
Frontiers in Endocrinology | www.frontiersi

Edited by:
Tomoko Aoyama,

University of Auckland, New Zealand

Reviewed by:
Patricia Cristina Lisboa,

Rio de Janeiro State University, Brazil
Yuko Nakamura,

The University of Tokyo, Japan
Takahiro Osada,

Juntendo University, Japan

*Correspondence:
Patricia Pelufo Silveira

patricia.silveira@mcgill.ca

Specialty section:
This article was submitted to

Pediatric Endocrinology,
a section of the journal

Frontiers in Endocrinology

Received: 23 February 2022
Accepted: 14 April 2022
Published: 23 May 2022

Citation:
Dalle Molle R, de Mendonça Filho EJ,

Minuzzi L, Machado TD, Reis RS,
Rodrigues DM, Mucellini AB,

Franco AR, Buchweitz A, Toazza R,
Bortoluzzi A, Salum GA, Boscenco S,
Meaney MJ, Levitan RD, Manfro GG
and Silveira PP (2022) Thrifty-Eating

Behavior Phenotype at the
Food Court – Programming

Goes Beyond Food Preferences.
Front. Endocrinol. 13:882532.

doi: 10.3389/fendo.2022.882532

ORIGINAL RESEARCH
published: 23 May 2022

doi: 10.3389/fendo.2022.882532
Thrifty-Eating Behavior Phenotype
at the Food Court – Programming
Goes Beyond Food Preferences
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Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil,
8 Programa de Pós-Graduação em Ciências Médicas: Psiquiatria, Faculdade de Medicina, Hospital de Clı́nicas de Porto Alegre,
Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 9 Instituto do Cérebro (InsCer), Pontifícia Universidade Católica
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Introduction: Prenatal growth impairment leads to higher preference for palatable foods
in comparison to normal prenatal growth subjects, which can contribute to increased
body fat mass and a higher risk for developing chronic diseases in small-for-gestational-
age (SGA) individuals throughout life. This study aimed to investigate the effect of SGA on
feeding behavior in children and adolescents, as well as resting-state connectivity
between areas related to reward, self-control, and value determination, such as
orbitofrontal cortex (OFC), dorsolateral prefrontal cortex (DL-PFC), amygdala and dorsal
striatum (DS).

Methods: Caregivers and their offspring were recruited from two independent cohorts in
Brazil (PROTAIA) and Canada (MAVAN). Both cohorts included anthropometric
measurements, food choice tasks, and resting-state functional magnetic resonance
imaging (fMRI) data.

Results: In the Brazilian sample (17 ± 0.28 years, n=70), 21.4% of adolescents were
classified as SGA. They exhibited lower monetary-related expenditure to buy a snack
compared to controls in the food choice test. Decreased functional connectivity (n=40)
between left OFC and left DL-PFC; and between right OFC and: left amygdala, right DS,
n.org May 2022 | Volume 13 | Article 8825321
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and left DS were observed in the Brazilian SGA participants. Canadian SGA participants
(14.9%) had non-significant differences in comparison with controls in a food choice task
at 4 years old ( ± 0.01, n=315). At a follow-up brain scan visit (10.21 ± 0.140 years, n=49),
SGA participants (28.6%) exhibited higher connectivity between the left OFC and left DL-
PFC, also higher connectivity between the left OFC and right DL-PFC. We did not observe
significant anthropometric neither nutrients’ intake differences between groups in
both samples.

Conclusions: Resting-state fMRI results showed that SGA individuals had altered
connectivity between areas involved in encoding the subjective value for available
goods and decision-making in both samples, which can pose them in disadvantage
when facing food options daily. Over the years, the cumulative exposure to particular food
cues together with the altered behavior towards food, such as food purchasing, as seen in
the adolescent cohort, can play a role in the long-term risk for developing chronic non-
communicable diseases.
Keywords: small for gestational age (SGA), feeding behavior, resting state fMRI, functional connectivity,
orbitofrontal cortex
1 INTRODUCTION

According to the Developmental Origins of Health and Disease
(DOHaD) framework, maternal conditions and environmental
cues during pregnancy may impact health and disease in
adulthood. Adversities experienced during embryonic and fetal
development may program the offspring for increased
predisposition to non-communicable chronic diseases (1). The
most common outcome that reflects fetal adversity is birth
weight. A recent meta-analysis found associations between
being born with low birth weight or small for gestational age
(SGA) and incidence of cardiometabolic disease, glucidic
metabolism disorders, and metabolic syndrome (2).

In developing countries, poor gestational nutrition and low
pre-pregnancy weight are the main determinants of intrauterine
growth restriction (IUGR), whereas in developed countries the
main risk factor is cigarette smoking (3). DOHaD emerged from
epidemiological studies conducted in developed countries (4),
however in developing countries the association between fetal
adversity and the development of non-communicable chronic
diseases has also been observed (5). This suggests that
independently of the cause of insufficient fetal growth, scarcity
of nutrients activates a process of physiological adaptation in the
fetus to guarantee survival (6). The literature of underlying
mechanisms of prenatal programming is still scarce but may
include prenatal structural defects, metabolic (mitochondrial
dysfunction, oxidative stress, protein modification), epigenetic
and glucocorticoid signaling-related mechanisms (1).

A body of clinical and experimental evidence shows that the
exposure to intrauterine adverse events, often culminating with
IUGR, alters the individuals’ feeding preferences and eating
behaviors, increasing their intake of foods rich in carbohydrates
and/or fat (7). The increased preference for palatable foods may
lead to subtle but persistent nutritional imbalances and contribute
to the development of adult chronic non-communicable diseases
n.org 2
in individuals who did not grow as much as expected in the uterus.
Awareness and deep comprehension about these behavioral
peculiarities and their neuropsychological basis may open an
important venue for disease prevention in these subjects.
Therefore, childhood and adolescence are important life stages
characterized by sensitive periods of development that need
further investigation, since the cumulative effects of such
nutritional imbalances might not be established yet.

Eating behavior is regulated by three interconnected central
hubs: the hypothalamus, involved in the homeostatic control; the
“appetitive network”, which consists of four regions (insula,
medial temporal lobe, OFC/vmPFC, and striatum) responsible
to encode the current incentive salience of sensed and available
food rewards; and the ventromedial, dorsomedial, and
dorsolateral prefrontal cortices, which control goal-oriented
and self-regulated behavior (8). The OFC plays a critical role
in the choice evaluation; it encodes the value of goals in decision-
making (9), and is more frequently activated to current energy
balance information in response to food cues (10). According to
Suzuki et al. (11), the information about the nutritive attributes
of foods is represented in the lateral OFC, which integrates this
information with the medial OFC to compute an overall value.
Interestingly, obese individuals may have a relative inability to
down-regulate the OFC response to high-calorie food cues
following satiation (12) and after bariatric surgery OFC
resting-state connectivity to mesolimbic areas is reduced (13).

This study was designed to contribute to the literature
regarding fetal adversity programming of eating behavior
throughout life by replicating the analyses in two independent
cohorts. More specifically, we examined the effect of being born
SGA on feeding behavior in children and adolescents, as well as
on resting-state functional connectivity between areas related to
reward, self-control, and value determination. Based on previous
studies, we hypothesized that SGA individuals from the two sites
would have: i) altered behavior towards food in different
May 2022 | Volume 13 | Article 882532
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situations presented to them (e.g. when buying a snack or
exposed to a buffet), in comparison to normal birth weight
individuals; and ii) altered brain functional tonic connectivity
between the OFC and brain regions involved in encoding the
subjective value for available goods and decision-making.
2 MATERIALS AND METHODS

2.1 Participants and Measurements
2.1.1 PROTAIA
The adolescents and young adults selected for the study originated
from a community sample selected from six schools that belong to
the service area of the Santa Cecilia Health Unit, located in Porto
Alegre, Rio Grande do Sul, Brazil. The students were invited to
participate in the PROTAIA project (The multidimensional
evaluation and treatment of anxiety in children and
adolescents), which included psychiatric and nutritional
assessment (14). Two-hundred-and-forty-two participants
completed the first assessment; out of which 229 were eligible
for the current study (six were excluded due to intellectual
disability; seven due to kinship with another participant). The
study design was to carry out a detailed reevaluation, five years
later, in approximately 30% of the eligible sample, as the present
study is the fourth wave of a long-term follow-up study [as
suggested by Barbieri et al. (15)]. The reevaluation included: (1)
psychiatric assessment; (2) anthropometric and feeding behavior
assessment; and (3) functional neuroimaging scans. In the current
study we focused on anthropometric, feeding behavior and brain
resting-state connectivity data as the outcomes. Socioeconomic
and psychiatric data were used to describe the sample. Data
collection was performed in two laboratory visits both
conducted during the morning. Seventy-five participants
attended the first laboratory visit (behavioral data collection) in
the Clinical Research Center of the Hospital de Clıńicas de Porto
Alegre (CPC - HCPA) and 43 attended the second laboratory
visit, at the Brain Institute of Rio Grande do Sul - PUCRS
(InsCer), when a functional magnetic resonance imaging
(fMRI) protocol was performed.

The psychiatric evaluation was carried out using: (1) a
structured clinical interview - Schedule for Affective Disorders
and Schizophrenia for School-Age Children-Present and
Lifetime Version (K-SADS-PL) (16), held with the adolescents
and (2) the Brazilian version of the MINI instrument
(International Neuropsychiatric Interview) (17), applied in the
over-18s. These instruments were applied by medical and
psychology students trained for such activity and supervised by
a child/adolescent psychiatrist.

The socioeconomic classification was based on the ABEP
score (Brazilian Association of Research Companies), which
ranks the socioeconomic status according to the possession of
certain items and the educational level of the head of the family:
Class A – 35 to 46; Class B – 23 to 34; Class C - 14 to 22; Class D -
8 to 13 and Class E – 0 to 7. Maternal education was collected in
years of schooling and classified using the cut-off point of eight
years of education.
Frontiers in Endocrinology | www.frontiersin.org 3
The study was approved by the Institutional Ethics
Committee of the HCPA (GPPG/HCPA, project number 12-
0254) and followed national and international guiding principles
for research involving humans, including the Resolution 196/96
from the National Health Council. Ethics committee approval
and a subsequent written informed consent were obtained from
all participants prior to the study.

2.1.2 MAVAN
Data from the Maternal Adversity, Vulnerability, and
Neurodevelopment (MAVAN) prospective birth cohort (18)
were used. Eligibility criteria for mothers included age 18 years
old or older, singleton pregnancy, and fluency in French or
English. Mothers were excluded from the study if they had
severe chronic illness, placenta previa, a history of incompetent
cervix, impending delivery, or had a fetus/infant born at gestational
age <37 weeks or born with a major anomaly. Six hundred and
thirty mother-child dyads were recruited during pregnancy in
Montreal, QC and Hamilton, ON. They were assessed
longitudinally, with multiple evaluations of both mother and
child in-home and laboratory across the child’s development. In
the current study, we focused on the feeding behavior assessment
performed at 4 years old with 315 participants. Moreover,
functional neuroimaging scans performed at the Montreal site at
10 years of age with 49 participants were analyzed. Socioeconomic
data were used to describe the sample. The socioeconomic
classification was based on household total gross income, being
the cut-off point CAD 40,000 per year. Maternal education was
classified according to the completion of high school.

The study was approved by the institutional review boards at
hospitals and university affiliates: McGill University, l’Universite
de Montreal, the Royal Victoria Hospital, Jewish General
Hospital, Centre Hopitalier de l’Universite de Montreal,
Hôpital Maisonneuve-Rosemont, St Joseph’s Hospital, and
McMaster University. Informed consent was obtained from the
parents/guardians of the participants.

2.2 Small for Gestational Age (SGA)
Determination
Birth weight and gestational age data were collected from the
child’s health record. The SGA classification was based on the
birth weight ratio (BWR), which is the ratio between the infant
birth weight and the sex-specific mean birth weight for each
gestational age for the local population (19, 20). Participants
were classified as SGA if they have a BWR of <0.85 (21).

2.3 Anthropometric Assessment
The anthropometric assessment was performed by trained
researchers. Weight and height were measured using accurate
and calibrated equipment (Filizola®, Harpenden®, TANITA®

and Perspective Enterprises®), and the participants were
without shoes and in light clothing. The measures were
performed in duplicate, and the average value was adopted.
Body mass index (BMI) was calculated as weight in kilograms
divided by height in meters squared (kg/m2). Z-scores for BMI
were calculated according to World Health Organization
(WHO) standards (22). Children from 0 to 5 years of age with
May 2022 | Volume 13 | Article 882532
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BMI-for-age Z-scores above +2 were classified as overweight
and +3 as obese. Children above 5 years old and adolescents were
classified as overweight when the BMI-for-age Z-scores were
above +1 and as obese when above +2 (23).

2.4 Feeding Behavior Assessment
2.4.1 PROTAIA
Anthropometric measures were performed in the morning while
participants were fasting. Afterwards, they received a voucher to
purchase snacks of their choice in the cafeteria of the HCPA
Clinical Research Center (CPC-HCPA); the voucher offered had
the same monetary value for all participants, and was sufficient to
purchase different items (e.g. the voucher would be enough to
purchase a sandwich plus a small soft drink or coffee, plus a small
desert) (Supplementary Figure S1). Participants were free to
choose any snack on the cafeteria, as long as it did not cost more
than the voucher. If the participant did not use the full value of
the voucher, the remaining value was returned to the researcher.
Participants were requested to eat the snack before continuing
the behavioral tests. Food choices were photographed before and
after the consumption and all the participants ate the snack. The
receipt which included the selected products and the amount
spent was saved and attached to the participant’s protocol.
Subsequently, the amount spent, non-industrialized snacks
recipes, and food choices were entered into an Excel® data
spreadsheet (Microsoft). For each participant, the nutritional
composition of the selected snack was calculated with the aid of a
table of household measures (24) and the USDA National
Nutrient Database (25).

2.4.2 MAVAN
Children and mothers were offered a test meal in the laboratory
at approximately 10:30 a.m. including different types of foods in
pre-weighed portions for 30 minutes. Pre-weighed plates of the
different foods, chosen with the assistance of a nutritionist to
represent local habitual snack items and to have similar colors,
were displayed in a buffet to which the child had total access
(26, 27). A table with two sets of plates was placed in the center of
the room, with chairs for mother and child on both sides (facing
each other) (Supplementary Figure S2). A cushion was placed
on the child’s chair to facilitate accessibility of the different foods.
Mothers were instructed to offer a light breakfast to participants
at home beforehand and not to share plates or influence
children’s choices. At the end of the session, the remaining
foods were weighed again to measure the intake. Based on the
nutritional content of each food and the amount eaten, we
calculated the amount of fat, carbohydrates, and protein
ingested (28).

2.5 Resting-State fMRI Acquisition and
Data Processing
In both sites, the scan protocol included anatomical and resting-
state fMRI acquisition. In the Brazilian sample, participants were
scanned with at least 4 hours of fasting. About 30 minutes prior
to the scan, they received a standardized snack [a cereal bar + one
box juice = 174 kcal, carbohydrates 39g (90% of total calories),
Frontiers in Endocrinology | www.frontiersin.org 4
protein 0.9 g (2% of total calories) and 1.6 g of lipids (8% of total
calories)]. Structural and functional images were collected on a
3.0T MRI scanner (GE Healthcare Signa HDxT) with an eight-
channel head coil used for signal reception. Structural T1
weighted images were acquired for the whole cerebrum
(1 mm3 isotropic voxels, 170 contiguous slices, 256 x 256 mm
grid, TR=6.1ms, TE=2.18ms) during the first five minutes of the
imaging session. Resting-state functional MRI was carried out by
acquiring T2* Echo Planar Images (EPI) on a 7-minute-long run
with the following parameters: TR=2000ms, TE=30ms, flip
angle=90 degrees with 240mm x 240mm FOV with 26
interleaved axial slices of 4 mm on a 80x64 matrix.

In the Canadian sample, data were acquired using a 3T Trio
Siemens scanner. High resolution T1-weighted images for the
whole cerebrum (1 mm isotropic 3D MPRAGE, sagittal
acquisition, 256 x 256 mm grid, TR=2300ms, TE=4ms,
FA=9degrees) were obtained in an approximately five-minute
scan. Resting-state fMRI was obtained on a 6-minute-long run of
blood oxygenation level-dependent (BOLD) signal at rest using a
gradient echo-planar imaging sequence with the following
parameters: TR=2000 ms, TE=30 ms, flip angle=90 degrees
with 3x3 mm in-plane resolution with 33 slices of 4 mm on a
64x64 matrix. During the resting-state functional MRI
acquisition participants in both cohorts were instructed to stay
with their eyes open and fixating on a “+” at the center of a
screen. Participants were instructed to relax and avoid thinking
about anything in particular.

Images were pre-processed using Statistical Parametric
Mapping (SPM, v.8 for PROTAIA and v.12 for MAVAN,
University College London, UK; http://www.fil.ion.ucl.ac.uk/
spm in conjunction with the default processing pipeline using
the CONN Functional Connectivity Toolbox (CONN toolbox;
www.nitrc.org/projects/conn, RRID : SCR_009550).

First, the images were converted from DICOM (scanner
format) to Nifti-1 format for processing. In order to compensate
for different temporal offsets between slices during acquisition,
temporal data interpolation (slice-timing correction) was applied
to the functional images (29). After slice-timing correction, the
images were processed to correct movement-related artifacts, the
preprocessing pipeline developed by CONN (https://web.conn-
toolbox.org/fmri-methods/preprocessing-pipeline) involves an
outlier identification process via calculation of a framewise
displacement each timepoint with a 140x180x115mm bounding
box. If the framewise displacement exceeds 0.9mm, then this
acquisition frame is flagged as a potential outlier. Furthermore,
the global BOLD signal change is computed at each timepoint, and
if the average BOLD signal changes greater than 5 s.d. then this is
also flag the acquisition as an outlier. Each image was transformed
via a 6-parameter rigid-body transformation, and then an
autoregressive-moving average model was applied to correct for
changes in head positions (30). Functional slice-time, motion
corrected images were then co-registered to the individual raw
T1 anatomical images (PROTAIA: Ashburner & Friston, 1997;
MAVAN: Montreal Neurological Institute; MNI152). High-
resolution anatomical images were segmented into grey matter,
white matter and cerebrospinal fluid (CSF) (31); the smoothed
May 2022 | Volume 13 | Article 882532
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gray matter images were then transformed into a standard space
using a 12-parameter affine transformation and a 6-parameter
three-dimensional quadratic deformation (32, 33). The parameters
for the normalization to the standard space were applied to both
anatomical and functional images for each subject. Following
normalization, the functional data were smoothed using 8x8x8
mm Full Width at Half Maximum (FWHM) Gaussian kernel for
statistical analysis (34). In PROTAIA, three subjects were excluded
due to excess of movement during the resting-state fMRI, while in
MAVAN five subjects were excluded due to excess movement and
two for missing T1 data resulting in 40 and 49 total
participants respectively.

Resting-state fMRI analysis was processed using CONN
functional connectivity toolbox (35). Functional connectivity
analysis was performed using a seed-driven approach with
orbitofrontal cortex (OFC, right and left – Brodmann area 11)
as seed points and adjusted for multiple comparisons. Functional
imaging signal was filtered using a temporal band-pass filter of
0.01 Hz to 0.08 Hz. Residual motion correction parameters were
used as regressors in the model according to the method
described by Behzadi et al. (36) to mitigate motion-related
artifacts in the seed-based connectivity analysis. The
aCompCor method, part of the CONN pipeline, identifies
confounding effects with noise from cerebral white matter and
cerebrospinal components as well as head motion. Factors that
are identified as confounds were then removed from volumes
using Ordinary Least Square regression. Regions of interest
(ROIs) corresponding to the ventral striatum, dorsal striatum,
amygdala, medial prefrontal cortex, and dorsolateral prefrontal
cortex were used to determine whether they were positively or
negatively correlated with the OFC seed points (37). ROIs for
seed points and target regions were extracted from Desikan et al.
(38) and from the Harvard-Oxford subcortical structural atlases
and comprehended only grey matter tissue (Supplementary
Figure S3). For description of the OFC mask anatomic
definition, including lateral and medial OFC, please see
Desikan et al. (38). Individual Fisher’s Z scores from the OFC
to the anticorrelated or positive correlated ROIs were calculated
according to Weissenbacher et al. (39).

Seed points and ROIs were chosen based on the “appetitive
network” (8) and on literature search. The OFC is a brain area
related to motivation and compulsive behavior (40), its
hyperactivity has been observed in individuals with obsessive
compulsive disorder (41, 42). Bracht et al. (43) found that an
increased OFC-NAcc functional connectivity is associated with
craving in alcohol use disorder, and Black et al. (44)
demonstrated greater resting-state functional connectivity
between left middle frontal gyrus and left lateral OFC in obese
children when compared to healthy weight children. Moreover,
activity in the OFC and in the DL-PFC encodes subjects’
willingness to pay for food items (9). Therefore, it was
assumed that SGA individuals would present connectivity
changes between reward and self-control brain regions.

2.6 Statistical Analysis
Data were entered and analyzed in the Statistical Package for the
Social Sciences (SPSS) 20.0 software (SPSS Inc., Chicago,
Frontiers in Endocrinology | www.frontiersin.org 5
IL, USA). Quantitative variables were described as mean ±
standard error of the mean (SEM), whereas categorical data
were described using absolute (n) and relative (%) frequencies.
Comparisons between two groups were performed using
Student’s t-test for parametric continuous variables or Kruskal-
Wallis for non-parametric continuous variables and Chi-square
test for categorical variables. The food choice-related data were
analyzed by one-way ANOVA using BMI Z-Score and sex as
covariates. The resting-state fMRI data were analyzed using the
Student’s t-test in order to compare the connectivity between
SGA individuals (BWR <0.85) and controls. Exploratory
significance levels for all measures were set at p<0.05. To
ensure reliability and robustness of exploratory significant
mean differences we undertook further analyses to sample
composition using 2,000 non-parametric bootstrapping with
replacement and random resampling, in which 95% confidence
intervals (Bootstrap CI) are reported. We also calculated false
discovery rate (FDR) corrected q-values for each set of p-values
from each resting-state fMRI seed points (45).
3 RESULTS

3.1 Sample Description
In the PROTAIA cohort, 75 healthy youths attended the
behavioral data collection, however four could not inform birth
data and one did not participate in the snack test, totaling 70
adolescents (SGA = 21.4%). Forty-three attended the fMRI visit,
but data from 40 subjects (SGA = 17.5%) were processed and
analyzed because three subjects had head excess movement. In the
MAVAN cohort, 315 participated in the behavioral tests (SGA =
14.9%) and 49 were scanned for the fMRI analysis (SGA = 28.5%).
Figure 1 describes the sample sizes from both cohorts.

Table 1 shows the participants’ characteristics from both
cohorts. SGA and controls were not different regarding sex,
color, maternal education, socioeconomic status, BMI,
gestational age and prevalence of anxiety. As expected, the
SGA group had a mean birth weight lower than the control
group in both cohorts.

3.2 Feeding Behavior Assessment
Snack test data are shown in Table 2. In the PROTAIA cohort, a
difference between groups was observed in the amount of the
financial resource used to buy the snack. The SGA group used a
smaller quantity, although the total caloric intake was
comparable between groups [F(1,65)=1.91; p=0.172]. In both
cohorts, the macronutrients’ intake in grams and percentage of
total calories were not different between SGA and controls. The
same comparisons were performed dividing the energy and
nutrients’ consumption per body weight in kg and no
differences between groups were observed in both cohorts
(Supplementary Table S1).

Exploratory analyses of the snack test according to
sociodemographic data, as well as the correlations between
snack test results (original data and divided per body weight)
and resting-state fMRI connectivity are presented in the
Supplemental data (Tables S2A–D, S3A–F and S4A–F).
May 2022 | Volume 13 | Article 882532
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3.3 Resting-State fMRI Connectivity
The brain imaging results are shown in Table 3 and Figure 2.

In the PROTAIA cohort, the SGA group exhibited
predominately negative resting-state functional connectivity (rs-
FC) between a network of areas that included the right OFC and the
left (mean difference = 0.159, Bootstrap CI = 0.05: 0.30, FDR q =
0.048) and right dorsal striatum (mean difference = 0.204, Bootstrap
CI = 0.09: 0.32, FDR q = 0.018), and the left amygdala (mean
difference = 0.230, Bootstrap CI = 0.12: 0.35, FDR q = 0.024), while
in controls the rs-FC between these areas was predominately
positive. Also, the SGA group compared to controls showed
lower connectivity between the left OFC and the left DL-PFC
(mean difference = 0.225, Bootstrap CI = 0.10: 0.36, FDR q = 0.024).
Frontiers in Endocrinology | www.frontiersin.org 6
In the MAVAN cohort, the differences in functional
connectivity were found between left OFC and both
sides of the DL-PFC. The SGA group had higher levels
of connectivity between left OFC and left DL-PFC in
comparison to controls. This difference was significant
according to the bootstrap procedure (mean difference =0.15,
Bootstrap CI = 0.01: 0.30), but it was not significant when
adjusting for multiple testing (FDR q = 0.12). Furthermore,
the SGA group also showed higher connectivity between the
left OFC and the right DL-PFC in relation to the control group
but this result did not met the Bootstrap and FDR thresholds
(mean difference =0.15, Bootstrap CI = -0.03: 0.30, FDR
q = 0.12).
A

B

FIGURE 1 | Sample size flowcharts from (A) PROTAIA and (B) MAVAN.
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4 DISCUSSION

The current study showed that SGA individuals have altered
connectivity between the OFC and the DL-PFC in the two
samples, and between the OFC, dorsal striatum and amygdala
in the adolescent sample. The direction of the association
between SGA and the OFC-DL-PFC connectivity was different
in children and adolescents. Although there were no differences
between SGA and controls regarding anthropometric measures
and snack nutrients’ consumption in both cohorts, SGA
adolescents exhibited a different behavior when buying a
snack, spending less money without eating less calories. The
results confirm the hypothesis that SGA is associated with
changes in food-related behaviors, and introduces the idea that
SGA individuals, when compared to controls, have a different
brain resting-state connectivity in areas related to reward and
decision-making.

In both samples, the food choice test showed no differences in
food preference between SGA and controls, since the percentage
of calories from carbohydrates, proteins and lipids did not differ
between groups. In the current study, the food preference was
Frontiers in Endocrinology | www.frontiersin.org 7
assessed by the spontaneous choice of food in a single meal in a
controlled environment (laboratory or clinical center cafeteria),
which may not have been able to detect broader differences in
food preference as described in the literature in different ages
(46–51).

Confirming our hypothesis, altered rs-FC between the OFC
and brain regions involved in encoding the subjective value for
available goods and decision-making was observed in SGA groups
when compared to controls. SGA adolescents exhibited decreased
rs-FC between the OFC and the DL-PFC, a circuit encoding
subjects’ willingness to pay for food items (9). Interestingly, at the
behavioral level, SGA adolescents spent less money on food than
controls (even being informed that they would need to return the
non-used money), but no significant differences between the
quantity of calories consumed was found. This suggests that
they choose cheaper (and usually nutritionally poorer) foods, as
previously proposed (52, 53). The functional connectivity between
the DL-PFC and the other frontal-lobe regions is associated with
attribution of value at the time of a behavioral choice (54). It has
been suggested that these areas are involved in foreseeing potential
outcomes from not chosen actions (55), an ability that may be
TABLE 1 | Participants’ characteristics, according to the birth weight for gestational age groups (SGA vs. controls).

Behavioral tests samples

PROTAIA MAVAN

Controls$ (n=55) SGA$ (n=15) Controls (n=268) SGA (n=47)

Malea 21 (38.2%) 6 (40.0%) 142 (52.98%) 23 (48.93%)
White colora 36 (66.7%) 11 (73.3%) 189 (76.20%) 35 (77.77%)
Anxiousa 24 (43.6%) 9 (60.0%) ———– ———–

Age (years)b 17.62 ± 0.32 17.08 ± 0.60 4.06 ± 0.01 4.05 ± 0.01
Birth weight (g)b 3286.55 ± 59.80 2457.33 ± 89.63* 3495.83 ± 24.18 2735.95 ± 36.38**
BMIb 23.62 ± 0.62 21.71 ± 1.10 16.09 ± 0.09 16.09 ± 0.32
BMI Z scoreb 0.60 ± 0.16 0.03 ± 0.32 0.53 ± 0.06 0.48 ± 0.19
Gestational agec 40.0 (38.0-40.0) 40.0 (37.0-40.0) 39.0 (38.0-40.0) 39.0 (39.0-40.0)
SESd 16.71 ± 0.66 18.39 ± 1.57 65 (24.8%) 11 (24.4%)
Maternal educationa,e 11 (30.6%) 3 (33.3%) 55 (20.52%) 9 (19.56%)

Resting-state fMRI connectivity samples
Controls&

(n=33)
SGA&

(n=7)
Controls
(n=35)

SGA
(n=14)

Malea 15 (45.5%) 4 (57.1%) 17 (48.6%) 6 (42.9%)
White colora 20 (62.5%) 5 (71.4%) 27 (79.41%) 11 (78.57%)
Anxiousa 11 (33.3%) 4 (57.1%) ————– ————

Age (years)b 17.72 ± 0.41 17.91 ± 0.99 10.1 ± 0.18 10.5 ± 0.17
Birth weight (g)b 3344.39 ± 62.15 2631.43 ± 63.75* 3363 ± 57.6 2624 ± 69.0**
BMIb 23.12 ± 0.64 21.67 ± 1.85 17.23 ± 0.55 17.89 ± 1.05
BMI Z scoreb 0.50 ± 0.17 -0.10 ± 0.56 -0.01 ± 0.16 0.19 ± 0.31
Gestational agec 40.0 (37.0-40.0) 40.0 (40.0-40.0) 39.0 (38.0-40.0) 39.0 (39.0-40.0)
SESd 17.75 ± 0.91 16.00 ± 1.98 8 (25%) 2 (16.6%)
Maternal educationa,e 10 (45.5%) 0 (0.0%) 9 (25.7%) 4 (28.6%)
May 2022 | Volume 1
aChi-square. Data expressed as absolute (n) and relative (%) frequencies.
bStudent's t-test. Data expressed as mean ± SEM.
cKruskal-Wallis test. Data expressed as median and interquartile range.
dMean ± SEM ABEP score in PROTAIA and absolute (n) and relative (%) frequencies for household total gross income ≤ 40k a year in MAVAN.
ePROTAIA: ≤ 8 years of schooling; MAVAN: high school diploma or less.
*p<0.05; **p<0.001.
$Color: 54 controls, 15 SGA; Maternal education: 36 controls, 9 SGA.
&Color: 32 controls, 7 SGA; Maternal education: 22 controls, 4 SGA.
3 | Article 882532

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Molle et al. Thrifty-Eating Behavior Programming
impaired in SGA individuals. Surprisingly, the same pattern of
decreased connectivity between the OFC, DL-PFC and amygdala,
observed in SGA adolescents, is seen in schizophrenia patients
(56). Lower connectivity in schizophrenic patients is associated
with executive function social cognition deficits – a deficit that has
also been described in the SGA population (57).

However, the altered associations between OFC - DL-PFC rs-
FC in SGA were in the opposite way in children and adolescents.
SGA children exhibited higher rs-FC between the OFC and the
DL-PFC than controls, while SGA adolescents showed lower rs-
FC. The differences could be related to the demographic
dissimilarities in the two populations (see Table 1). In
addition, studies with preterm children and children exposed
to early life stress have also identified positive correlations
between frontal and dorsolateral regions. For example, in an
independent component analysis higher correlations of the left
motor cortex and the bilateral posterior temporal cortex were
observed in pre-term infants at 18 and 36 months of age, while
Frontiers in Endocrinology | www.frontiersin.org 8
early stress was positively associated with temporal similarity of a
cluster of voxels in the left middle frontal gyrus (56, 57).
Alterations of connectivity strength and direction from
childhood to adolescence could be reflecting the maturation of
cognitive networks. For example, the connectivity of important
networks like the lateral frontoparietal network and the default
mode network can be positively correlated in childhood, anti-
correlated in adolescence, and negatively correlated in young
adults (58). The differences observed for SGA children could be
altering the fine-tuning of networks that are dynamic, highly
dependent on the interaction between the genetic substrate and
quality of the prenatal and early environment resulting in weaker
connectivity in adolescence (59–61). Longitudinal studies are
therefore necessary to test this hypothesis.

In addition, other altered rs-FC networks were observed in
SGA adolescents, who exhibited food-related altered behavior.
The rs-FC between right OFC and left amygdala was
predominately negative in SGA, while predominately positive
TABLE 2 | Food choice tests’ data, according to birth weight for gestational age group.

PROTAIA MAVAN

Variables Controls (n=55) SGA (n=15) Controls (n=268) SGA (n=47)

Amount spent (R$) 8.54 ± 0.27 7.22 ± 0.52 * ———— ————

Energy (kcal) 554.89 ± 27.16 480.01 ± 52.61 334.86 ± 9.1 301.55 ± 12.35
CHO (g) 69.91 ± 3.75 63.37 ± 7.27 40.40 ± 1.26 37.33 ± 2.09
CHO (% total kcal) 51.12 ± 1.50 52.65 ± 2.91 49.00 ± 1.00 50.00 ± 2.00
Sugar (g) 31.37 ± 2.95 30.16 ± 5.71 22.31 ± 0.72 20.4 ± 1.15
Fiber (g) 2.74 ± 0.24 2.37 ± 0.46 1.93 ± 0.11 1.93 ± 0.18
PTN (g) 17.76 ± 1.31 12.65 ± 2.53 12.21 ± 0.38 11.09 ± 0.54
PTN (% total kcal) 12.35 ± 0.67 10.57 ± 1.30 15.00 ± 0.00 15.00 ± 1.00
FAT (g) 23.15 ± 1.31 19.91 ± 2.54 13.62 ± 0.49 11.86 ± 0.63
FAT (% total kcal) 37.18 ± 1.17 37.24 ± 2.26 36.00 ± 1.00 35.00 ± 1.00
May 2022 | Volume 13
One-way ANOVA with BMI Z-Score and sex as covariates; data expressed as mean ± SEM.
*p<0.05. CHO, carbohydrate; PTN, protein.
TABLE 3 | SGA versus controls rs-FC between orbitofrontal cortex (left and right) and ROIs with significant results in one of the cohorts.

PROTAIA MAVAN

left OFC right OFC left OFC right OFC

left DS SGA: 0.028 ± 0.055 SGA: -0.098 ± 0.060 SGA: 0.25 ± 0.06 SGA: 0.18 ± 0.06
Controls: 0.059 ± 0.034 Controls: 0.061± 0.030 Controls: 0.20 ± 0.03 Controls: 0.19 ± 0.03
p=0.689 p=0.024* p= 0.345 p=0.839

right DS SGA: -0.051 ± 0.066 SGA: -0.101 ± 0.050 SGA: 0.07 ± 0.08 SGA: 0.22 ± 0.05
Controls: 0.004 ± 0.036 Controls: 0.103 ± 0.030 Controls: 0.04 ± 0.04 Controls: 0.23 ± 0.03
p=0.521 p=0.003* p=0.725 p=0.939

left AMY SGA: -0.066 ± 0.051 SGA: -0.129 ± 0.050 SGA: 0.30 ± 0.06 SGA: 0.10 ± 0.04
Controls: 0.033 ± 0.040 Controls: 0.101 ± 0.040 Controls: 0.20 ± 0.04 Controls: 0.13 ± 0.03
p=0.283 p= 0.008* p=0.128 p=0.682

right AMY SGA: -0.006 ± 0.072 SGA: 0.038 ± 0.042 SGA: 0.28 ± 0.07 SGA: 0.22 ± 0.07
Controls: -0.027 ± 0.033 Controls: 0.095 ± 0.040 Controls: 0.14 ± 0.04 Controls: 0.18 ± 0.04
p=0.790 p=0.528 p=0.061 p=0.642

left DL-PFC SGA: 0.004 ± 0.060 SGA: -0.162 ± 0.091 SGA: 0.21 ± 0.06 SGA:0.19 ± 0.07
Controls: 0.229 ± 0.040 Controls: -0.007 ± 0.041 Controls: 0.06 ± 0.04 Controls: 0.08 ± 0.04
p=0.019* p=0.119 p=0.036* p=0.161

right DL-PFC SGA: -0.056 ± 0.052 SGA: -0.031 ± 0.060 SGA:0.01 ± 0.09 SGA:0.17 ± 0.08
Controls: 0.092 ± 0.045 Controls: 0.011 ± 0.052 Controls: -0.14 ± 0.03 Controls:0.12 ± 0.04
p=0.147 p=0.719 p=0.045* p=0.531
Student’s t-test. Data expressed as mean ± SEM (*p<0.05). OFC, orbitofrontal cortex; DL-PFC, dorsolateral prefrontal cortex; AMY, amygdala; DS, dorsal striatum.
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in controls. It is interesting to note that it is described in the
literature a negative association between the OFC-amygdala
functional connectivity and impulsivity scores in healthy
subjects (62). As impulsivity seems to be an important
behavioral feature linking impaired fetal growth to altered
feeding behavior and preferences over the life-course (63, 64),
the diminished connectivity between these two areas described in
the current study could indeed characterize this group and be
involved in the way they behave towards food. Finally,
considering the proposed view of overeating palatable foods as
a “food addiction” (65), the altered brain connectivity between
the OFC, striatum and amygdala seen in our SGA adolescent
group resembles the pattern previously seen in alcohol abusers
(66, 67), cocaine users (68) and Internet Gaming Disorder (IGD)
youths (69, 70).

Although our study has identified neurobehavioral changes in
individuals who were born SGA, they had normal BMI both in
childhood and adolescence. This suggests that the
neurobehavioral changes precede the development of the well
described increased adiposity and its metabolic consequences in
these individuals (71, 72). More evident anthropometric and
metabolic disturbances may arise over the years in this
population with the cumulative exposure to particular food
cues, altered behavior towards food (e.g. when purchasing
Frontiers in Endocrinology | www.frontiersin.org 9
foods), and consequent intake of energy-dense foods with low
nutritional quality.

Our study was able to look for similarities in feeding behavior
and rs-FC in two cohorts of SGA individuals, bringing results
from different life stages. Our objective of having the two samples
in the study was not to have a comparison between them, but
rather pursuing a replication of the findings in an independent
cohort. We understand that replication may be challenging, and
perfect harmonization of the samples age, predictors and
outcomes is virtually impossible. Even with these limitations,
the effort for replication of the findings within the same study is
aligned with the best methodological practices and we believe
this is a strength of our study, considering the replication crisis in
research (73, 74). Also, at first glance, the SGA groups seem to
have a small sample size, however our study reflects the
percentage of SGA in the population (10-20%). Despite this,
we were still able to find brain rs-FC differences between groups
in both cohorts. We suggest that the specific pattern of brain rs-
FC observed could be leaving SGA individuals in a vulnerable
position when facing food options on a daily basis. The increased
vulnerability may affect food-related behaviors, as seen here, and
food preferences reported in many other studies (46–51, 75–79),
and play a role in the long-term risk for developing chronic non-
communicable diseases. Therefore, the current study adds to the
FIGURE 2 | Brain areas depicting statistically significant differences in resting-state functional connectivity (rsFC) with the left and right orbital frontal cortex between
SGA and controls in the PROTAIA and MAVAN cohorts. Blue color (left DL-PFC, left amygdala and right and left dorsal striatum) represents lower rsFC in SGA
versus Controls. Red color (right and left DL-PFC) represents higher rsFC in SGA versus Controls.
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literature demonstrating that while SGA individuals are more
prone to future impairments in both physical and mental health
in the adult years, they may represent an important populational
group for targeted, well-matched intervention.
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