calculation, up to 0.7588 correlation coefficient between relative cytotoxicity and transfection efficacy
was recorded. Although Lipofectamine 3000 demonstrated the highest transfection efficacies in most
cell types, it also shared the highest overall cytoxicity with Lipofectamine 2000. And as demonstrated,
Lipofectamine 2000 got up to 90.21% and 62.02% transfection efficacy in JU77 and Primary myoblast
cells, respectively, but the average transfection efficacy was only 25.13%, half of that of Lipofectamine
3000. With a relatively low cytotoxicity of 20%, RNAiMAX displayed a relatively high transfection
efficacy. On the other side, Fugene recorded the second highest transfection efficacy (35.23% in average),
but at the same time displayed high cytotoxicity (34.78% toxicity), similar to that of Lipofectamine
3000 (37.23%) and Lipofectamine 2000 (38.97%).
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2.5. SSO Increases the Cytotoxicity of Transfection Reagents

Addition of SSO-transfection reagents complex generally increased the cytotoxicity of transfection
reagents compared with the naked transfection reagents, as demonstrated in Figure 14. Among the
five reagents tested, only Lipofectin did not display significant difference in terms of cytotoxicity. Since
the SSO sequence used in this project did not match any human gene sequence, the cause of enhanced
cytotoxicity was unlikely by the SSO itself. This result suggests that the interaction of SSO sequences
and transfection reagents could increase the toxicity of the tested transfection reagents.
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2.6. Transfection Efficacy and Toxicity of Lipofectamine 3000 both Depend on the Addition of P3000

As demonstrated by Figure 15, both the transfection efficacy and cytotoxicity of Lipofectamine
3000 are dependent on the addition of P3000 component. For example, in HEK293 cells, although the
addition of P3000 doubled the transfection efficacy from 19.76% to 42.52%, the toxicity was dramatically
increased, with the cell viability decreasing from 95.31% to 61.70%. In general, except in MCF-7 cells,
which showed a 45.02% transfection efficacy, similar to the group of Lipofectamine 3000 & P3000
treatment, the treatment of Lipofectamine 3000 alone recorded low transfection efficacy in most
cases, with minor transfection efficacy recorded in HL60 (2.03%) and Huh-7 (4.45%) cells. Therefore,
based on this observation low cytotoxicity, it is not suggested to use Lipofectamine 3000 alone for
ASO transfection.
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3. Discussion

Previously reported two comparison studies of transfection reagents focused mainly on
plasmid DNA delivery by choosing the transfection reagents according to the types of chemical
formulations [5,6]. For example, Yamano et al. used six reagents with different formulations including
lipo-polymeric (Arrest-In), cationic polymer (ExpressFect), lipid with other components (Fugene),
linear polyethylenimine (jetPEI), cationic lipid (Lipofectamine 2000), and activated-dendrimer
(SuperFect) [6]. However, it is hard to compare different type of transfection formulation by analyzing
data derived from just one representative from each of those formulations. In this study, instead
of analysing different types of transfection reagents, as displays in the Supplementary Figure S1,
we focused directly on the most commonly used transfection reagents used for SSO transfection in
recently published literature, i.e., Lipofectamine 3000, Lipofectamine 2000, RNAiMAX, Lipofectin,
and Fugene, to provide practical references for researchers in the field of oligonucleotide therapeutic
development. To facilitate this study, we introduced a simple but efficient approach to monitor the
efficacy of transfection reagents by fluorescence imaging and quantifying the cellular fluorescence
of a FAM-labelled SSO sequence. This is based on the hypothesis that, the chance of SSO to meet
their intracellular target in the cytoplasm/nucleus depends mainly on the amount of oligonucleotide
delivered to cells. This hypothesis was confirmed by our initial functional assay by using a 24-mer
DNAzyme designed to target and inhibit miR21 in Huh-7 cells. The non-specifically bound cell
surface oligonucleotides will not contribute to any functional transfection. Methods being able
to quench cell surface signals should be used to eliminate the background noise caused by such
non-specific binding. During our preparative tests, it was confirmed via a trypan blue method [10]
that differing from incubating cells with free fluorescence-labelled oligonucleotides, incubating cells
with oligonucleotide/liposome complex (with ratio of 1.5 µg/3 µL transfection reagent in 500 µL) does
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not display noticeable cell surface fluorescence, As shown in Figure 1, without using fluorescence
quenching methods, the data derived from the imaging assay highly correlated with the functional
analysis of miR21 expression. As a type of negatively charged oligonucleotide with molecular
weight of approximately 6000 to 10,000 Da, SSOs are generally unable to cross the cell membrane
effectively [11]. Current chemical transfection reagents, whether it is lipid based or polymer-based
formulation, the TR/nucleic acid complexes are typically internalized into cells by endocytosis [12].
After endocytosis, the encapsulated nucleic acid needs to escape from the endosome and release
into the cytoplasm to meet their mRNA or miRNA targets or pre-mRNA targets in nucleus. Because
oligonucleotides are able to continuously shuttle between the nucleus and the cytoplasm through
passive diffusion and active transport [9], once SSOs are internalised, escaping from endosomes
becomes a rate limiting step. To this day, although the detailed mechanism of endosome escape is still
unclear [3,13], it is conceivable to assume that for the same cell type, the amount of SSOs functionally
react with their cytoplasm/nucleus targets should closely correlate with the amount of internalised SSO
molecules. Therefore, conjugating SSO with fluorescent dyes and measuring the relative fluorescence
intensity provides a simple way to monitor the efficacy of transfection reagents studied.

According to our experiment, Lipofectamine 3000 and Fugene showed high levels of transfection
efficacies in most cell types, but relatively high cytotoxicity poses an important concern when such
reagents are considered. Consistent with previous studies [14,15], RNAiMAX, a reagent designed
for double stranded siRNA delivery, performed quite well for SSO transfection. As demonstrated,
the relatively high transfection efficacy of RNAiMAX accompanied by a relatively low toxicity. On the
other hand, Lipofectin did not look suitable for high efficiency SSO transfection in most cell types.
Importantly, despite Lipofectamine 2000 being widely used in many published SSO researches,
and obtained acceptable transfection efficacy, it displayed the highest toxicity in most cell types
tested. The transfection efficacy and toxicity of transfection reagents are highly cell-dependent,
and Lipofectamine 3000 and Fugene showed the highest transfection efficacy in most cells, but if low
toxic transfection is required, RNAiMAX could be a potential option.

Cytotoxicity is one of the major concerns for transfection reagent selection, especially when
subsequent functional assays are scheduled. This is because the toxicity of transfection reagents could
nonspecifically activate/inactive certain genes and affect the experimental read-out [16]. Although
it has become a common practice to evaluate the toxicity of transfection reagents by conducting
parallel experiments using transfection reagents alone, in this study, we found that the toxicity of
empty reagents may not faithfully reflect the effect of the mixture of TR/SSO complexes, consistent
with a previous study [17]. As the SSO used in this study does not match with any human gene,
i.e., the SSO itself does not display any biological effect, suggesting that an increased cytotoxicity of
transfection reagents occurred after SSO complexation. Interestingly, differing from what was observed
in this work, several previous studies reported an attenuation of toxicity of the transfection reagents
through complexation with nucleic acid [18,19]. The reasons for the different observation between our
observation and these two publications need to be further studied, but it may due to: (1) difference
in the type of genetic material. Unlike the short SSO used in this paper, all of the three publications
were conducted with long double stranded plasmid DNAs; (2) Difference in transfection reagents
formulation. The cationic lipid, Lipofectamine 3000 comes with two components, Lipofectamine 3000
and P3000. As suggested by the manufacturer’s specification, to transfect cells with double stranded
siRNA, it is suggested not to add P3000 reagent. However, apart from siRNA transfection, addition
of P3000 component is recommended for DNA samples. However, Lipofectamine 3000 alone has
been used in a couple of transfection tests including plasmid and miR mimic [20]. For instance, in
a recent study, Bernard and colleagues achieved successful miR217 mimic transfected to HEK293
cells via Lipofectamine 3000 only treatment [20]. Similarly, in this study, we achieved an acceptable
transfection efficacy (18.76%) in the same type HEK293 cells via Lipofectamine 3000 only (omitting
P3000) treatment. Indeed, the single use of Lipofectamine 3000 represents a great advantage over the
combinational use of Lipofectamine 3000 and P3000 by reduced toxicity. As clearly demonstrated in
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Figure 15, in all the tested cell types, the addition of P3000 contributed to an increase in cytotoxicity
of Lipofectamine 3000. However, it appears that omitting P3000 is not a reliable method for SSO
delivery. Although the addition of P3000 did not show much difference in transfection efficacy in
MCF-7 cells, reduced transfection efficacy was observed in all other cell types when P3000 was omitted,
with the transfection efficacy nearly eliminated in HL-60 and Huh-7. Therefore, despite displaying low
cytotoxicity, Lipofectamine 3000 alone is generally not suitable for SSO transfection.

In summary, in this work, we comprehensively compared the transfection efficacy of commonly
used commercial transfection reagents. The findings will not only contribute to the future In vitro
screening of SSO, but also provide references for In vitro delivery of other types of genetic materials
such as plasmids and siRNA.

4. Materials and Methods

4.1. Transfection Reagents and SSO

RNAiMAX transfection reagent (13778030, Invitrogen, Waltham, MA, USA), Lipofectamine
3000 (L3000001, Invitrogen), FuGENE transfection reagent (E2311, Promega, Sydney, Australia),
Lipofectamine 2000 reagent (11668027, Invitrogen), Lipofectin reagent (18292011, Invitrogen) were
used in this study. To evaluate the efficacy of transfection reagents to SSO, a 5′ end FAM labelled 24-mer
scrambled ssDNA sequence (5′-FAM-CATCGATGGGAGCTCCGTGTCGTT-3′) was synthesized by
Integrated DNA Technologies (IDT, Singapore). According to the BLAST analysis, this sequence does
not match any sequence on human genome. The functional comparison assay used a miR21 targeting
DNAzyme (5′-CATCGATGGGAGCTCCGTGTCGTT-3′). U87MG (human glioblastoma cells), Huh-7
and Hep G2 (human hepatocellular carcinoma cells), HEK293 (human embryonic kidney cells), and
HL-60 (human leukemia cells) were purchased from Cell Bank Australia (Sydney, Australia). MCF-7
and MDA-MB-231 (human breast cancer cells) were purchased from ATCC, USA and kindly provided
by Assoc Prof. Stacey Edwards at the QIMR Berghofer Institute, Brisbane, Australia; SH-SY5Y (human
neuroblastoma cells) was kindly provided by Assoc. Prof. Bruno Meloni at the Perron Institute
for Neurological and Translational Science, Perth, Australia; Human primary myoblast was kindly
provided by Prof. Sue Fletcher and Prof. Steve Wilton at Molecular Therapy laboratory, Murdoch
University, Perth, Australia, and JU77 (human lung mesothelioma cells) was purchased from Cell Bank
Australia (Sydney, Australia) and kindly provided by Dr. Willem Lesterhuis, Harry Perkins Institute,
University of Western Australia, Perth, Australia).

4.2. Cell Culture

U87MG and Hep G2 cells were cultured in Eagle’s minimum essential media (EMEM;
ThermoFisher Scientific, Melbourne, Australia) supplemented with 10% FBS (F8192, Sigma, Sydney
Australia). Huh-7, HEK293, MDA-MB231, JU77 and MCF-7 cells were cultured in Dulbecco’s Modified
Eagle Media (12491-015, ThermoFisher) supplemented with 10% FBS. HL-60 was cultured in Roswell
Park Memorial Institute medium (11875119, ThermoFisher) supplemented with 10% FBS. SHSY5Y was
cultured in 45% EMEM supplemented with 10% FBS and 45% Ham’s F-10 (41550021, ThermoFisher).
All cells were incubated at 37 ◦C in a humidified incubator supplying 5% CO2/air.

4.3. SSO Transfection

Cells were plated on a 24-well plate at 500 µL/well at density of 5 × 104–10 × 104 cells/mL
(depending on cell conditions) in the indicated growth medium and propagated to 80% confluency at
the time of transfection. The SSO was mixed with different transfection reagents and the complexes
were prepared according to the manufacturer’s protocol. Solutions were combined, vortexed, and
incubated for the appropriate time (according to specification of different reagents) to allow formation
of complexes. In this study, 1 µg SSO was complexed with volume of 2 µL RNAiMAX, in the
Opti-MEM Reduced Serum Medium (22600050, Thermofisher). 1 µg SSO was complexed with



Molecules 2018, 23, 2564 13 of 15

2 µL of Lipofectamine 3000 [TR/DNA ratio (w/w) = 2:1] with 1.5 µL of P3000 as described in the
manufacturer’s protocol, in the Opti-MEM Reduced Serum Medium. 1 µg SSO was complexed with
2 µL of FuGENE HD [TR/SSO ratio (w/w) = 2:1] in the Opti-MEM Reduced Serum Medium. 1 µg SSO
was complexed with 2 µL of the Lipofectamine 2000 [TR/DNA ratio (w/w) = 2:1] in the Opti-MEM
Reduced Serum Medium; 1 µg SSO was complexed with 2 µL of the Lipofectin [TR/SSO ratio (w/w) =
2:1] in the Opti-MEM Reduced Serum Medium. After 24 h incubation, the cells were washed with PBS,
500 µL transfection/SSO mixture was added to each well and incubated with the cells for 24 h at 37 ◦C
in a humidified incubator supplying 5% CO2/air. All transfection assays were carried out in triplicate
simultaneously for all five transfection reagents and with no reagent group as a control.

4.4. Fluorescence Imaging

Twenty four hours after transfection using different transfection reagents and a FAM-tagged SSO
(5′-FAM-CATCGATGGGAGCTCCGTGTCGTT-3′), 1 µL of Hoechst 33342 solution (1 µg/mL) was
added to the plated cells and incubated for 10 min at 37 ◦C in a humidified incubator supplying
5% CO2/air. Media was aspirated and the wells were washed with 500 µL of 1× PBS a total
of three times. To measure the effect of the background noise caused by non-specific cell surface
binding of oligonucleotides, a fluorescence-quenching step was conducted according to our previous
publication [10]. Simply, the surface fluorescence was quenched with 0.04% Trypan Blue (T8154, Sigma)
for 3 min followed by thorough washing. Fluorescence microscopy was conducted using the Eclipse
TS100 microscope (Nikon Australia; Sydney, Australia). To make the fluorescence density of different
treatment groups comparable, the manual mode was used to image FAM labelled SSO, with a fixed 4 s
exposure time applied.

4.5. Relative Fluorescence Quantification

The quantification is conducted according to previously reported method [21]. Briefly, the
integrated density (Intden), which displays both the area and mean signal values was used to depict
the amount of transfected SSO. To compare the relative transfection efficacy of different transfection
reagents in different cells, the Intden data was then normalized by cell numbers, which is denoted by
the size area of Hochest33342 color (nucleic acid). Relative transfection efficacy = Intden (SSO)/Area

(cell nucleus). To facilitate comparison of efficacy of different reagents, the data were normalized by
setting the highest fluorescence data as 100%.

4.6. Cell Viability Assay (MTT)

Cytotoxicity of the six transfection reagents were evaluated by MTT assay. Cells (3.5 × 104

cells/mL) in 200 µL of indicated culture media were seeded in 96-well plates and incubated overnight.
Treatment with transfection/SSO mix was conducted 24 h prior to the viability assay using MTT reagent
using the same condition employed for transfection assay. Briefly, 5 mg/mL MTT reagent (M5655,
Sigma) in 1× PBS (20 µL/well) was added into the plates and incubated for 3 h. After incubation,
the medium was aspirated and dimethyl sulfoxide (150 µL/well) was added to stop the reaction.
The optical density was quantified in a FLUROstar Omega multi-detection microplate reader (BMG
Labtech, Offenburg, Germany) at 570 nm wavelength. The cell viability was calculated by comparing
the luminescent signal of treatment group to the signal obtained with non-transfected control cells
(setting as 100% viability). Each value represents the mean standard deviation from triplicates.

4.7. Taqman qPCR to Measure the Expression of miR21

Twenty four hours after transfection of a miR21 targeting DNAzyme (5′-CATCGATGGGAGCT
CCGTGTCGTT-3′) using the same condition with the transfection assay, the total RNA of different
treatments was harvested, and cDNA was prepared by TaqMan™ MicroRNA Reverse Transcription
Kit (4427975, ThermoFisher) according to the supplier’s specification. The q-PCR was preformed using
TaqMan Universal Master Mix (4440040, ThermoFisher) with RNU6B, RNU44, and RNU48 as internal
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controls. q-PCR was conducted using a C1000™ Thermal cycler, CFX96™ real-time system (BioRad,
Sydney, Australia) and programmed initially at 95 ◦C for 10min, 95 ◦C for 15 s, then 60 ◦C for 1 min
and repeated for a total of 40 cycles.

4.8. Statistical Analysis

All statistical analyses were performed using GraphPad Prism 3.03 (GraphPad Software, La
Jolla, CA, USA). An unpaired t test was used for comparisons between two experimental groups.
The relative transfection and cytotoxicity patterns of different transfection reagents were processed
by the R program using the ggplot 2 Package (MathSoft, Cambridge, MA, USA). Unless otherwise
indicated, all results were averaged from biological triplicates and values were reported as means ±
SEM. A p value of less than 0.01 was considered statistically significant.

Supplementary Materials: The supplementary materials are available online.
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