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Abstract At the origin of multicellularity, cells may have evolved aggregation in response to

predation, for functional specialisation or to allow large-scale integration of environmental cues.

These group-level properties emerged from the interactions between cells in a group, and

determined the selection pressures experienced by these cells. We investigate the evolution of

multicellularity with an evolutionary model where cells search for resources by chemotaxis in a

shallow, noisy gradient. Cells can evolve their adhesion to others in a periodically changing

environment, where a cell’s fitness solely depends on its distance from the gradient source. We

show that multicellular aggregates evolve because they perform chemotaxis more efficiently than

single cells. Only when the environment changes too frequently, a unicellular state evolves which

relies on cell dispersal. Both strategies prevent the invasion of the other through interference

competition, creating evolutionary bi-stability. Therefore, collective behaviour can be an emergent

selective driver for undifferentiated multicellularity.

Introduction
The evolution of multicellularity is a major transition in individuality, from autonomously replicating

cells to groups of interdependent cells forming a higher-level of organisation (Buss, 2014;

Smith and Szathmary, 1995). It has evolved independently several times across the tree of life

(Grosberg and Strathmann, 2007; Parfrey and Lahr, 2013). Comparative genomics suggests

(Knoll, 2011), and experimental evolution confirms (Boraas et al., 1998; Ratcliff et al., 2012) that

the increase of cell–cell adhesion drives the early evolution of (undifferentiated) multicellularity.

Increased cell adhesion may be temporally limited and/or may be triggered by environmental

changes (e.g. in Dictyostelids and Myxobacteria [Du et al., 2015; Kaiser et al., 1979]). Moreover,

multicellular organisation may come about either by aggregation of genetically distinct cells or by

incomplete separation after cell division (King, 2004; Du et al., 2015).

The genetic toolkit and the cellular components that allow for multicellularity - including adhesion

proteins - pre-date multicellular species and are found in their unicellular relatives (Rokas, 2008;

Prochnik et al., 2010; Du et al., 2015; Richter et al., 2018). Aggregates of cells can organise them-

selves by exploiting these old components in the new multicellular context, allowing them to per-

form novel functions (or to perform old functions in novel ways) that may confer some competitive

advantage over single cells. Greater complexity can later evolve by coordinating the division of tasks

between different cell lineages of the same organism (e.g. in the soma-germline division of labour),

giving rise to embryonic development. Nevertheless, the properties of early multicellular organisms

are defined by self-organised aggregate cell dynamics, and the space of possible multicellular out-

comes and emergent functions resulting from such self-organisation seems large – even with limited

differential adhesion and signalling between cells. However, the evolution of emergent functions as

a consequence of adhesion-mediated self-organisation has received little attention to date.
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Mathematical models can define under which conditions multicellularity evolves, in terms of fit-

ness for individual cells vs. the group, or in terms of the resulting spatial and temporal organisation.

The formation of early multicellular groups has been studied in the context of the evolution of coop-

eration: by incorporating game theoretical interactions and transient compartimentalisation

(Garcia et al., 2014) or the possibility of differential assortment (Joshi et al., 2017), it was found

that adhering groups of cooperating individuals evolve. Alternatively, reproductive trade-offs can

give rise to division of labour (Solari et al., 2013) and lead to the formation of a higher-level proto-

organism capable of self-regeneration in a structured environment (Duran-Nebreda et al., 2016). A

plethora of multicellular life-cycles can emerge by simple considerations about the ecology of the

uni-cellular ancestor and the fitness benefit that cells acquire by being in groups (Staps et al.,

2019). Once multicellular clusters are established, the spatial organisation of their composing cells

can play an important role in determining group-level reproduction - possibly leading to the evolu-

tion of cell-death (Libby et al., 2014) or different cell shapes (Jacobeen et al., 2018), and to specific

modes of fragmentation of the aggregate (Pichugin et al., 2017; Gao et al., 2019) that increase

overall population growth.

In these models, multicellularity is either presupposed or its selective pressure is predetermined

by social dynamics, by directly increasing fitness of cells in aggregates or by adverse environmental

conditions that enforce strong trade-offs. Here we investigate the origin of this selective pressure,

motivated by the idea that multicellular groups emerge as a byproduct of cell self-organisation and

cell-environment interactions, and subsequently alter the evolution of their composing cells. We

expect that a selective pressure to aggregate can arise from the emergent functions of the multicel-

lular group, without requiring explicit selective advantages and disadvantages for cells in a group.

We therefore present a computational model of an evolving population of cells where fitness is

eLife digest All multicellular organisms, from fungi to humans, started out life as single cell

organisms. These cells were able to survive on their own for billions of years before aggregating

together to form multicellular groups. Although there are trade-offs for being in a group, such as

sharing resources, there are also benefits: in a group, single cells can divide tasks amongst

themselves to become more efficient, and can develop sophisticated mechanisms to protect each

other from harm. But what compelled single cells to make the first move and aggregate into a

group?

One way to answer this question is to study the behaviour of slime moulds. These organisms exist

as single cells but form colonies when their resources run low. Researchers have observed that slime

mould colonies can navigate their environment much better than single cells alone. This property

suggests that the benefits of moving together as a collective could be the driving factor propelling

single cells to form groups.

To test this theory, Colizzi et al. developed a computer model to examine how well groups of

cells and lone individuals responded to nearby chemical cues. Unlike previous simulations, the

model created by Colizzi et al. did not specify that being in a group was necessarily more favourable

than existing as a single cell. Instead, it was left for evolution to decide which was the best option in

response to the changing environmental conditions of the simulation.

The mathematical model showed that groups of cells were generally better at sensing and

moving towards a resource than single cells acting alone. Single cells moved at the same speed as

groups, but they often sensed their environment poorly and got disorientated. Only when the

environment changed frequently, did cells revert back to the single life. This was because it was no

longer beneficial to band together as a group, as the cells were unable to sense the environmental

cues fast enough to communicate to each other and coordinate a response.

This work provides insights into what drove the early evolution of complex life and explains why,

under certain conditions, single cells evolved to form colonies. Additionally, if this model were to be

adopted by cancer biologists, it could help researchers better understand how cancer cells form

groups to move and spread around the body.
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based solely on how adequately a cell responds to a spatially and temporally heterogeneous envi-

ronment, regardless of whether they belong to an aggregate.

In this study, we draw inspiration from collective movement of groups of cells, such as the aggre-

gate phase of the slime mould Dictyostelium discoideum (Schaap, 2011), other simple multicellular

organisms (Kaiser, 2003; Schaap, 2011; Smith et al., 2019) and many processes within complex

multicellular organisms, for example, embryogenesis, tissue repair and cancer (Weijer, 2009;

Friedl and Gilmour, 2009). Previous models have shown how cell collectives are able to integrate

noisy information from the environment, for instance when moving up a shallow chemoattractant

gradient. (Marée et al., 1999; Szabó et al., 2006; Kabla, 2012; Szabó et al., 2010; Camley and

Rappel, 2017; George et al., 2017; Camley, 2018; Varennes et al., 2017).

We use the Cellular Potts Model (Graner and Glazier, 1992) (CPM) to study collective cell move-

ment as an emergent driver of multicellularity during evolution. The CPM formalism is a spatially

extended, mesoscopic description of cells which explicitly accounts for cell shape and size, and

allows for a straightforward implementation various cellular processes within complex and potentially

self-organised environments. We include four key elements: cells are placed in a seasonally changing

environment that periodically introduces new resources at different locations, they can perform che-

motaxis by sensing a chemoattractant produced by these resources, they reproduce depending on

their proximity to resources and they can evolve their adhesion to other cells. Because the gradient

generated by the resources is noisy and shallow, we find that individual cells follow the chemotactic

signal very inefficiently. Instead, cells that adhere to each other within groups transfer information

about the gradient in a self-organised manner, allowing for efficient chemotaxis in our model. We

show that for longer seasons, this emergent property of cell groups is sufficient to select for high lev-

els of adhesion and multicellularity, despite the fact that fitness is only defined at the cell level.

Results

Model setup
Cell model
We consider a population of N cells that search for resources on a surface to be able to replicate.

Cells are modelled with a 2D hybrid Cellular Potts Model (CPM) (Graner and Glazier, 1992;

Glazier and Graner, 1993; Daub and Merks, 2015) on a square lattice of size L2 ¼ 500� 500 sites.

The CPM formalism captures the fact that biological cells are dissipative objects with deformable

boundaries. A cell consists of multiple adjacent lattice sites. The sites not occupied by cells are the

medium, which contributes to determining the adhesive properties of a cell, but has no further prop-

erties. All the lattice sites belonging to one cell have the same identification number, different from

that of any other cell or medium. Cell movement arises from stochastic fluctuations (extensions and

retractions) of the cell boundaries. These fluctuations are generated by forces arising from cell size

maintenance, adhesion and migration (explained below). We calculate these forces by minimising

the corresponding energy function with the Metropolis algorithm (with a temperature-like parameter

T that scales the overall probability of membrane fluctuations). Lattice sites are updated in random

order. In one Monte Carlo Step (MCS), L2 lattice sites are updated.

To model cells as elastic and deformable objects, we assume that cell size - the number of lattice

sites it is made up of - remains close to a preferred value AT equal for all cells (set to 50 lattice sites

unless explicitly stated), and deviations are resisted with a stiffness parameter l. Cells adhere to

each other if they express matching ligands and receptors on their surface. Ligands and receptors

are modelled as bit strings of length n (Figure 1a), and are assumed to be expressed constitutively

and uniformly on the membrane. Adhesion strength increases linearly with the number of comple-

mentary bits in the ligand and receptor. In the CPM, adhesion strength is expressed in terms of the

interfacial energy Jc;c. For each pair of adjacent lattice sites belonging to different cells, the interfa-

cial energy Jc;c is calculated from the cells’ ligands and receptors. A larger complementarity corre-

sponds to lower values of Jc;c (i.e. lower energy level in the bound state) and thus stronger binding.

For cells adjacent to the medium, an additional cell-medium contact energy Jc;m is calculated based

on the similarity between part of their ligand bit string and an arbitrary target string. Cells adhere

when cell–cell contact energy and medium-medium energy (equal to zero by definition) are lower

than cell-medium contact energy: ðJm;m þ Jc;cÞ=2<Jc;m. Cell adhesion can be characterised through
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the surface tension g ¼ Jc;m � Jc;c=2 (Glazier and Graner, 1993). Cells adhere when g>0 and disperse

for g<0. Note that the value of g is due to a balance between Jc;c and Jc;m, such that cells achieve

higher surface tension either by increasing the number of complementary ligand-receptor pairs or

by reducing the similarity of their ligands to the medium target string. Modelling ligands and recep-

tors separately allows for sufficient variability of differential adhesion, without predetermining the J

values between cells. For example, it allows for any combination of adhesion strengths between

three (or more) cells.

During chemotaxis, eukaryotic cells repeatedly reorient the polymerisation of the actin cytoskele-

ton. This reorientation takes some time (Ridley et al., 2003), resulting in a migration pattern that is

persistent over short time scales. We emulate this by combining a model of persistent migration

(Beltman et al., 2007) with chemotaxis. Following (Beltman et al., 2007), persistent migration

occurs through biasing cell membrane fluctuations towards the previous direction of motion of a cell
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Figure 1. Model description. (a) Adhesion between two cells is mediated by receptors and ligands (represented by a bitstring, see Hogeweg, 2000).

The receptor of one cell is matched to the ligand of the other cell and vice versa. The more complementary the receptors and ligands are, the lower

the J values and the stronger the adhesion between the cells. (b) Persistent migration is implemented by endowing each cell with a preferred direction

of motion~vp. Every t p MCS, this direction is updated with a cell’s actual direction of motion in that period. (c) The chemoattractant gradient in the

lattice. The lines and colour indicate equal amounts of chemoattractant. Note the scattered empty lattice sites. (d) A cell can only sense the

chemoattractant in the lattice sites that correspond to its own location. The cell will then move preferentially in the direction of perceived higher

concentration, the chemotaxis vector. This vector points from the cell’s centre of mass to the centre of mass of the chemoattractant detected by the

cell (the blue dot).
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(Figure 1b). The strength of the bias is quantified by �p, and the direction of motion is updated

every t p MCS with the direction of actual cell displacement. This model of cell migration generates

a persistent random walk (Beltman et al., 2007). Chemotaxis biases cell motion (with strength ��)

towards higher local concentrations of a chemoattractant (Figure 1c,d). We assume that this chemo-

attractant is released at low concentration by resources present at one end of the grid, creating a

shallow and noisy gradient over the grid (Figure 1c). For simplicity, we model a shallow, linear and

noisy gradient decreasing from the source with slope k� (in unit of percent decrease over unit dis-

tance), and a heterogeneous substrate on which the chemoattractant may not attach (with probabil-

ity p�¼0). Because of the noise in the gradient, the direction of cells’ chemotaxis may be different

from the correct direction of the gradient. We used this model setup to assess the properties of sin-

gle-cell vs. collective migration.

Evolutionary model
To explore the evolutionary dynamics of a population of cells, we seasonally change the location of

the resources, and therewith the direction of the gradient, every t s MCS (Figure 2). Longer seasons

(larger values of t s) correspond to more persistent resources. During each season (i.e. one period of

t s MCS) cells move due to chemotaxis and persistent migration. Depending on the ligands and

receptors expressed on the cell surfaces, they may either adhere to one another or disperse from

one another (Figure 2a). At the end of the season, cells are given a chance to divide, followed by a

culling phase to keep the number of cells constant. To reflect the assumption that more nutrients

are present at higher concentrations of the signal, the division probability is inversely proportional to

the distance of the cell to the gradient peak and cells very close to the gradient peak may divide

multiple times. Cells divide along their short axis to create two daughter cells (after Hoge-

weg, 2000), after which we let cells regrow to target size for 5 MCS. The daughter cells inherit

mutated copies of the ligand and receptor, so that their adhesive properties can change with

respect to the parent. This allows cells to evolve their adhesion strength. Cell size AT , strength of

chemotaxis �� and migration persistence �p do not evolve. After cell division, the population is

brought back to N cells by randomly culling cells, at which point the new season begins (Figure 2b).

Note that we do not include cell dispersal after replication, therefore related cells remain close at

the beginning of the new season. Simulations last 400 seasons (i.e. 400� t s MCS), which is sufficient

to reach evolutionary steady state under all conditions.

We do not select for multicellularity directly: the fitness function rewards cells for their proximity

to resources, and we do not explicitly incorporate a fitness advantage or disadvantage for the

Figure 2. The eco-evolutionary setup of the model. (a) A population of N ¼ 200 cells moves by chemotaxis towards the peak of the gradient, which in

this season is located at the left boundary of the grid. (b) At the end of the season, cells divide, the population excess is killed randomly, and the

direction of the chemotactic signal is changed, after which the new season begins (c, d). The snapshots are taken at the indicated time points from a

simulation where a season lasts t s ¼ 100� 10
3 MCS. Dashed lines in the snapshots are gradient isoclines.
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multicellular state. Therefore, multicellular clusters (Figure 2a,c,d) can arise only because they per-

form an emergent task that single cells cannot perform.

See Table 1 for parameter values, and Materials and methods Section for the details of the model

and parametrisation.

Strongly adhering cells perform efficient collective chemotaxis
We first assessed how well groups of cells with different adhesion strengths could reach the source

of the chemotactic signal. We placed a connected cluster of cells on one side of the lattice, opposite

to the location of the gradient peak. We then recorded their travel distance over a fixed amount of

time and compare it to the travel distance of single cells (i.e. from simulations with only one cell), by

measuring both the position of the centre of mass of the group (Figure 3a) and the position of the

cell closest to the peak of the gradient (Figure 3b). Single cells perform chemotaxis inefficiently

(Video 1), whereas a group of adhering cells migrates up the same gradient more accurately

(Figure 3a, g>0): the centre of mass of this group takes much less time than single cells do to reach

the peak of the gradient (Video 2). Groups of cells can also perform collective chemotaxis when

they do not adhere, and when they do not have a preference for medium or cells, although with

lower efficiency in both cases (Figure 3a, respectively g<0 and g ¼ 0). Chemotaxis is inefficient,

because these cells tend to lose contact from one another (Video 3) and once isolated they behave

like those from simulations with one cell (Figure 3a,b ‘one cell’). Single cells also show large variance

between different simulations (Figure 3b). While cell clusters perform chemotaxis efficiently only

when cells adhere, the speed of the cell closest to the peak of the gradient is roughly the same

regardless of adhesion strength (Figure 3b). Thus, in a non-adhering population some cells reach

the peak of the gradient almost as quickly as an adhering cluster does.

Adhering cells have large chemotactic persistence - as shown by the super-linear shape of the

Mean Square Displacement (MSD) plot (Figure 3c, g ¼ 6) and by a diffusive exponent consistently

Table 1. Parameters.

Parameter Explanation Values

L2 lattice size 500 � 500 lattice sites

T Boltzmann temperature 16 AUE

l cell stiffness 5.0 AUE/[lattice site]2

AT cell targetarea 50 lattice sites

Cell adhesion

Ja minimum J value between cells 4 AUE/[lattice site length]

J 0a minimum J value between cell and medium 8 AUE/[lattice site length]

n length of receptor and ligand bitstring 24 bits

n0 length ligand bitstring for medium adhesion six bits

Cell migration and chemotaxis

�p strength of persistent migration 3.0 AUE

t p duration of persistence vector 50 MCS

�� strength of chemotaxis 1.0 AUE

k� scaling factor chemoattractant gradient 1.0 molecules/[lattice site length]

p�¼0 probability of zero value (’hole’) in gradient 0.1 [lattice site]�1

Evolution

N population size 200 cells

t s duration of season 5 � 103 - 150 � 103 MCS

hd distance from gradient peak where fitness is 1

2
50 [lattice site length]

�R;I receptor and ligand mutation probability 0.01 per bit, per replication

AUE: Arbitrary Units of Energy (see Hamiltonian in Model Section); lattice site: unit of area; lattice site length: unit of

distance; MCS: Monte Carlo Step (unit of time).
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Figure 3. A group of cells performs chemotaxis efficiently in a noisy shallow gradient. (a) Distance of the centre of mass of N ¼ 50 cells from the peak

of the gradient as a function of time, for different values of g 2 ½�4; 6� (five independent runs for each value), together with the average position of 10

isolated cells (i.e. from simulations with only one cell). (b) The position of the cell closest to the gradient origin as a function of time (taken from the

same simulations as in a), and the positions of 10 individual cells (whose average generates the corresponding plot in a). (c) Mean square displacement

(MSD) per time interval for two datasets each with 50 simulations of either single cells or clusters of strongly adhering cells (N ¼ 50, g ¼ 6), in which case

we extracted one cell per simulation. These data sets were also used for the following plots. (d) Diffusive exponent extracted from the MSD plot,

obtained from the log-log transformed MSD plots by fitting a smoothing function and taking its derivative (Appendix 1.1). (e) Distribution of

instantaneous cell speeds (f) Distribution of angles between cells’ measurement of the gradient ~�, and the actual direction of the gradient peak ~X, as

measured from the position of the cell. (g) The length of straight segments in cell tracks vs. their angle with the actual gradient direction. Each point

represents one segment of a cell’s trajectory. To extract these straight segments a simple algorithm was used (Appendix 1.8). Contour lines indicate

density of data points.
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larger than 1 (Figure 3d; the diffusive exponent

is obtained as the derivative of the log-log trans-

formed MSD/time curve, see Appendix 1.1).

Instead, the MSD of a single cell (Figure 3c, one

cell) is approximately linear and its diffusive expo-

nent tends to 1, indicating that cells’ movement

is much more dominated by diffusion. Interest-

ingly, there is no difference in the instantaneous

speed of cells when they are in a cluster or when

they are alone (Figure 3e), so the higher rate of

displacement of a group of adhering cells is only

due to larger persistence in the direction of

motion. Figure 4 shows the movement of a clus-

ter of strongly adhering cells (g ¼ 6) compared to

the movement of a single cell, over the typical

setup of the simulation system. Although the

cluster moves straight towards the source of the

gradient, individual cells follow noisy trajectories.

A possible explanation for collective chemo-

taxis is that a cluster averages individual cells’

polarisation, leading to a linear relationship

between the accuracy of chemotaxis and the

number of cells in the cluster (Varennes et al., 2017). Instead, we found that cluster speed saturates

quickly with the number of cells, at a smaller speed than that of individual cells (cf. Appendix 1.2

with Figure 3e). We conclude that individual contributions to cluster chemotaxis are not simply aver-

aged. Therefore, we look at how cells self-organise to understand how collective chemotaxis comes

about.

Through persistent migration, a cell pushes other cells within an adhering cluster, and is pushed

by them. The resulting forces are resolved when cells align and form streams within the cluster (see

Video 4). These streams are persistent over a much longer time scale than a cell’s persistence

t p ¼ 50 MCS (since the video frame rate is 50 MCS and streams are visible over multiple frames).

Through streaming, these small clusters generate extensions, retractions and rotations (Video 4), so

that the entire cluster visually resembles a single amoeboid cell (Video 2). This behaviour is not influ-

enced by the presence of the chemotactic sig-

nal, since the flow field is identical when the

chemotactic signal is removed (Appendix 1.3).

Thus, the effect of persistent migration is to

align the direction of motion of the cells in a

cluster. This in turn speeds up collective chemo-

taxis, as cell streams preferentially align towards

the direction of the gradient, although aligning

is not strictly required for chemotaxis (Appendix

1.4). Clusters perform chemotaxis faster than

individual cells over a large range of values for

persistent migration strength �p and chemotac-

tic strength �� (Appendix 1.5 and Appendix

1.6), with larger �p increasing collective chemo-

taxis speed (and to a lesser extent individual

chemotaxis speed) more than ��. Because larger

cells perceive a larger area of the chemotactic

signal, chemotactic migration improves with cell

size (Appendix 1.7).

We calculated the deviation of each individual

cell’s measurement of the gradient as the angle

�ð~X; ~�Þ between the true direction of the

Video 1. Inefficient chemotaxis of a single cell.

https://elifesciences.org/articles/56349#video1

Video 2. Chemotaxis of a cluster of adhering cells. All

cells have the same colour to show how the migration

of the cluster as a whole resembles that of an amoeba.

https://elifesciences.org/articles/56349#video2
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gradient ~X and the direction of the gradient

locally measured by the cells ~� (so that

�ð~X; ~�Þ ¼ 0 is a perfect measure). We found that

the measurements of individual cells deviate sig-

nificantly from the true direction of the gradient

(Figure 3f). Despite this, they are carried in the

right direction by the other cells. To assess how

cells in a cluster alter each others’ (short-time-

scale) trajectories we extracted the straight seg-

ments from the cell tracks and assessed both the

length of these segments and their orientation

with respect to the gradient source (Appendix

1.8). We find that cells in a cluster tend to

migrate for longer in straight lines, and that

these straight lines are also more likely to be ori-

ented towards the source of the gradient

(Figure 3g). For single cells, there is no such

bias.

In conclusion, cluster organisation emerges

from cells altering each others’ paths by exerting

pushing and pulling forces through their persis-

tent migration, which in turn results in efficient

collective chemotaxis.

The evolution of uni- or multicellular strategies depends on season
duration
The emergence of reliable chemotactic behaviour in adhering cell clusters suggests an evolutionary

path to multicellularity: a population of cells may aggregate if collective chemotaxis allows cells to

find resources more reliably. While cells could improve their ability to sense the gradient individually

by becoming bigger, there are many factors that restrict cell size, such as the complexity of the

metabolism and cellular mechanisms such as cell division (Björklund and Marguerat, 2017;

Marshall et al., 2012). We therefore assume that cell size is fixed, and we let cells evolve adhesion -

that is, the receptor and ligands expressed by

the cells - in response to a seasonally changing

environment, where the gradient is generated by

a volatile resource that periodically changes posi-

tion. Cells closer to the peak of the gradient have

a higher chance to reproduce at the end of the

season, and related cells remain close to each

other at the beginning of the new season (there

is no cell dispersal phase, see also model setup

and Materials and methods). The receptors and

ligands of the initial population are chosen such

that cells neither adhere to one another nor dis-

perse from one another (g ¼ 0).

When the season lasts t ¼ 100� 10
3 MCS, the

average adhesion between cells readily increases

after only few generations (Figure 5a): Jcell;cell

decreases and Jcell;medium increases (see also

Video 5 and Figure 2 for snapshots). At evolu-

tionary steady state, all cells adhere strongly and

with roughly the same energy to one another

(Appendix 2.1). Figure 5b shows that two evolu-

tionary steady states are possible, depending on

the duration of the season t s. For t s<20� 10
3

Video 3. Inefficient chemotaxis of a cluster of non-

adhering cells.

https://elifesciences.org/articles/56349#video3

Video 4. The same cluster of adhering cells. Cell

colour indicates the direction of migration, to

emphasise the streaming dynamics within the cluster.

https://elifesciences.org/articles/56349#video4
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MCS, cells evolve to become unicellular, as cell–cell interactions are characterised by strong repul-

sion (g<0). Figure 5c suggests that by selecting for g<0 cells disperse efficiently throughout the

grid. Although non-adhering cells follow the chemotactic signal only weakly, the spreading over the

course of multiple seasons ensures that at least some cells end up close to the source of the gradient

at the end of the season (Video 6). In contrast, a cluster of adhering cells is at disadvantage when

seasons are short because it does not have enough time to reach the source of the chemotactic sig-

nal. Over the course of multiple seasons, an adhering cluster ends up in the centre of the lattice

(Video 7) and all its composing cells have the same (low) fitness. Furthermore, the connectedness of

a cluster of adhering cells is locally disrupted when excess cells are culled between seasons

(Figure 2b), which briefly reduces the efficiency of collective migration. Because this phase is short-

lived - cells reconnect within 2000 MCS - we expect that culling plays a minor role in the evolutionary

outcome of the system. For t s>40� 10
3 MCS,

cells evolve to adhere to one another, i.e. g>0

(see Figure 5c for a snapshot). When seasons are

sufficiently long, clusters of adhering cells have

enough time to reach the source of the gradient.

At this point, the fitness of cells within a cluster

outweighs that of non-adhering cells, because

clustering increases the chances of reaching the

peak of the gradient. Finally, for intermediate

season duration, 20� 10
3 � t s � 40� 10

3 MCS,

both repulsion and adhesion are evolutionary

(meta) stable strategies, and the outcome of the

simulation depends on the initial value of g (for

t s ¼ 20� 10
3 MCS, the steady state with g>0 is

very weakly stable).

Because different values for migration param-

eters affect collective chemotaxis speed, we

checked that the evolution of multicellularity is

qualitatively robust to changes in the values of

persistent migration strength �p and chemotactic

strength �� (respectively in Appendix 2.2 and

Appendix 2.3). Results are also robust to changes

in gradient shape (assuming that resources are

a b

Figure 4. Indivdual cell trajectories are noisy, also within a cluster. (a) The movement of a single cell. (b) Typical movement of a cluster of strongly

adhering cells, and of the cells inside the cluster. Cells are placed on the right of the field and move towards higher concentration of the gradient (to

the left of the field). Dashed lines are gradient isoclines.

Video 5. Video of an evolutionary simulation, starting

with neutrally adhering cells (g ¼ 0). The season

changes every 100 � 103 MCS.

https://elifesciences.org/articles/56349#video5
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Figure 5. The evolution of multicellularity. (a) Multicellularity (g>0) rapidly evolves in a population of N ¼ 200 cells

with t s ¼ 10
5. (b) Multicellularity only evolves when seasons are sufficiently long t s � 50 � 103; unicellular strategies

evolve when seasons are short t s � 10 � 103, and both strategies are viable depending on initial conditions for

intermediate values of t s. The dashed line indicates the separatrix between the basins of attraction of the two

evolutionary steady states; it is estimated as the mid-point where evolutionary simulations with consecutive initial

values of g 2 f�6;�4;�2; 0; 2; 4; 6g evolve to alternative steady states. In both panes, hhgii is estimated as

hJc;mi � hJc;ci=2, where hJc;ci and hJc;mi are calculated from the Jc;c and Jc;m extracted from the system at

evolutionary steady state. The initial J values, indicated by the dotted lines, are such that g ¼ 0. (c) Snapshots of

the spatial distribution of the population at evolutionary steady state for t s ¼ 20 � 103 and t s ¼ 100 � 103 MCS.
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located over an entire side of the lattice, we

tested a gradient with straight isoclines in Appen-

dix 2.4) and to steeper, noiseless gradients

(Appendix 2.5). Furthermore, the evolution of

multicellularity does not depend on the precise

mechanism for collective chemotaxis. To show

this, we relax the assumption that individual cells

sense the gradient by implementing a recently

proposed mechanism of emergent collective che-

motaxis that relies only on concentration sensing

(Camley et al., 2016). Following Camley et al.,

2016, we assume that cell polarisation is inhib-

ited at the sites of cell–cell contact (a phenome-

non called contact inhibition of locomotion, see

Mayor and Carmona-Fontaine, 2010 for a

review), and that the magnitude of their polarisa-

tion is proportional to the concentration - not the

gradient - of the chemoattractant. In Appendix

3.1, we show that results are robust to this modi-

fication of the chemotaxis mechanism.

Interference competition between
unicellular and multicellular
strategies causes evolutionary bi-
stability
We next investigated what causes the evolution-

ary bi-stability in adhesion strategies for season duration 20� 10
3 � t s � 40� 10

3 MCS. We per-

formed competition experiments between two populations of cells, one adhering (g ¼ 6) and one

non-adhering (g ¼ �4), to determine whether a strategy can invade in a population of cells using the

other strategy. We simulated non-adhering mutants invading a resident population of adhering cells

by placing a large cluster of adhering cells in front of a small group of non-adhering ones

(Figure 6a), and conversely, a small cluster of

adhering cells invading a large group of non-

adhering cells (Figure 6b). This initial configura-

tion is analogous to the beginning of a season in

the evolutionary experiments, as mutants are in

small numbers and furthest away from the new

peak because they are likely born from cells that

replicate most, that is, those closest to the previ-

ous location of the peak. In both cases, after

30� 10
3 MCS, the resident population physically

excludes the invading one from the path to

resources, and thus the distance travelled by the

invading population is limited. This shows that

the adhesion energy of the resident population

(whether cells adhere or not) determines the out-

come of the invasion (for the values of t s where

we find evolutionary bistability). We also consid-

ered a scenario where a whole population -

rather than few mutants - invades another with

the opposite strategy. We studied the spatial

competition dynamics of two clusters of equal

size (N ¼ 100 cells) when adhering cells are posi-

tioned in front of the non-adhering ones

(Figure 6c), and when the position of the two

Video 6. Over time a population of non-adhering cells

spread throughout the lattice, when seasons are short.

The season changes every 10 � 103 MCS. For all cells

g ¼ �4. Mutation rate is set to zero to emphasise the

spatial population dynamics.

https://elifesciences.org/articles/56349#video6

Video 7. Over time a population of adhering cells ends

up in the centre of the lattice when seasons are short.

The season changes every 10 � 103 MCS. For all cells

g ¼ 6. Mutation rate is set to zero.

https://elifesciences.org/articles/56349#video7
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clusters is swapped (Figure 6d). The distance to the peak after 30 � 103 MCS of a cluster of adher-

ing cells is larger (i.e. their fitness is smaller) if they are hindered by a population of non-adhering

cells in front of them. Taken together, these results show that there is interference competition (i.e.

direct competition due to displacement) between populations of cells with different strategies. In

Figure 6. Interference competition between adhering and non-adhering cells explains evolutionary bistability. We let a simulation run for t s ¼ 30� 10
3

MCS and then record the distance from the peak of the gradient, for two different populations of cells - one non-adhering (in red, g ¼ �4) and one

adhering (in blue, g ¼ 6), for different initial conditions. The snapshots underneath are the initial and final spatial configurations of the cells on the grid.

(A) 180 adhering and 20 non-adhering cells, placed so that the adhering cells are closer to the source of the gradient; (B) 20 adhering and 180 non-

adhering cells, placed so that the non-adhering cells are closer to the source of the gradient; (C) 100 adhering and 100 non-adhering cells, placed so

that the adhesive ones are closer to the source of the gradient; (D) 100 adhering and 100 non-adhering cells, placed so that the non-adhering cells are

closer to the source of the gradient. Dashed lines in the snapshots are gradient isoclines.
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the evolutionary experiments, mutants with a slightly different strategy are generated during repro-

duction at the end of each season and interference competition continually prevents their successful

invasion for intermediate season duration. This explains why the two strategies are meta-stable. This

result may also provide a simple explanation for the fact that many unicellular organisms do not

evolve multicellularity despite possessing the necessary adhesion proteins. Moreover, evolutionary

bi-stability protects the multicellular strategy from evolutionary reversal to unicellularity over a large

range of environmental conditions.

Multicellularity and the cost of adhesion
So far, we showed that the evolutionary benefit of uni- or multi-cellular strategies is indirect, as it is

mediated by the fittest form of self-organisation for a given season duration. For simplicity, we did

not incorporate any cost to evolving multicellularity. However, evolving multicellular organisms may

incur fitness costs that are not present at the unicellular level (Rebolleda-Gómez and Travisano,

2018; Rainey and Rainey, 2003; Ratcliff et al., 2012; Yokota and Sterner, 2011; Kapsetaki and

West, 2019). We incorporated costs in our system by assuming that cells spend energy to maintain

their bonds with other cells, with a cost cm (per unit of cell boundary, per MCS). This metabolic cost

accumulates over time when cells are in contact with one another, and translates into a fitness pen-

alty at the end of the season for cells that spent more time in contact with others. Costs range from

cm ¼ 0, the cost-free model presented so far, to cm ¼ 1 (the maximum cost) which zeroes the fitness

of a cell that spent the entire season completely surrounded by other cells. Multicellularity evolved

for sufficiently long seasons when costs were not too high (cm � 0:5), with larger costs shifting the

transition to multicellularity to longer seasons, while only the uni-cellular strategy evolved when costs

were high (cm ¼ 0:75, for the season duration we tested; Appendix 4.1).

Discussion
We demonstrated that undifferentiated multicellularity can evolve in a cell-based model as a byprod-

uct of an emergent collective integration of spatial cues. Previous computational models have shown

that multicellularity can be selected by reducing the death rate of cells in a cluster (Staps et al.,

2019; Pichugin et al., 2017), through social interaction (Garcia and De Monte, 2013; Joshi et al.,

2017), by incorporating trade-offs between fitness and functional specialisation (Ispolatov et al.,

2012), or by allowing cells to exclude non-cooperating cells (Pfeiffer and Bonhoeffer, 2003). In

these studies, direct selection for forming groups is incorporated by conferring higher fitness to the

members of a cluster.

Earlier work found that multicellular structuring can emerge without direct selection when cells

are destabilised by their internal molecular dynamics (e.g. the cell cycle) (Furusawa and Kaneko,

2002), or because of a toxic external environment (Duran-Nebreda et al., 2016). In both cases, cell

differentiation stabilises cell growth and arises as a consequence of physiological or metabolic trade-

offs. With our model setup, we show that division of labour - although important - is not a strict

requirement for emergent aggregation. Nevertheless, our work bears some similarity with these

models because we do not explicitly incorporate a fitness benefit for being in a group: selection acts

on individual cells only on the basis of how close they are to the source of the gradient, regardless

of migration strategy. Thus the fitness function does not dictate which evolutionary strategy, that is,

uni- or multi-cellularity, should be followed.

A limitation of the current model is that cells have a narrow set of possibilities for adapting to the

environment, as the only mutable traits are their ligands and receptors. Therefore, their adaptation

to the environment is solely mediated by their adhesion to one another and selection for multicellu-

larity can only occur because adhering clusters always perform chemotaxis better than individual

cells. Despite the advantage of clusters over individuals, an alternative strategy can evolve that does

not rely on collective behaviour. This uni-cellular strategy evolves because non-adhering cells dis-

perse throughout the field over multiple seasons. By chance - and aided by inefficient chemotaxis -

some cells will be located near the peak of the gradient at the end of each season. When seasons

change rapidly, a multicellular cluster does not have the time to reach the peak of the gradient. It is

therefore at disadvantage over cells evolving a unicellular strategy. This further illustrates that the

selection pressure to become multicellular emerges from the structure of the environment in our

model, rather than being an explicit part of the fitness function. Whichever evolutionary strategy
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maximises fitness, be it multi- or uni- cellularity, will evolve within the (limited) complexity of the

model.

A second limitation of the model is that resources are modelled only implicitly - through the che-

moattractant gradient they generate and through season duration, i.e. how long they persist. The

precise seasonality of these resources might be realistic if resources are deposited in the system by

periodic phenomena (e.g. tides, or daily and yearly cycles), whereas other types of resources might

be more stochastic (such as preys). However, if the stochasticity of resources is not too extreme, we

expect that evolution converges to the average resource duration.

In many ways, the evolution of multicellularity can be compared to the evolution of collective

dynamics. Previous studies on the evolution of herding behaviour showed that aggregating strate-

gies can also evolve in response to highly clumped food even though the pack explores the space

slowly and inefficiently before finding food (Wood and Ackland, 2007). When gradient sensing and

social behaviour are both costly, a combination of strategies evolves in response to selection for dis-

tance travelled (Guttal and Couzin, 2010). Some individuals pay the cost for actively sensing the

gradient, while others invest in social behaviour to move towards others and align their direction of

motion with them, leading to the formation of migrating herds (Guttal and Couzin, 2010). These

models of collective migration represent individuals as active particles, which is similar to the behav-

iour of our cells. However, group movement requires an explicit rule for alignment, whereas in our

model it emerges naturally from interactions between deformable cells. Modelling cells with an

explicit shape and size (including both CPM and, we expect, self-propelled particles) allows for spa-

tial self-organisation and can generate interesting ecological dynamics, such as interference competi-

tion between the unicellular and multicellular search strategies. The ensuing evolutionary bi-stability

stabilises unicellularity despite these cells possessing the surface protein toolkit to adhere to each

other, and prevents multicellular organisation from evolutionary reversal into single cells (over a

range of environmental conditions). The ‘automatic’ outcome of spatial self-organisation provides an

initial, non-genetic robustness, which can be further stabilised by later adaptations (Libby et al.,

2016).

In our model, cells retain their spatial distribution between seasons. This reinforces spatial self-

organisation, and consequently bistability, because genetically similar cells remain close to one

another. However, we expect bistability also if cells were dispersed between seasons: few adhering

cells scattered in a cloud of non-adhering ones would not be likely to meet (and collectively chemo-

tax) if seasons are short. In contrast, a large number of adhering cells would meet frequently after

scattering and thus displace non-adhering cells in their march towards the peak of the gradient. This

suggests that the two strategies are not mutually invadable over some intermediate season length,

hence bistability.

The driver for the evolution of adhesion in our model is collective chemotaxis. This is reminiscent

of the aggregate phase of the life cycle of Dictyostelium discoideum (Schaap, 2011), in that a cluster

of cells moves directionally as a unit following light or temperature, while individual cells inefficiently

identify the correct direction of motion (Miura and Siegert, 2000). There are some important differ-

ences between our model and D. discoideum, however. Information about the direction of the gradi-

ent is transmitted mechanically within cell clusters in our model. In D. discoideum photo- and

thermo-taxis are coordinated by waves of cAMP secretion that travel through the slug. The lack of

extra chemical cues to organise movement within a cell cluster in our model makes for a simpler sce-

nario without large-scale transmission of information throughout the aggregate. Nevertheless,

computational modelling has shown that long-range chemical signalling coupled to cells’ differential

adhesion suffices to reproduce D. discoideum’s migration (Marée et al., 1999; Marée and Hoge-

weg, 2001). Another important difference between our model and D. discoideum is the absence of

dispersal at the end of the life cycle in our model. In D. discoideum, the slug transforms into a fruit-

ing body at the top of a stalk of terminally differentiated cells. Extending the current model with the

evolution of dispersal would enrich our understanding of D. discoideum evolution towards partial

multicellularity.

Our model of collective movement is an example of the ‘many wrongs’ principle (Simons, 2004):

the direction error of each cell is corrected by the interactions with the other cells in the cluster.

However, in our model there is no explicit mechanism for transferring gradient information between

cells. Therefore our results differ from previous work on rigid clusters of cells, where cells’ polarisa-

tion towards the perceived gradient translates linearly and instantaneously to cluster movements
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(Camley et al., 2016; Varennes et al., 2017). In models where cells readily exchange neighbours,

simple rules for cell adhesion and migration led to self-organisation of cells into highly persistent,

migrating tissue with emergent global polarity (Smeets et al., 2016) (earlier observed also at large

cell density without adhesion rules [Beltman et al., 2007; Szabó et al., 2006]). Similarly, in our

model, cells convey gradient information through such emergent collective streaming, which

becomes biased towards the (weak) chemotactic signal. However, we expect that the evolutionary

results described here are independent of the particular cell model choice, or the mechanism for

chemotaxis provided that cells were able to polarise or move also in the absence of other cells.

Indeed, we found similar results with an alternative model of collective chemotaxis (Camley et al.,

2016) in which individual cells do not sense the gradient.

We opted for a computational cell-based model - the Cellular Potts Model - because it allowed

us to explore the spatial interactions of cells, and because it enabled straightforward implementation

of the evolvable receptor-ligand system. The visual nature of our results may guide the future devel-

opment of analytical approaches to generalize the results of this work. For instance, analytical work

may provide a more detailed explanation of the ‘many wrongs’ principle for a cell cluster in which

cells are highly motile and change their neighbours often, in which case positional information is

transmitted by pulling and pushing on each other. Moreover, the simplicity of our model setup

makes our results easily testable in vitro.

The importance of a bottom-up approach to study the evolution of multicellularity has been

repeatedly emphasised (van Gestel and Tarnita, 2017; De Monte and Rainey, 2014), and a

broader understanding of cells self-organisation and evolution may have applications to clinically rel-

evant multiscale evolutionary problems, such as the evolution of collective metastatic migration of

cancer cells (Coffey, 1998; Stuelten et al., 2018; Disanza et al., 2019; Lacina et al., 2019). Our

work highlights that the properties of single cells emergently give rise to novel properties of cell

clusters. These novel properties - in a downward causative direction - generate the selection pres-

sure to form the first undifferentiated multicellular groups.

Materials and methods
We model an evolving population of cells that migrate and perform chemotaxis on a 2-dimensional

lattice. Cell–cell interactions and movements are modelled with the Cellular Potts Model (CPM)

(Graner and Glazier, 1992; Glazier and Graner, 1993) and simulated with a Monte Carlo method.

The evolutionary dynamics (mutations and selection) are implemented assuming constant population

size (N ¼ 200 cells). Cells undergo fitness-dependent reproduction after every season which lasts t s

Monte Carlo Steps of the CPM algorithm, and then the population is culled back to its original size.

After this, environmental conditions are changed and a new season begins. Parameter values are

motivated throughout this section, and summarised in Table 1. The custom software used for the

simulations and to generate the figures is available at Colizzi and Vroomans, 2020.

Cell dynamics
The model is a hybrid Cellular Potts Model implemented with the Tissue Simulation Toolkit

(Daub and Merks, 2015). A population of N cells exists on a regular square lattice L1 � Z
2. The che-

motactic signal is located on a second plane L2, of the same size and spacing as L1. A cell c consists

of the set of (usually connected) lattice sites ~x 2 L1 to which the same spin s is assigned, that is,

cðsÞ ¼ f~x 2 L1 j sð~xÞ ¼ sg. The spin value is a non-negative integer, it is unique and positive for each

cell, and it is used as the cell identifier. The medium is assigned spin s ¼ 0.

Cell movement arises from deformation of its boundaries through stochastic fluctuations. These

fluctuations minimise a cell’s energy, whose terms correspond to biophysically motivated cell proper-

ties (but see Glazier, 2007 for a discussion on the statistical mechanics of the CPM). The energy min-

imisation occurs through the Metropolis algorithm (a Monte Carlo method), as follows. Fluctuations

in cell boundary attempt to copy the spin value sð~xÞ of a randomly chosen lattice site~x to a site~x0 in

its Moore neighbourhood. One Monte Carlo Step (MCS) consists of L2 attempted copying events,

with L2 ¼ jL1j (the size of the lattice, and L one of its dimensions on a regular square lattice).

Throughout this work L ¼ 500. Whether an attempted spin copy is accepted depends on the contri-

bution of several terms to the energy H of the system, as well as other biases Y. A copy is always
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accepted if energy is dissipated, that is, if DH þ Y<0 (with DH ¼ Hafter copy � Hbefore copy), and may be

accepted if DH þ Y � 0 because of ‘thermal’ fluctuations following a Boltzmann distribution:

PðDH;YÞ ¼ e
�ðDHþYÞ

T

with T ¼ 16 the Boltzmann temperature, a temperature-like parameter (in Arbitrary Units of Energy

AUE) that controls the overall probability of energetically unfavourable fluctuations (allowing escape

from local energy minima). The Hamiltonian H of the system consists of two terms, corresponding to

adhesion and cell size maintenance:

H ¼Hadhesion þHcell size

The copy biases, or ‘work terms’, Y consist of terms corresponding to cell migration and

chemotaxis:

Y ¼ Ymigration þYchemotaxis

Cell adhesion
Adhesion between cells and to medium contribute to the Hamiltonian as:

Hadhesion ¼
X

~x;~x0ð Þ

J sð~xÞ;sð~x0Þð Þð1� d sð~xÞ;sð~x0Þð ÞÞ

where the sum is carried out over all the neighbour pairs ~x;~x0ð Þ, and d sð~xÞ;sð~x0Þð Þ is the Kronecker

delta which restricts the energy calculations to neighbouring lattice sites at the interface between

two cells, or a cell and medium. J sð~xÞ;sð~x0Þð Þ is the contact energy between two adjacent lattice sites

~x and~x0 with different identity (i.e. J ¼ 0 when sð~xÞ ¼ sð~x0Þ).

In order to calculate the values of J sð~xÞ;sð~x0Þð Þ, we assume that cells express ligand and receptor

proteins on their surface. Ligands and receptors are modelled as binary strings of fixed length n (Fig-

ure 1, inspired by Hogeweg, 2000). Two cells adhere more strongly (experience lower J values)

when their receptors R and ligands I are more complementary, i.e. when the Hamming distance

DðR; IÞ ¼
Pn

i¼1
dðRi; IiÞ between them is larger. Thus, given two cells with spin values s1 and s2 and

their corresponding pairs of receptors and ligands ðRðs1Þ; Iðs1ÞÞ and ðRðs2Þ; Iðs2ÞÞ:

J s1;s2ð Þ ¼ Jaþ 2n�DðRðs1Þ; Iðs2ÞÞ�DðRðs2Þ; Iðs1ÞÞ

with Ja ¼ 4 chosen so that the final calculation yields values for J s1;s2ð Þ in the interval ½4;52�. For any

particular receptor R there is a single ligand I which is maximally complementary, leading to a J value

of 4; and a single I which is maximally similar, leading to a J value of 52.

Adhesion of a cell with medium is assumed to depend only on the cell (the medium is inert,

that is, J smedium;smediumð Þ ¼ 0 ), and in particular it depends only on a subset of the ligand proteins

of a cell. This subset consists of the substring of I which begins at the initial position of I and has

length n0. The value of J s1;smediumð Þ is calculated as:

J s1;smediumð Þ ¼ J 0aþ
X

n0

i¼1

FðiÞIi

FðiÞ ¼

4 if i¼ 1

3 if i¼ 2

2 if i¼ 3

1 if 4� i� 6

0 if i>6

8

>

>

>

<

>

>

>

:

with J 0a ¼ 8 and FðiÞ a piece-wise defined function (a lookup table). The J values range in the interval

(Du et al., 2015; Jacobeen et al., 2018).

Encoding the energy values for cell adhesion in terms of receptor-ligand binding allows for flexi-

bility and redundancy. Two cells that have the same receptors and ligands (i.e. given Rðs1Þ; Iðs1Þ and

Rðs2Þ; Iðs2Þ with Rðs1Þ ¼ Rðs2Þ and Iðs1Þ ¼ Iðs2Þ) can have any J value, by virtue of the particular

receptor and ligand combination. The lookup table for the J value with the medium was chosen to
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allow for a wide variety of possible J values with a small number of bits. Finally, implementing recep-

tors and ligands in terms of binary strings allows for a simple evolutionary scheme, where mutations

consist of random bit-flipping (more on this below). The numerical values of the various constants

are chosen with four criteria in mind: (1) the receptor-ligand system has to be long enough that

many different combinations are possible, so that its evolution is more open-ended; (2) two cells

with random receptors and ligands do not - on average - adhere preferentially to each other or to

the medium; (3) the range of adhesion energy must allow for strong clustering and strong dispersal

while cells maintain their integrity; (4) although we are not fitting cell behaviour to any specific sys-

tem, the adhesion energies must be in the typical range used to quantitatively model eukaryotic cells

with CPM (Graner and Glazier, 1992; Marée and Hogeweg, 2001; Ouchi et al., 2003;

Magno et al., 2015). With these constraints we set receptor and ligand lengths to n ¼ 24. On aver-

age, two cells with random receptors and ligands will neither preferentially adhere to each other nor

to the medium if their surface tension g ¼ J scell;smediumð Þ � J scell;scellð Þ=2 (see main text) is zero. We

numerically checked (by generating a large number of ligands and receptors) that

hgðcells with random ligand receptorsÞi ¼ hJ scell;smediumð Þ � J scell;scellð Þ=2i ¼ h½8; 20�i � h½4; 52�i=2 ¼ 0. Moreover

gmax ¼ 18 and gmin ¼ �18 (parameter values in Graner and Glazier, 1992; Marée and Hogeweg,

2001; Ouchi et al., 2003; Magno et al., 2015).

Cell size maintenance
Cell size AðcÞ ¼ jcðsÞj, the number of lattice sites that compose a cell, is assumed to remain close to

a target size AT (equal for all cells). This is achieved by adding an energy constraint in the Hamilto-

nian that penalises cell sizes that are much larger or smaller than AT :

Hcellsize ¼
X

c2C

l A cð Þ�ATð Þ2

with C the set of cells c present in the lattice configuration, and l a scaling factor for cell stiffness.

This formulation captures the fact that cells are elastic objects that resist deformation from a pre-

ferred size (AT ). Unless otherwise specified, AT ¼ 50 lattice sites, chosen small enough to reduce

computational load while large enough to avoid lattice anisotropy effects (Magno et al., 2015). The

numerical value of l (set to 5 throughout the paper) is large enough to preserve cell size but not too

large to freeze cells in place (see Graner and Glazier, 1992; Ouchi et al., 2003 for details).

Cell migration
We model migration (following Beltman et al., 2007) by biasing cell movement to their previous

direction of motion ~p cð Þ: extensions of a cell are energetically more favourable when they are closer

to the direction of that cell’s~p:

Ymigration ¼��p cosð�pÞ

Where �p is the maximum energy contribution given by migration, and �p is the angle between ~p

and the vector that extends from the centre of mass of the cell to the lattice site into which copying

is attempted. Every t p MCS the vector~p is updated: its new value is the vector corresponding to the

actual direction of displacement of the cell over the past t p MCS (scaled to unit) (Figure 1). Persis-

tent migration occurs if t p � 1, and captures the observation that a cell’s cytoskeleton takes some

time to re-polarise (Ridley et al., 2003). In line with previous CPM-based models of cell migration

(Vroomans et al., 2012; Vroomans et al., 2015) we set t p ¼ 50 MCS. Note that all cells have the

same t p, but their initial moment of updating is randomised so that they do not update all at the

same time.

Chemotaxis
Individual cells are able to migrate towards the perceived direction of a chemoattractant gradient.

The slope of the gradient is very shallow, making it difficult to perceive the direction over the typical

length of a cell. Moreover, several sources of noise are introduced: cell’s sampling error due to small

size, noise due to integer approximation, and noise due to random absence of the signal.

The chemotactic signal is implemented as a collection of integer values on a second two dimen-

sional lattice (L2 � Z
2, with the same dimensions as the CPM lattice). The (non-negative) value of a
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lattice site represents the local amount of chemotactic gradient. This value remains constant for the

duration of one season (t s MCS). The amount of chemotactic signal � is largest at the peak, which is

located at the centre of one of the lattice boundaries, and from there decays linearly in all directions,

forming a gradient: �ðdÞ ¼ 1þ ðk�=100ÞðL� dÞ, where k� is a scaling constant, d is the Euclidean dis-

tance of a lattice site from the peak of the gradient, and L is the distance between the source of the

gradient and the opposite lattice boundary; L ¼
ffiffiffiffiffiffiffiffi

jL1j
p

for a square lattice. Non integer values of �

are changed to d�e (the smallest integer larger than �) with probability equal to d�e � �, otherwise

they are truncated to b�c (the largest integer smaller than �). Moreover, the value of � is set to zero

with probability p�¼0
to create ”holes’ in the gradient. Setting k� ¼ 1 and p� ¼ 0:1 generates a shal-

low and noisy gradient. In a subset of simulations we used an alternative gradient, assumed to be

generated by resources homogenously distributed on an entire side of the lattice, so that concentra-

tion isoclines are straight lines, see Appendix 2.4.

A cell has limited knowledge of the gradient, as it only perceives the chemotactic signal on the

portion of L2 corresponding to the cell’s occupancy on L1. We define the vector ~�ðcÞ as the vector

that spans from the cell’s centre of mass to the centre of mass of the perceived gradient. Copies of

lattice sites are favoured when they align with the direction of the vector ~�ðcÞ, i.e. when there is a

small angle �c between ~�ðcÞ and the vector that spans from the centre of mass of the cell to the lat-

tice site into which copying is attempted (Figure 1):

Ychemotaxis ¼��� cosð�cÞ

where �� is the maximal propensity to move along the perceived gradient, and is set to �� ¼ 1 in

line with previous studies on cell migration (Vroomans et al., 2012) (chemotactic behaviour is robust

to changes in �� however, see Appendix 1.6). A uniform random �c 2 ½0;2p� is chosen whenever

j~�ðcÞj ¼ 0, that is, when, locally, there is no gradient (which may happen for very shallow gradients).

Chemotaxis without gradient sensing
In a subset of simulations we implemented an alternative mechanism of collective chemotaxis (pro-

posed by Camley et al., 2016) that does no rely on individual cells’ gradient sensing. The mecha-

nism works by combining three elements: cell–cell adhesion, contact inhibition of locomotion

(Mayor and Carmona-Fontaine, 2010) and larger cell polarisation with higher concentration of the

chemoattractant. The implementation of this mechanism in the CPM is straightforward. cell–cell

adhesion was kept the same as explained above, and the chemoattractant is distributed to form the

same gradient as in the previous paragraph. Every MCS each cell measures the average concentra-

tion of chemoattractant over the surface it covers �ðcÞ (note that this is a scalar). Then, in the copy

biases Y we substitute a new term YCIL to the term Ychemotaxis, with:

YCIL ¼ �
CIL
�ðcÞ

and

�
CIL

¼
�3 if cell attempts spin copy into medium

0 if cell attempts spin copy with another cell

3 if medium attempts spin copy into cell

8

<

:

This definition of �CIL introduces contact inhibition of locomotion by decreasing the probability

that cells copy into each other, and increasing the probability that cells copy into medium.

Evolutionary dynamics
A population of N cells undergoes the cell dynamics described above for the duration of a season,

i.e. t s MCS. At the end of the season the evolutionary dynamics take place. The evolutionary dynam-

ics are decoupled from the cell dynamics for the sake of simplicity, and consist of fitness evaluation,

cell replication with mutation, and cell death to enforce constant population size. The evolutionary

experiments last 400 seasons - that is, 400 cycles of mutation-selection-dynamics. This value is larger

than the time to reach evolutionary steady state in all simulations. Changes in t s result in qualita-

tively different evolutionary dynamics, as reported in the main text.
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Fitness evaluation
Fitness, that is, the probability of replication, is calculated at the end of each season for each cell.

We do not include any explicit advantage or disadvantage due to multicellularity, and instead

assume that fitness is based only on individual properties of the cells. Therefore, any multicellular

behaviour is entirely emergent in this simulation.

The fitness FðcÞ of a cell c 2 C depends only on the distance d ¼ dðcÞ of the centre of mass of a

cell c from the peak of the gradient as a sigmoid function which is maximal when d ¼ 0, and

decreases rapidly for larger values of d:

FðcÞ ¼
1

1þ hd
d

� �2

with hd being the distance at which FðcÞ ¼ 1=2.

Fitness cost of adhesion
In a subset of simulations (see Appendix 4.1) we include a fitness penalty due to the metabolic costs

of maintaining adhesion with other cells. We compute the average amount of boundary a cell has in

contact with other cells over the course of a season hmi. The fitness of a cell FðcÞ at the end of the

season is then multiplied by a decreasing function of hmi. For simplicity we use a linear function:

1� cmhmi, with cm the metabolic cost of adhesion, which can vary in ½0; 1�. With small costs (cm ~ 0)

there is little penalty associated with adhering, whereas with large costs (cm ~ 1) the fitness penalty

punishes adhering cells more severely than non-adhering ones. When cm ¼ 1, a cell that spent the

entire season completely surrounded by other cell has fitness 0, that is, it will not reproduce.

Replication
For each cell i 2 C with fitness FðiÞ, the probability of replicating is

PðcellireplicatesÞ ¼ FðiÞ=
P

c2C FðcÞ. We allow for N replication events, each calculated with the same

probabilities, choosing only cells that were already present in the previous season (so not their off-

spring). Cells with larger fitness may be chosen multiple times for replication.

Each replicating cell divides along its short axis (see e.g. Hogeweg, 2000), ensuring that related

cells start close to each other at the beginning of the new season. One of the two daughter cells,

chosen randomly, can re-enter the competition for replication. All the lattice sites belonging to the

other daughter cell are assigned a new (unique) spin value and the cell can mutate its receptor and

ligand. The bitstrings of the receptor and ligand may be mutated with a per-position probability �R;I .

Mutations flip individual bits (from 0 to 1, and vice versa).

Because repeatedly halving a cell’s area would quickly lead to very small cells, we run a small

number h of steps of the cell dynamics (without cell migration and chemotaxis) between two replica-

tion events that affect the same cell, so that cells can grow back to target size (h ¼ 5 MCS suffices).

Death
After replication, there are 2N cells on the lattice. In order to restore the initial population size N,

half of the cells are removed from the lattice at random. When the initial population size is restored,

the season ends. The new season begins by randomly placing the peak of a new gradient at the

mid-way point of a randomly chosen boundary (different from the previous one). The remaining cells

will then undergo the cell dynamics for the following t s MCS.
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Appendix 1

Collective integration of spatial information drives the evolution of
multicellularity
Collective chemotaxis
1.1 Diffusive exponent approximation
Main text Figure 3d shows the diffusion exponent for adhering and single cells in a cluster. Here we

show how the figure is generated. In general, it is known that estimating single diffusion exponents

from mean square displacement plots of anomalous diffusion is challenging (Kepten et al., 2015).

Moreover, the diffusion exponent changes at different time interval. We therefore estimated the

derivative of the log-log mean square displacement plot after interpolation with a polynomial, as

shown in Appendix 1—figure 1.
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Appendix 1—figure 1. Diffusion exponent approximation. (a) We log-log transformed the data (the

shaded area is the relative error VarðMSDðDtÞÞ=MSDðDtÞ ). (b) We fitted a polynomial function to the

data, then took the derivative of the polynomial function. (c,d) Magnifications of respectively (a) and

(b).
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1.2 Saturation of cluster speed with respect to cluster size
Appendix 1—figure 2 shows that a sublinear and saturating increase of the average speed of a clus-

ter of cells for larger number of cells in the cluster. The average speed of the cluster is obtained

through linear fit of the displacement/time plot, where displacement is measured as the movement

of the centre of mass of the cluster towards the peak of the gradient.
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Appendix 1—figure 2. The speed of a cluster towards the peak of the gradient saturates with larger

cluster sizes. For each cluster size, we ran five independent simulations. Each dot corresponds to

one simulation. Their average (per cluster size) generates the line. All other parameters as in main

text.

1.3 Indistinguishable relative movement of cells with and without a
chemotactic gradient
Here we investigate whether cells in a cluster move differently when they are performing chemotaxis

or not. Appendix 1—figure 3 shows the flow field around moving cells in a cluster with or without a

gradient, as devised by Szabó et al., 2010. In short, the flow field is calculated by taking each cell as

a reference, and then rotating all other cells and their displacement vectors such that the reference

cell displacement points to the right (~d ¼
x

0

� �

). Then the rotated displacement vectors are summed

in bins at defined points in the neighbourhood (using all the cells as a reference, and using different

time points) to obtain the average displacements in the neighbourhood (Szabó et al., 2010). In this

case, the flow field shows that the relative movement of cells in a cluster is the same whether there

is a gradient or not.
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Appendix 1—figure 3. The flow field of a cluster of cells with and without gradient. (a) With

chemoattractant gradient. (b) Without chemoattractant gradient. In both cases N ¼ 50 cells with g ¼

6 are placed at the centre of the field (All other parameters as in main text).

1.4 Chemotaxis with short persistence of migration and small
persistence strength
Appendix 1—figure 4 shows that chemotaxis occurs in a rigid cluster of strongly adhering cells,

albeit at a slower speed than with default parameter (cf. main text Figure 3a). The lower persistence

strength reduces the number of changes in the relative position of cells within the cluster.

Colizzi et al. eLife 2020;9:e56349. DOI: https://doi.org/10.7554/eLife.56349 28 of 39

Research article Computational and Systems Biology Evolutionary Biology

https://doi.org/10.7554/eLife.56349


0 50000 100000 150000 200000
0

50

100

150

200

250

D
is

ta
n
c
e
 f

ro
m

 p
e
a
k
 (

la
tt

ic
e
 s

it
e
s
)

time (mcs)
0 50000 100000 150000 200000

0

50

100

150

200

250

D
is

ta
n
c
e
 f

ro
m

 p
e
a
k
 (

la
tt

ic
e
 s

it
e
s
)

time (mcs)

a b

Appendix 1—figure 4. Chemotaxis of a rigid cluster. (a) t p ¼ 5. (b) �p ¼ 0:5. In both cases N ¼ 50

cells with g ¼ 6 are placed on the right of the field and move towards higher concentration of the

gradient (the semicircle indicates the resource location, where the gradient is highest. All other

parameters as in main text).

1.5 Robustness of collective chemotaxis to changes in persistence
strength
Persistent migration positively affects collective chemotaxis. Appendix 1—figure 5 shows that this

results (main text Figure 3) is robust to changes in the values of �p, provided that �p is sufficiently

larger than zero and not excessively large. When �p ~ 0 persistent migration does not have a large

effect on chemotaxis, and the chemotactic advantage of clusters is less pronounced. When �p>5 the

model begins to break down, as the contribution of persistent migration to the energy function is

too large compared to the other energies, and aberrant behaviour ensues (cells move forever in one

direction regardless of adhesion or chemotaxis).
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Appendix 1—figure 5. Collective vs. individual chemotaxis for different values of persistence

strength �p 2 ½0; 10�. The plots show the displacement over time of the centre of mass of a single cell

(indigo) and that of a cluster of 50 cells (green). Note that the x axis is different in different plots.

The value of �p used in main text is indicated by the Default sign. Three simulations are run for each

parameter combination, except for the Default, where the same data of main text Figure 3a is

shown. (All other parameters as in main text).

1.6 Robustness of collective chemotaxis to changes in chemotactic
strength
Results presented in Figure 3 are qualitatively unchanged (and quantitatively largely unaffected) by

changes in chemotactic strength ��, as shown in Appendix 1—figure 6.

Colizzi et al. eLife 2020;9:e56349. DOI: https://doi.org/10.7554/eLife.56349 30 of 39

Research article Computational and Systems Biology Evolutionary Biology

https://doi.org/10.7554/eLife.56349


0

100

200

300

400

500

d
is

ta
n
c
e
 f

ro
m

 g
ra

d
ie

n
t 

p
e
a
k

0 50000

time (MCS)

0.1

0 50000

time (MCS)

0.5

0 50000

time (MCS)

2.0

0 50000

time (MCS)

5.0

0 50000

time (MCS)

1.0

Default

1 cell 50 cells (centre of mass)

Appendix 1—figure 6. Collective vs. individual chemotaxis for different values of chemotactic

strength �� 2 ½0:1; 5�. The plots show the displacement over time of the centre of mass of a single

cell (indigo) and that of a cluster of 50 cells (green). The value of �� used in main text is indicated by

the Default sign. Three simulations are run for each parameter combination, except for the Default,

where the same data of main text Figure 3a is shown. (All other parameters as in main text).

1.7 Chemotaxis of cells with different AT

We explored the behaviour of different cell sizes and cell number by running simulations where the

total area of the cells is kept constant, NAT ¼ 5000. We expect that large cells move with greater per-

sistence towards the peak of the gradient than small cells, because they perceive a larger portion of

the gradient, thus averaging out noise. Indeed, Appendix 1—figure 7 shows that larger cells per-

form chemotaxis more efficiently than smaller cells, given the same chemotactic gradient.
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Appendix 1—figure 7. Large cells perform chemotaxis more efficiently than clusters of small cells.
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Each line corresponds to one simulation with a given combination of number of cells N and cell size

AT , and shows the distance of the centre of mass of the cluster of cells from the peak of the gradient

over time. We kept the total volume of the cells constant in all simulations (i.e. NAT ¼ 5000). All other

parameters (including the chemotactic signal) are the same as in main text.

1.8 Extraction of straight segments from cell tracks
For the contour plots in Figure 3 of the main text, we extracted straight segments of the cells’ tra-

jectories, then measured the length of this segment and its angle with the direction of the source of

the gradient. To identify these straight segments, we take increasingly longer intervals between the

recorded cell positions, and measure how far the intermediate data points are positioned from the

line spanning these two data points (Appendix 1—figure 8A). As soon as one of the data points has

a distance greater than a threshold, we stop extending the interval and continue from the cell posi-

tion at which the chosen segment ends (the threshold value is set to three lattice sites; this value is

chosen because it is the largest integer smaller than the average cell radius, given a cell area = 50

lattice sites). In Appendix 1—figure 8B, the resulting segments are superimposed on cell position

data from two simulations: one with a single cell and one with a cluster of adhering cells. While the

overlap between the segment and the track itself varies, the length and orientation of the straight

parts of the track are generally well-preserved in the segments.
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Appendix 1—figure 8. Simple algorithm for segment extraction. (a) Visual explanation of the

algorithm, with a cartoon representation of a cell track with cell positions recorded at regular time

intervals. Images 1-4 represent subsequent stages of the algorithm. For 1–3, the maximum distance

of intermediate cell positions is still small enough, while for the segment in image 4 two

intermediate positions are too far away. So the segment in image 3 will be used in the analysis, and

we will start the algorithm from the fourth data point. (b) Two cell tracks from simulations, with the

extracted segments superimposed in red.
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Appendix 2

Evolution

2.1 Adhesion strength distribution for t s ¼ 100� 10
3 MCS

We collected ligands and receptors for all cells over 10 generations after evolutionary steady is

reached, and we calculated for every cell the contact energy with the medium (Jðc1;mÞ) and with all

other cells (Jðc1; c2Þ) within the season in which it lived. A cell c1 adheres to a second cell c2 if their

surface tension relative to medium (Glazier and Graner, 1993) is positive:

gc1 ;c2 ¼ Jðc1;mÞ � Jðc1; c2Þ=2>0. We compared the resulting distribution with the distribution of g val-

ues obtained by generating 105 pairs of ligand and receptors, and calculating g from them. Appen-

dix 2—figure 1 (blue) shows that random cells, on average, are neither adhering nor non-adhering

(the calculated hgi was 0.00). Appendix 2—figure 1 (black) shows the distribution of all vs. all cells

adhesion energy. Cells adhere to one another strongly (hgi ¼ 4:85), and with little variability when

compared to the random ligands and receptors (blue): the calculated variance is respectively (4.95

and 10.95) This method however neglects that cells self-organise within a season to minimise contact

energy. We therefore extracted the adhesion energies of cells that are in contact with one another

during a season and repeated the procedure outlined above. Appendix 2—figure 1 (red) shows

that the surface tension distribution for observed contacts is on average higher and more peaked

than the all vs. all distribution (hgi ¼ 5:82 and variance 3.54).
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Appendix 2—figure 1. Surface tension distribution for a population of cells that evolve adhesion,

compared to the distribution of adhesion strength for randomly generated ligands and receptors.

The data for adhering cells are taken from the same simulation used for main text Figure 5a, over

10 seasons after reaching evolutionary steady state with t s ¼ 100
3 MCS. Black: all vs. all surface

tension distribution (all possible pairwise cell interaction energies tested); red: observed distribution.

All parameters are as in main text Figure 5a. Blue: surface tension of random ligand receptors (105

pairs were generated). AUE: Arbitrary Units of Energy (see Table 1).

2.2 Evolution of multicellularity with alternative values of persistent
migration strength

We tested the robustness of the evolution of multicellularity when the value of persistent migration

strength was changed in the interval �p 2 ½1; 5�. Because the evolution of multicellularity relies on col-

lective chemotaxis, which in turn is sped up by larger values of �p, we expect that multicellularity

evolves at smaller t s when �p is larger. Appendix 2—figure 2 shows that this is indeed the case.

Moreover, it shows that �p ¼ 1, where collective chemotaxis is slow, multicellularity evolves only if

t s>250� 10
3 MCS (we tested t s ¼ 500� 10

3 MCS, which is at the limit of computational feasibility).
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For �p ¼ 5 collective chemotaxis is so fast that no uni-cellular strategy was found (the smallest value

tested was t s ¼ 1� 10
3 MCS).
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Appendix 2—figure 2. The evolution of multicellularity (and uni-cellularity) for different values of

persistent migration strength �p 2 ½1; 5�. For �p ¼ 1, the inset shows the surface tension for t s>200�

10
3 MCS. All other parameters and initialisation are as in main text Figure 5a.

2.3 Evolution of multicellularity with alternative values of persistent
migration strength

. We tested the robustness of the evolution of multicellularity when the value of chemotactic

strength was changed in the interval �� 2 ½0:5; 2�. In general, results were robust in this interval: mul-

ticellularity evolves during sufficiently long seasons (t s), and otherwise the uni-cellular strategy

evolves (Appendix 2—figure 3). We found that the transition to multicellularity happens at longer

seasons for larger values of ��, despite the cluster moving faster (see Appendix 1—figure 6). We

hypothesise that this is due to increased chemotaxis efficiency of individual cells at larger ��.
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Appendix 2—figure 3. The evolution of multicellularity (and uni-cellularity) for different values of

chemotactic strength �� 2 ½0:5; 2�. All other parameters and initialisation are as in main text

Figure 5a.

2.4 Evolution of multicellularity with a 1D gradient

Throughout the main text, the chemoattractant gradient decreases radially from the point where

resources are assumed to be located. As cells migrate closer to the peak of the gradient, chemoat-

tractant concentration isoclines are more curved, meaning that the direction of the gradient is pro-

gressively more precise, and thus chemotaxis may speed up. We tested if results are robust to

modifying the gradient so that isoclines are straight and parallel. We ran a series of evolutionary sim-

ulations assuming that resources are distributed on the entire side of the lattice (instead of only on

one point), so that chemoattractant concentration isoclines are straight lines, and we let the side

change randomly every season. The numerical value of chemoattractant concentration at any point is

given by the same function as for the radial gradient (see Materials and methods)

�ðdÞ ¼ 1þ ðk�=100ÞðL� dÞ, where d is here the distance of the point from the side of the lattice

where the concentration is largest. Fitness is then evaluated based on the distance from the side of

the lattice, with the same fitness function as in Materials and methods (FðdÞ, where d is the distance

of the centre of mass of the cell from the side of the lattice where the concentration is largest).

Results were largely unaffected by this change (Appendix 2—figure 4). Multicellularity evolves

for t s>50, which is only a slightly longer seasons duration than in main text Figure 5.
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Appendix 2—figure 4. The evolution of multicellularity (and uni-cellularity) when resources are

spread for a chemoattractant gradient that decreases parallel from resources distributed on the

entire side of the lattice. All other parameters and initialisation are as in main text Figure 5.

2.5 Evolution of multicellularity with a steep noiseless gradient

In the main text, the gradient is chosen such that individual cells perform chemotaxis inefficiently, as

this provides a selectable incentive to aggregate when seasons are sufficiently long. When seasons

are short, a uni-cellular strategy evolves where cells undergo fast dispersal after replication. Here we

test the robustness of these results when the gradient is very steep, that is, k� ¼ 10, and noiseless,

p�¼0 ¼ 0. We found that multicellularity evolves at much shorter seasons (t s � 5� 10
3 MCS) than in

main text (Appendix 2—figure 5). This is because collective chemotaxis is faster than individual
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chemotaxis, and because the uni-cellular strategy is slower than chemotaxis when the gradient infor-

mation is precise.
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Appendix 2—figure 5. The evolution of multicellularity (and uni-cellularity) with a steep, noiseless

gradient (k� ¼ 10, p�¼0 ¼ 0). All other parameters and initialisation are as in main text Figure 5.
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Appendix 3

Alternative chemotaxis mechanism
3.1 Evolution of multicellularity when a cell cluster - but not individual cells -
can perform chemotaxis

In the main text, we showed that the emergent organisation of a cluster of adhering cells increases

the efficiency of chemotaxis and can be exploited as an indirect selection pressure for evolving adhe-

sion when seasons are sufficiently long. Main text results are based on the assumption that individual

cells are able to perform chemotaxis, albeit inefficiently. Here show that relaxing this assumption

does not change results. To this end, we implemented a model developed by Camley et al., 2016

where collective chemotaxis emerges from the combination of contact inhibition of locomotion and

stronger cell membrane polarisation when the chemoattractant concentration is larger. Because indi-

vidual cells can only sense the concentration of the signal (and does not perceive the direction of the

gradient), chemotaxis can only emerge as a property of a cell cluster. We modified the energy func-

tion by replacing the chemotaxis term with a new term that favours extension of cells into the

medium in a concentration dependent manner and disfavours extensions towards other cells (with

strength �CIL, see Materials and methods Section).

In Appendix 3—figure 1a we show that individual cells do not sense the gradient and therefore

perform random walks, while adhering clusters move efficiently up the gradient through emergent

chemotaxis. In Appendix 3—figure 1b we show that this alternative form of collective behaviour

leads to similar results as in main text: multicellularity evolves for sufficiently large values of season

duration t s, and a uni-cellular strategy based on dispersal evolves for shorter season duration.
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Appendix 3—figure 1. Emergence of collective behaviour and evolution of multicellularity are

robust to changing the mechanism of chemotaxis. (a) The emergence of collective chemotaxis when

individual cells cannot sense the gradient; (b) the evolution of multicellularity (and uni-cellularity)

under these conditions. �CIL - the strength of contact inhibition of locomotion is defined in the

Materials and methods section. All other parameters and initialisation are as in main text Figure 5.
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Appendix 4

Evolution with cost
4.1 The effect of costly adhesion on the evolution of multicellularity

In the main text, we showed that the indirect benefit of collective chemotaxis is sufficient to select

for multicellularity when seasons are sufficiently long, and otherwise a uni-cellular strategy evolves.

Here we explicitly incorporate costs for multicellularity. We assume that a metabolic cost is paid to

maintain adhesion between cells. In one MCS, a cell incurs a cost proportional to the fraction of its

boundary that is in contact with other cells cmhmi. This cost is summed for the duration of a season,

so that cells that spend a long time in contact with other cells incur a larger metabolic cost. At the

end of the season, a fitness penalty proportional to the overall (per-season) cost of adhesion is

applied to each cell. For cm ¼ 0 this model reduces to the main text model, i.e. there are no costs for

adhering with other cells. The maximum cost of adhesion is scaled to cm ¼ 1; in this case, a cell that

is completely surrounded by other cells for the entire duration of a season (i.e. hmi ¼ 1) will not

reproduce at all - effectively making dispersal the only viable strategy. Overall, this formulation of

costs decreases fitness for cells that spend more time in contact with others. See main text Materials

and methods for details.

We studied the evolution of multicellularity with costly adhesion for several value of the metabolic

cost cm 2 ½0; 0:75�, over a range of season duration t s 2 ½10; 100�3 MCS. Results are shown in Appen-

dix 4—figure 1. Results are identical to main text Figure 5 when costs are small (cm<0:01): multicel-

lularity evolves when t s � 50� 10
3 MCS. With larger costs 0:1 � cm � 0:5, the evolution of

multicellularity is shifted to larger season duration. Only when costs are sufficiently large (cm ¼ 0:75),

multicellularity did not evolve over the values of t s that we tested. Altogether, the evolution of mul-

ticellularity for longer season duration is a robust outcome of the model, provided that the cost of

adhesion is not too high.
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Appendix 4—figure 1. The evolution of multicellularity (and uni-cellularity) when adhesion is costly.

Different lines correspond to the evolutionary steady state at different season duration t s for

different values of costs cm, as indicated in the figure. All other parameters and initialisation are as in

main text Figure 5.
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