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Abstract 
Background: The advent of single-cell RNA sequencing (scRNAseq) 
and additional single-cell omics technologies have provided scientists 
with unprecedented tools to explore biology at cellular resolution. 
However, reaching an appropriate number of good quality reads per 
cell and reasonable numbers of cells within each of the populations of 
interest are key to infer relevant conclusions about the underlying 
biology of the dataset. For these reasons, scRNAseq studies are 
constantly increasing the number of cells analysed and the granularity 
of the resultant transcriptomics analyses. 
Methods: We aimed to identify previously described fibroblast 
subpopulations in healthy adult human skin by using the largest 
dataset published to date (528,253 sequenced cells) and an 
unsupervised population-matching algorithm. 
Results: Our reanalysis of this landmark resource demonstrates that a 
substantial proportion of cell transcriptomic signatures may be biased 
by cellular stress and response to hypoxic conditions. 
Conclusions: We postulate that careful design of experimental 
conditions is needed to avoid long processing times of biological 
samples. Additionally, computation of large datasets might 
undermine the extent of the analysis, possibly due to long processing 
times.
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Introduction
The quest for deciphering the underlying biology of numerous phenomena at the single-cell level has exponentially
increased the number of published single-cell RNA sequencing (scRNAseq) studies.1 Additionally, individual studies are
gradually increasing in scale, and in most tissues a correlation between the numbers of cells sequenced and the number of
identified cell types is found.1 Unfortunately, many (if not most) of the studies concentrate their efforts on individual
dataset analyses and perform relatively little correlative study to meta-analyse previously published scRNAseq datasets.
However, the amount of information that could be retrieved from the already existing corpus of literature is enormous.2

Within identified cell clusters (what we normally would define as ”cell types”), the existing cell heterogeneity may be
indicative of cell subsets that respond to particular conditions (such as cell cycle phase, cell stress, response to local
signals, etc.) or reflect underlying functional/positional differences.3-6 It is thus of utmost importance that the scientific
community interested in a specific tissue or cell type agrees on the existing subsets within particular cell types and their
defining molecular profiles, so that a common reference atlas may be used to understand homeostasis and response to
varying insults.7

In a re-analysis of 13,823 human adult dermal fibroblasts obtained from four independent scRNAseq studies,8-11

we recently proposed that human skin presents a common set of fibroblast subsets, irrespective of donor area.12 These
subsets can be categorised into three main fibroblast types (type A, B, and C), with a total of 10 minor subpopulations
(A1–A4, B1–B2, C1–C4). In a recent landmark paper published in Science, Reynolds et al. produced a dataset of
528,253 sequenced cells obtained from healthy adult skin (five female patients undergoing mammoplasty surgery) and
fetal samples, as well as inflamed skin from atopic dermatitis and psoriasis patients.13 In healthy dermal fibroblasts, the
authors described three populations: a main cluster termed Fb1, and two minor subpopulations, Fb2 and Fb3. Fb2 was
additionally described as enriched in fetal and inflamed skin samples.13 We aimed to analyse whether the Fb1, Fb2 and
Fb3 populationswere consistent with theA–C fibroblast types and subtypes that we had just described.More specifically,
we reasoned that at least the most abundant subpopulations that we had defined, namely A1, A2, B1 and B2, should be
clearly detected in a >500k cell dataset, thus further validating our previous scRNAseq study. In contrast, we found
that a substantial proportion of the Reynolds et al. scRNAseq dataset shows a predominancy of differential expression of
stress and hypoxia-related genes. Thus, data extracted from this source should be interpreted in the light of this bias. It is
possible that other existing large datasets suffer from similar methodological problems, whichmight be due to insufficient
oversight.

Methods
Preprocessing of fibroblast sample data
Fibroblast sample data originated from five donors, as described by Reynolds et al.,13 and were processed from raw fastq
files (E-MATB-8142). The ID numbers are 4820STDY7388991 [S1], 4820STDY7388999 [S2], 4820STDY7389007
[S3], SKN8104899 [S4], SKN8105197 [S5]. Fastq files were processed using the loompy fromfq pipeline
described in https://linnarssonlab.org/loompy/kallisto/index.html. Loompy (RRID:SCR_016666) and kallisto (RRID:
SCR_016582) versions are 3.0.6 and 0.46.0. Genome fasta index and annotations were based on GRCh38 Gencode v31
(RRID:SCR_014966). Additionally, for other annotations and analysis of other populations, the processed h5ad adata
from13 was downloaded from the Zenodo repository (ID: 4536165).

Each individual sample (S1–C fibroblast types and subtypes that we had just descS5) data was processed equally
using the following scanpy (RRID:SCR_018139, v1.7.0rc1)14 procedure. To map the clusters from the original
publication, cells from the processed data set were extracted and mapped to the samples. Genes with fewer than
30 counts were discarded. The sample was normalised (sc.pp.normalize_per_cell) and log-transformed. Then,
Principal Component Analysis (PCA) with 30 components was calculated and feature selection was performed with
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triku15 (RRID:SCR_020977, v1.3.1), and kNNwith cosinemetric were computed. Finally, UMAP (RRID:SCR_018217,
v0.4.6)16 and leiden (v0.8.3)17 were applied to detect the fibroblast populations.

Most of the cells from the preprocessed adata were mapped to the raw dataset. However, additional unmapped cells
appeared, some of them related to other cell types (e.g. keratinocytes, immune cells or perivascular cells). To assign
unmapped cells to their corresponding cell types a population matching algorithm was applied (described below). This
algorithm requires a dictionary of cell types and markers. The markers used were the following:

• Fibroblast: LUM, PDGFRA, COL1A1, SFRP2, CCL19.

• Perivascular cell: RGS5, MYL9, NDUFA4L2.

• Erithrocyte: HBB, HBA2, HBA1.

• Immune cell: TPSB2, TPSAB1, HLA-DRA, FCER1G, CD74.

• Melanocyte: PMEL, MLANA.

• Endothelial vascular cell: CLDN5, PECAM1.

• Keratinocyte: DMKN, KRT1, KRT5.

• Mitochondrial content (low quality): MTND2P8, MTND4P12, MTCO1P40, ADAM33, RN7SL2, MTRNR2L6.

Once cell types have been assigned, non-fibroblast cells were discarded, and the PCA, triku, kNN, UMAP, leiden cycle
was repeated to recalculate the new cell projection.

The sample S5 was discarded from the analysis due to its lack of SFRP2 expression, a well established fibroblast marker
that is expressed in the rest of samples.12

Then, we separated the Fb2 population from the Fb1 and Fb3 populations for each dataset and applied the population
matching algorithm to annotate themwith the labels assigned from.12 The genes used for the population assignation were
the following:

• A1: PI16, QPCT, SLPI, CCN5, CPE, CTHRC1, MFAP5, PCOLCE2, SCARA5, TSPAN8

• A2: APCDD1, COL18A1, COMP, NKD2, F13A1, HSPB3, LEPR, TGFBI

• B1: CXCL2, MYC, C7, SPSB1, ITM2A

• B2: SOCS3, CCL19, CD74, RARRES2, CCDC146, IGFBP3, TNFSF13B

• C: CRABP1, PLXDC1, RSPO4, ASPN, F2R, POSTN, TNN

Next, all datasets with Fb1 and Fb3, or Fb2 populations were joined. We applied the previous processing routine and, to
correct for batch effects, we used bbknn (v1.4.0)18 with metric=angular and neighbors_within_batch=2
parameters.

To analyse the transcriptomic profile between Fb1 and Fb3, and Fb2 populations, we joined the two datasets and applied
the same processing pipeline as before. We first characterised the genes driving the differences by obtaining the DEGs
between the two sets of populations, and running GOEAwith the first 150 DEGs of each category. The set of ontologies
used wasGO Biological Process 2018with the module gseapy (v0.10.4).19 Then, to assess that the differences were due
to cellular stress in the Fb2 population, we downloaded the lists of genes mentioned in the Results section (gene lists are
available in the Github repository below), and genes appearing in more than two lists were selected. Then, the population
matching algorithm was run against this list, and clusters with scores lower than 0.55 were assigned as ”Non-stress”
clusters.
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To analyse the differences in transcriptomic profiles within Fb1 and Fb3 populations, we obtained the DEGs between the
two sets of A2 populations, which were the easiest to separate in clusters. By using that list of DEGs, we applied the
population matching algorithm and divided the Fb1 and Fb3 populations into two halves. We then obtained the DEGs
between the two halves and ran GOEAwith the first 150 DEGs of each category, which revealed a hypoxia pattern in one
of the halves. To assess that the differences were due to hypoxia, we downloaded the lists of hypoxia-related genes, and
genes appearing in more than two lists were selected. Since some key genes (some glycolysis genes, or important genes
appearing in one list) were missing, they weremanually added to obtain amore robust list. Then, the populationmatching
algorithm was run against this list, as well as the list of stress-related genes, and clusters with scores lower than 0.5 were
assigned as ”Normal” clusters.

To replicate the analysis on the rest of the cell types, we used the processed h5ad file.

Correction of stress and hypoxia cell states
In order to correct for stress and hypoxia cell states we used thesc.pp.regress_out implementation from scanpy on
the stress and hypoxia scores. We first created two sub-datasets, one containing stress and normal cells, and another one
with hypoxia and normal cells, and then the scores were regressed out. Finally, the common processing pipeline was
applied. Additional correction methods can be seen in the notebooks in the Zenodo repository.20

Population matching algorithm
The aim of this algorithm is to assign a set of clusters to a set of labels, where each label contains a list of representative
markers. For each label we extracted the matrix of counts of the genes belonging to the label. Then, we created a new
matrix, wherewe assigned to each cell and gene the sumof the counts of the genewithin its kNN, divided by the number of
neighbours. This step reduced the noisiness of the expression, and also exacerbated the local expression of a gene and
dampened the expression of sparse genes.

Gene expression values were substituted by the ranked index of their expression; and the values were divided by the
largest index to sum 1. Therefore, the cell with the highest expression had a value of 1 for that gene, while the lowest
expressed cell had a near 0 value. After this normalisation was applied to the rest of genes within the label, themean of the
normalised values across genes was computed, so that each cell had one value for that label.

After the previous steps were computed for the rest of labels, a new matrix with the number of clusters by the number of
labels was computed. For each label and each cluster, the percentile of the normalised values within cells of that cluster
was computed (percentile 70 by default). This helped reduce noise on normalised values, and assigned a unique number
per cluster.

This algorithm allowed choosing for intermediate states, that is cell labels with a high similarity. By default, the label
with the highest score per cluster was chosen.With the intermediate state option, labels that had a similar value as the label
with the highest value were included. The difference in values was set as a threshold (0.05 by default), and labels with a
difference of a value greater than the threshold were not merged.

Results
Reassessment of the main cell populations in a large skin dataset reveals the presence of clusters with
stress- and hypoxia-related gene signatures
By using an unsupervised population-matching algorithm (details in processed notebooks available online20) we
observed that in each of the healthy donors analysed by Reynolds et al.,13 at least two independent fibroblast clusters
expressed signature markers of the A1, A2, B1 and B2 populations. One set of cells corresponded to the Fb2 population,
and the second set corresponded to the Fb1 and Fb3 populations. A joint analysis of all donors after batch effect correction
showed that the cluster duplication observed in each individual donor could be replicated jointly. We therefore assumed
that some global effect should be affecting the cells, i.e. Fb2might be a copy of Fb1+Fb3 cells, although perhaps affected
by some alteration. Differential gene expression (DEG) analysis between Fb2 and Fb1+Fb3 revealed an enrichment in
ontology terms associated to cell stress (e.g. unfolded protein response, regulation of apoptotic process, mRNA catabolic
process). We then designed a signature gene list composed of 50 DEGs commonly associated to stress in very different
scRNAseq settings (e.g. ATF3, BTG2, FOS, FOSB, GADD45B, HSPA1A/B, IER2/3, JUN, JUNB, NFKBIA, NR4A1/2,
PPP1R15A, RHOB).21-25 Using this signature, the Fb2 population over-expressed BTG2, EGR1, FOSB, IER2, SOCS3,
and ZFP36, among others, indicating that these cells clustered together mainly due to cellular stress.

In a further analysis of the Fb1 and Fb3 cells, we observed that the A1, A2, B1 and B2 populations appeared twice again.
A DEG analysis between each pair of duplicated populations disclosed genes in one of the split populations that were
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related to glycolysis (ALDOC, ENO2, GAPDH, PGK1, PDK1, PFKFB4, PYGL), cell integrity, hypoxia and apoptosis
(BNIP3, BNIP3L, ANGPTL4, LOX, HILPDA); whereas the second split population over-expressed units
of the mitochondrial ATPase and complex I, indicating an active oxidative metabolism. It is well known that cells
under hypoxic conditions switch from aerobic to anaerobic metabolism to keep energy homeostasis within the cell.26-28

We therefore generated a curated list of hypoxia-related genes, and managed to separate the non-hypoxic from the
hypoxic groupwith the population-matching algorithm. Once stressed or hypoxic cells were removed on the basis of a set
threshold of expression of signature genes, wemapped themain types of fibroblasts in what we termed normal cell subset
of Reynolds et al. (Figure 1A). Fibroblast A1, A2 and B2 populations were independently mapped, and we also found
clusters which seemingly were mixtures of previously defined populations e.g. B1/B2, A1/A2, or A2/B2. No type C
fibroblasts were detected.

To understand whether the stress and hypoxic signatures were only present in fibroblast subsets or could also be traced to
other populations within the Reynolds et al. dataset, we mapped the stress and hypoxia gene signatures to perivascular
cell, keratinocyte, vascular endothelial cell, lymphoid cell, and antigen presenting cell (APC) clusters. In our reanalysis of
healthy donors, fibroblasts, perivascular cells, keratinocytes, and vascular endothelial cells showed clear hypoxia and
stress-related clusters (Figure 1B). For instance, the VE3 population, described by Reynolds et al. as increased in patients
suffering from inflammatory conditions, presented a clear stress-related transcriptomic profile. On the other hand,most of
the VE2 population over-expressed hypoxia-related genes. On lymphoid cells we did observe a sub-cluster of stressed
Tc/Th cells but no clear hypoxic profiles. On APCs, an inflammatory macrophage cluster showed hypoxia, and the M2
and DC2 clusters showed stress-related profiles. Some of these results may be expected in physiological conditions for
immune cells, but others could be attributed to sample handling.

Finally, we tested if the aforementioned stress and hypoxia related signatures were present in the previously published
scRNAseq datasets of human skin.8-11 The levels of expression of these genes were clearly higher in the Reynolds et al.
dataset as compared to other available resources (Figure 2).

Correction of stress and hypoxia signatures shows that stressed cells show a non-recoverable gene
signature
Since the stress and hypoxia related expression profiles are apparent, we were interested in studying the ”reversibility” of
the transcriptomic signatures, and creating a normalised dataset where hypoxic and stressed cells could merge with the
normal cells, and classifying the whole dataset into the original cell types described in.12 To this end, we applied two
approaches with similar results. On the one hand, we considered cell states as batches, and applied batch effect correction
with bbknn and harmony. On the other hand, we applied regression on the stress and hypoxia scores shown in Figure 2
based on the Seurat’s linear regression function implemented in scanpy. Since both approaches showed similar results,
we show the results of the latter case in Figure 3.

To further study if stress and hypoxia transcriptomic profiles are ”recoverable”, we generated two types of datasets, one
each with the stress or hypoxia cells, and another one containing normal cells. When applied the correction to the stress +
normal dataset we observed that there was no integration between the two states (Figure 3A). On the other hand, there was

Figure 1. A re-analysis of the Reynolds et al. dataset in search of dermal fibroblast subpopulations reveals
the presence of substantial proportions of stressed and hypoxic cells. (A) UMAP plot of normal fibroblasts
(after removal of hypoxic and stressed cell subsets) reveals conservation of some, but not all, cell types previously
described in independent datasets.12 (B) UMAP plot of fibroblast, vascular endothelium, pericyte, keratinocyte,
lymphoid and APC cell populations from healthy donors, labeled to highlight hypoxic and stressed cell subpopula-
tions as characterized by overexpression of defined gene signatures.
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a good integration between the hypoxia and normal cell states (Figure 3B), and the main fibroblast populations could be
correctly mapped (Figure 3C). From these results we infer that the transcriptome from stressed cells is much more altered
than the one from hypoxic cells, to the extent that stressed cells are in a computationally non-reversible state.

Analysis on running times of the Reynolds dataset with different numbers of cells
The Reynolds dataset contains, after some basic filterings, approximately 450k cells. We became interested in
analysing the runtimes of a standard single-cell pipeline procedure – consisting on quality control, PCA, graph neighbor
construction, dimensionality reduction, clustering and DEG calculation – using different cell numbers, to see how this
analysis is scaled. The results of the analysis are observed in Figure 4 and detailed in Supplementary Table 1.

The analysis shows that running the pipeline a single time in the whole dataset in a working station takes approximately
1 hour. The parts with the longest running times are the batch, clustering and DEG calculation. Additionally, when
analysing trends in the processing times, we observe an inflection point at around 30,000 cells, marking two clear runtime

Figure 2. Stress and hypoxia-related signatures in published human dermal fibroblast datasets. (A) UMAP plot
of normal fibroblasts (after removal of hypoxic and stressed cell subsets) reveals conservation of some, but not all,
cell types previously described in independent datasets (1). (B) UMAP plot of human dermal fibroblast subsets as
defined in12 are shown here for five published datasets,8-11,13 and depicted by the average levels of expression of
stress and hypoxia gene signatures.

Figure 3. Dataset merging of stress and hypoxia populations show mixed degrees of integration with the
”normal”dataset. (A) UMAPplot ofmerged ”stress” and ”normal” cells. There is a lowdegree of integration between
both cell types. (B) UMAP plot of merged ”hypoxia” and ”normal” cells. There is a high degree of integration between
both cell types. (C) Unsupervised assignation of fibroblast types from (B) reveals, similar to results from Figure 1A,
major fibroblast types.
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trends. For higher numbers of cells, the processing times are further increased – 2.1 times per doubling of cells – compared
with a lower number of cells – 1.5 times per doubling of cells.

For good measure, a single run of this pipeline analysis on a extended dataset with 1M cells would take 2 hours and
25 minutes.

Discussion
The results from the efforts to compare, correlate, and compile the information present in available scRNAseq datasets
could be condemned to short longevity since they can be overpassed by new resources that appear almost on a daily basis.
However, it is to be expected that, at some tipping point, robust cell types and subtypes will be fully defined for each tissue
and organ. Then, new scRNAseq datasets will only add information on the transcriptomically defined cell states of each of
the robustly defined cell subpopulations, in response to specific perturbations such as injury or disease.

Here, we aimed to validate results we had obtained with a few thousand cells with a large scRNAseq dataset including
over half a million cells. Instead, we have found that clustering of this large dataset shows an apparent pattern of
expression of stress and hypoxia-related genes. In our opinion, the origin of stress- and hypoxia-related signatures in
healthy donor cells might be caused by two factors: a tough tissue processing that put the cells under stress and hypoxia,
and an underdeveloped analysis caused by the long processing time derived from the high number of cells, which
hindered the detection of bad quality cells and propagated this artefact downstream the analysis.

The first factor is related to the very exhaustive and complex protocol for cell isolation chosen by authors. The top
200 μm-thick layer of the skin was cut with a dermatome, digested with dispase (1 h at 37°C) to separate dermal and
epidermal layers. Both layers were digested in collagenase for 12 h at 37°C, cells were filtered and subjected to
FACS sorting before library generation and sequencing.13 While this strategy warrants high purity of the obtained cell
populations, the long processing times (≥16 h) and the use warm dissociation for a long period might have significantly
affected patterns of gene expression of relevant numbers of cells in this setting. In this sense, aiming to process large
numbers of cells involves longer processing times. High processing times (even ≥ 60’) have previously been reported
to generate significant transcriptomic alterations.21,25 and, in particular, warm dissociation is associated with stress
response,29 which is apparent in the transcriptomic profiles of part of the cells . An alternative to warm dissociation may
be the use of cold-active psychrophilic proteases.30

The second factor is related to the computational and analytic challenges of such a complex dataset. As it has been
observed in Figure 4, runtime of analytic pipelines vastly increase with the numbner of cells. Thus, if the processing time
is expected to be the same for a small dataset and a big dataset, due to the low time to perform a beginning-to-end analysis
adapted to the current fast-paced times of publication, this leads to a more shallow exploration at the initial stages. Before
a pipeline is run on a single-cell dataset, researchers usually have to spend some time doing an exploratory analysis, where
they select the cutoff values for quality control, explore different batch effect removal methods, or tune the parameters for
clustering, neighbour graph calculation, and other steps in the pipeline.

Figure 4. Running times of a basic single-cell pipeline on Reynolds dataset. For each number of cells, three
running times are collected, and the mean (horizontal bar) and standard deviation (vertical bar) are shown. For the
[1k - 20k] and [50k - 400k] intervals, two linear regressions were trained and extended outside of these intervals
to show that there is a change in the processing time rate at ~30k cells. A doubling in the cell number implies
1.48 times more runtime in the [1k - 20k] interval, and 2.14 times in the [50k - 400k] interval.
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These decisions are made on the basis of the output of the differently-preprocessed versions on downstream analyses:
how the datasets look on UMAP plots, how robust their DEGs are, etc. Usually, this part of the analysis requires several
reruns of the same pipeline to find the best parameters and obtain an overall view of the limitations of the dataset and the
general information elements that will be obtained from it. This means that single-cell pipelines are not a linear, but rather
an iterative process where researchers have to make decisions based on the output of previous steps. As a consequence, if
the results from initial stages of the analysis are overlooked and biases go unnoticed, these effects propagate downstream
the pipeline – e.g. observing differences in healthy vs diseased samples, search for rare populations, pathway/ontology
analysis, or RNA velocity analysis – and artefacts can be presented as genuine results, hindering the dissemination of
quality results to the scientific community.

In conclusion, understanding skin fibroblast heterogeneity is of great relevance not only in skin homeostasis, but also in
ageing11,31 and disease.32-36 We sincerely hope these reanalyses help further advance the field of single-cell transcrip-
tomics of human skin. Further refinement of fibroblasts subsets and their identity-defining features will provide a
fruitful framework for the advancement of knowledge as well as for the development of novel therapeutic approaches in
dermatological disease and skin cancer.

Data availability
Extended data
Repository: Extended data for “The need to reassess single-cell RNA sequencing datasets: the importance of biological
sample processing”. https://doi.org/10.5281/zenodo.6324956.37

This project contains the following underlying data:

Supplementary Table 1 (Processing times of different elements of the single-cell pipeline, varying the number of cells
analysed).

Data are available under the terms of the license Creative Commons Attribution 4.0 International.

Software availability
Notebooks to replicate this work can be found at: https://github.com/alexmascension/revisit_reynolds_fb.

Processed notebooks and AnnData files can be found at: https://doi.org/10.5281/zenodo.4596374.20

License: Creative Commons Attribution 4.0 International.
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for all publications and it is the only way for scientists to share and re-use the published data 
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We thank the reviewer for the helpful and insightful comments. We will now comment on 
the issues point-by-point. 
 
The title ‘more is not always better’ can be discussed and reconsidered 
 
This comment is also in line with the other reviewer. Therefore we have changed the title to 
focus the paper mainly on biological sample processing. 
 
The authors should  probably  give  advice  on  careful  dissociation  methods  when  retrieving  a  
large  number of  cells. 
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We agree with this excellent point. The original article had already quoted the reference by 
Denisenko et al (2020) where the importance of cold dissociation was demonstrated. The 
use of cold active psychrophilic proteases has been proposed to avoid use of enzymes that 
need incubation at 37ºC (Potter and Potter, 2019). Both references are now included in the 
text. 
 
[...] the authors did not give an extensive discussion on data analysis effort in analyzing the large 
dataset 
 
We analyzed the dadaw- Source code can be located as scripts in the GitHub repository 
https://github.com/haniffalab/HCA\_skin as well as in the Zenodo repository 
https://zenodo.org/record/4249674. Although the scripts from the GitHub repository are 
conveniently ordered and are legible, the Zenodo repository does not include the output 
results and intermediate figures from the scripts, so we were unable to check the values 
and intermediate results. Also, for some parts of the scripts, further commenting would 
have been appreciated. Additionally, we observed that the file structure of the GitHub and 
Zenodo repository were not comparable. For instance, the \textit{Pipeline} folder with the 
structured analysis is lacking in the Zenodo repository, although some of its scripts are 
scattered through different folders. Another issue from the GitHub repository is that 
analysis scripts were uploaded in their final form to the repository (commits 1766cd, 9b520f, 
9a361e and 123b7d, 8 Dec 2020). Considering that scripts from Zenodo were uploaded on 
November, some efforts to tidy the GitHub repository were made afterwards. However, a 
quick look at the scripts from the different sections shows a lack of variable consistency and 
file I/O, which implies a lack of reproducibility on their scripts. Additionally, despite a 
succinct explanation of the README file of the GitHub repository, the lack of commentaries 
on the scripts and the apparition of entire scripts that are not reflected in the methods 
difficult any replication effort. 
 
Regarding the initial analysis of the dataset, from the python scripts we observed a set of 
common thresholds for all batches (n\_genes $<$ 6000, n\_genes $>$ 400, n\_counts $>$ 1000, 
percent\_mito $<$ 0.2). Although this is common practice, maybe a thresholding per batch 
would have been more convenient. For instance, we observed that sample SKN8105197 
does not provide enough consistency in fibroblast marker expression. For convenience, this 
sample was removed from the analysis. 
 
After QC and feature selection, bbknn is run with default parameters, although in other 
notebooks harmony has also been partially used. bbknn seems to be favored as the 
reference batch correction method. The lack of commit history does not allow us to look for 
previous attempts with other methods. 
 
In the Pipeline/02 folder we found some scripts that use a logistic regression model for 
label stability prediction. We do not observe this script in the methods section. 
 
In the Pipeline/03 folder we observe that an enhanced reclustering was made with hand-
picked DEGs which, according to the authors, favored the separation of clusters. 
Interestingly, some of these DEGs are found on the hypoxia/stress lists (ZFP36, HSPA1A, 
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HSPA1B, DNAJB1, JUNB, ATF3, SOCS3, GADD45B, FOS), and others are ribosomal protein 
associated genes (RPL22, RPL37, RPL34). In our opinion, the selected DEGs might bias the 
reclustering for the segregation of hypoxic and stress populations. 
 
It is also appropriate for the authors to comment on the data retrieval process of the analyses 
dataset, and to encourage the authors of the original paper to annotate their data properly and 
clearly 
 
Regarding the data retrieval process, neither the GitHub nor the Zenodo repositories host 
the code for data retrieval and preprocessing described in materials and methods.  

Competing Interests: No competing interests

Reviewer Report 01 December 2021

https://doi.org/10.5256/f1000research.58386.r98248

© 2021 Long X et al. This is an open access peer review report distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

Xiao Long  
Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of 
Medical Sciences, Beijing, China 
Zhujun Li  
Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of 
Medical Sciences, Beijing, China 

The study reanalyzed data from several single-cell RNA sequencing resources, proposing an 
interesting point that a larger number of cells could lead to compromised results. It is well 
designed and conducted. Bioinformatic and statistic methods were valid. 
 
The authors brought up an interesting point of view. However, large numbers of cells might not 
have a definite positive correlation with longer processing time. For example, as the authors 
discussed, the choice of the method during tissue processing could be an important contributing 
factor to the biased results. Therefore, the conclusion should focus more on the bias caused by 
processing time and choice of method, and maybe quality control measures, instead of larger cell 
numbers, because that would require further experiments and analysis to rule out these 
confounding factors.
 
Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
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Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Partly
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We confirm that we have read this submission and believe that we have an appropriate level 
of expertise to confirm that it is of an acceptable scientific standard, however we have 
significant reservations, as outlined above.

Author Response 02 Mar 2022
Ander Izeta, Biodonostia Health Research Institute, San Sebastian, Spain 

We thank the reviewer for the insight on focusing more on the biological processing of the 
sample. Although we are limited by the information from the article, we believe that a poor 
execution of the sample processing is a leading factor inducing the artifacts from the 
analysis. Indeed, we added some references supporting the claim that a general stress 
transcriptomic profile is produced by the long times that cells endured warm dissociation. 
 
However, we believe that the high processing time and its probable consequence of 
insufficient analytical insight at the dataset cannot be ignored. In fact, we added a new 
figure (Figure 4) showing a relevant increase in running times when increasing number of 
cells analyzed. Additionally, We have observed a trend in publications at top-ranked journals 
that consist of the presentation of datasets with a diverse and complex set of cells, but 
which lack an in-depth analysis and do not produce biological results with enough insights. 
This trend affects, in the end, the quality of the datasets. In our opinion, this might be 
related to the limited time data scientists have been able to iterate analyses with that 
dataset. 
 
We thus postulate that prospective authors should revise sample processing strategies as 
well as data analysis protocols, so that sampling errors can be pinpointed and corrected 
upstream in the analysis pipeline. In conclusion, we have reformulated our statements to 
increment the importance of biological sample processing as suggested by the reviewer.  
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