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related microenvironmental
gene signature
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Multiple myeloma (MM), a hematologic malignancy, is characterized by

malignant plasma cells clonal proliferation. Many evidences indicated the

indirect interaction between hypoxic environment and immune state in MM

tumorigenesis, but the underlying mechanism remains unclear. MM-related

datasets were downloaded from the Gene Expression Omnibus (GEO)

database. The R packages were applied for screening protective differentially

expressed genes (DEGs) and risk DEGs. The signature was constructed based

the most prognostic gene signature in the training and assessed in the

validation cohorts. The immune cell infiltration, the expression of the HLA

family and immune checkpoint genes inside the low- and high-risk groups

were compared to determine the differences in immune infiltration and

immunotherapy responses. Moreover, the expression of HLA families and

immune checkpoints inside the low- and high-risk groups was markedly

disordered. The results indicated hypoxia- and immune-related genes,

including CHRDL1, DDIT4, DNTT, FAM133A, MYB, PRR15, QTRT1, and

ZNF275, were identified and used to construct a prognostic signature. Role

of DDIT4 in multiple myeloma was confirmed in vivo and in vitro. DDIT4

knockdown inhibited MM cell viability, migration and invasion potential as well

as promoted myeloma cells apoptosis under hypoxia. Taken together, our

study may contribute to the treatment and prognosis prediction of MM.
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Introduction

Multiple myeloma (Da ViàVerify that all the equations and

special characters are displayed correctly. etal. (1) is a

hematologic malignancy (2). With the emergence of

immunotherapies, the therapeutic effect of MM has increased

considerably (3, 4). Nevertheless, MM patients still have disease

recurrence and aggravation, especially those at high risk (5). At

present, there is no recognized biomarkers to stratify the risk and

prognosis of MM, which will guide the personalization and

timely follow-up treatment of MM patients. Therefore,

investigating novel therapeutic targets and disease indicators is

essential for MM patients.

Hypoxia remodels tumor-associated environment and

drives types of tumor invasions (6). Tumors become more

aggressive and metastatic in hypoxic TMEs (7). The

characteristics related to hypoxia exhibited predictive potential

across cancers (Q. 8). Studies have shown that hypoxia plays

special role in MM biology and provides new possibilities for

therapeutic strategies (9). Exposure to hypoxia can significantly

enhance MM cells viability by inducing angiogenesis, anti-

apoptotic effect and etc (10).

Immune status is the ability of the body to exhibit an

immune response or defense against pathogens, diseases or

foreign substances. Several studies have demonstrated that

some immunocytes in the tumor sites of MM patients

manifest as immune-senescence and exhaustion (11, 12). The

proportion of immature B cells in MRD positively correlates

with recurrence (11). Similar to the results observed in

chemotherapy, MM underwent evade immunotherapy that

associated with rather instability and disordered bone marrow

microenvironment (BMME) (13). However, exact roles of

interaction between hypoxia and immune state remain

ambiguous but promotes the development and occurrence

of MM.

Here, we uncovered that combined markers of hypoxia

genes and immune genes to provide better prognostic value

for patients with MM. We divided 867 samples into high- risk

and low- risk groups by consensus clustering and draw K-M

survival plot, which revealed that the survival of MM correlated

with the hypoxia and immune status of the TME. Next, we

revealed that the expression of HLA families and immune

checkpoints was markedly disordered between the high- and

low-risk groups. The risk score and independent prognosis of

each clinical factor were investigated by univariate and

multivariate regression. Finally, we identified 8 biomarker

signatures by a series of systematic analyses aimed at

improving the prognostication of MM. In this study, the

prognosis and stratification of MM were evaluated by

transcriptomics and microenvironmental characteristics, which

provide a new direction for the diagnosis and treatment of MM

in the future.
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Materials and methods

Data source

MM-related datasets (GSE136324, GSE47552 and GSE136337)

were downloaded from the Gene Expression Omnibus (GEO)

database (https://www.ncbi.nlm.nih.gov/). The GSE136324

dataset, containing 867 MM samples with survival information,

was used as a training cohort. The GSE47552 dataset includes 41

MMs and 5 normal samples. The GSE136337 dataset was employed

as the external validation set, which included 426MM samples with

survival information.Moreover, the expressionmatrix of HRGs was

constructed based on 200 HRGs downloaded via the Molecular

Signatures Database (MSigDB) (http://www.gsea-msigdb.org).
Consensus clustering

“ConsensusClusterPlus” was applied to conduct consistent

clustering analysis based on 867 MM samples in the GSE136324

dataset, and the cumulative distribution function (CDF) was

employed to evaluate the optimal number of clusters. Moreover,

principal component analysis (PCA) employed to verify the

results of consistent clustering.
Screening and functional analysis of
differentially expressed (DE-H-IRGs)

First, K-M survival analysis was performed on patients with

different hypoxia subtypes using the R package “Survival”, and

clusters with the worst prognosis were defined as the group with the

high hypoxia status (Hypoxia.high (HH)). Clusters with better

prognosis were combined and defined as the group with the low

hypoxia status (Hypoxia.low (HL)). The “Limm” package was

utilized to screen differentially expressed hypoxia -related genes

(DE-HRGs) between the lowest and HH groups (14).

Second, the ESTIMATE was performed to calculate the

immune score of MM. The “Maxstat” was subsequently

utilized to demonstrate the optimal truncation value of the

immune score. Then, MMs were grouped into high and low

immune score subgroups with the optimal truncation immune

score value. The “Limm” was utilized to screen differentially

expressed immune-related genes (DE-IRGs) between the two

immune score subgroups.

Next, MM samples were divided into a HL and high immune

group (Immune.high (IMH)), a HH and IML and a mixed group

according to the hypoxia and immune score levels.

Simultaneously, the same procedures were applied to obtain

DE-H-IRGs.

Finally, the DE-H-IRGs, DE-HRGs and DE-IRGs were

overlapped to obtain two gene sets including risk DEGs and
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protective DEGs. A Venn diagram was utilized to visualize the

results. GO and KEGG pathway enrichment analyses were

employed to risk DEGs and protective DEGs by the DAVID (15).
Gene signature identification and
signature construction

The “Limma” was applied to select DEGs between MM and

normal samples in the GSE47552 dataset (p< 0.05, |log2FC| > 0.5).

The Benjamini & Hochberg method was applied for multiple test

correction (16). The key DE-H-IRGs were developed by

overlapping DEGs (tumor vs normal) with the risk DEGs and

protective DEGs. DE-H-IRGs were further analyzed by univariate

Cox analysis, and that satisfied with the p< 0.01 were regarded as

prognosis DE-H-IRGs. LASSO analysis was used to select the most

prognostic gene signature by the “glmnet”. The risk score of the

model was calculated by the following formula (Y. 8).

Risk score =o
n

i=1
Exprgene ið Þ � Coeff gene ið Þ
Assessment of the signature

MMs were grouped into the high- and low-risk group

according to the median risk score. K-M analysis was utilized to

analysis survival probability differences between the risk groups.

Themodel was further verified by ROC and risk curves. GSE136337

dataset as an external validation cohort for model validation.

Moreover, independent prognostic factors were selected from

clinicopathological features (gender, age, albumin, b2m, ldh, iss)

and risk score by Cox analysis (P< 0.05). Additionally, a nomogram

was established for predicting the survival of MM in each

independent prognostic factor by the “RMS” (version 6.2-0).
Estimation of immune cell infiltration

To investigate the immune cells infiltrations in the risk groups,

the CIBERSORT and LM22 gene set were employed to compute the

proportion of 22 types of immune cells in all samples. Wilcoxon test

was employed to screen for significantly different immune cells.

Then, Spearman’s method was employed to calculate the

relationship between each signature and these different immune cells.
Functional analysis of DEGs

“ClusterProfiler” was used to analyze the biological process

(BPs) and KEGG pathways of DEGs in both risk groups. In

addition, the GSEA was utilized to find some specific pathways.
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HLA system and immune checkpoint
analyses

To explore the difference between the HLA family and

immune checkpoints in patients in the risk groups, the

expression of the HLA family (17) and immune checkpoints

were compared by Wilcoxon test, and the results were plotted

by “GGplot2”.
qRT-PCR validation

Total RNAs were extracted from biopsy and reverse

transcribe into cDNA according to manufacture protocols

(Toyobo, Japan). qPCR were performed by ABI 7500 applied

system. All primers were available in Table 1. GAPDH and 2-

DDCt method were utilized to normalize and calculate the relative

mRNA expression.
Gene silencing

siRNA were transiently transfected into NCI-H929 and

RPMI8226 by transfection reagent INTERFERin® (Poly-Plus

Corporation). Cells were harvested after 48h post transfection

and subjected to further experiments. siRNA sequences were

listed in Table 2.
Construction of stable cell lines

The sh-DDIT4 was cloned into the pLKO.1-egfp-puro

vector. The stably expressed sh-DDIT4 H929 cell line were

selected by medium with Puromycin (Life Technologies). 3

weeks later, puromycin-resistant cells were generated for

next experiments.
Cell proliferation analysis

2.0×104 cells were seeded into 96-well plates and transfected.

After 48 h of culture under normoxic (pO2, 21%) and hypoxic

(pO2, 1%) conditions, FBS free medium with WST-8 solution

(Enhanced Cell Counting Kit-8, 1:10) was added and incubated

for 2h to detect cell proliferation. The OD value was detected by

a microplate reader.
Apoptosis analysis

Cells were transfected with siRNA and cultured under

normoxic (pO2, 21%) and hypoxic (pO2, 1%) conditions for
frontiersin.org
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48 h. Then, cells were collected and centrifuged at 1000rpm for

5 min followed by media removal. After staining with annexin

V/FITC and PI (BD Biosciences), cells were kept in the dark at

room temperature for 15 min. Flow cytometry analyses were

performed for detecting cell apoptosis via a FACSCalibur flow

cytometer (BD Biosciences). FlowJo software was applied to

analyze the data.
Transwell assay

For migration and invasion assays, cell suspensions (3×105

and 5×105 cells, respectively, in 200 ml of medium containing

0.2% BSA) were seeded on 4 mm pore size Transwell membranes

(Costar, Corning Incorporated, NY, USA), which were coated

(migration assay) or not coated (invasion assay) with Matrigel

(BD Biosciences, NJ, USA). Medium in the lower chambers

contains 10% FBS was added. After incubation, cells on the

insert membranes were fixed and stained with crystal violet for

30 min. Then, migrated or invade cells were imaged with

microscope (Nikon, Tokyo, Japan). Cells migrating into lower

chambers within the 24 h normoxia incubation period (pO2,
Frontiers in Oncology 04
21%) and hypoxia incubation period (pO2, 1%) were counted

using FACSCalibur flow cytometer (BD Biosciences).
Animals and groups

Six-week-old male NOD/SCID mice were fed in pathogen-

free facility. 5 × 106 NCI-H929 cells stably transfected with shRNA

scramble or shRNA DDIT4 were subcutaneously injecting into

the right flanks of mice to generated xenograft tumor model.

NOD/SCID mice were divided into control and shDDIT4 groups.

According to experimental conditions, mice were divided into

four groups: normoxia control (CTL), normoxia shDDIT4 (CTL

+shDDIT4), intermittent hypoxia control (IH), and IH shDDIT4

(IH+shDDIT4). Hypoxia mouse models were generated by

intermittent hypoxia exposure as previously described (8). The

oxygen concentration in the IH group varied from 21% to 6%.

Hypoxia (O2 concentration: 6%~8%) and reoxygenation (21%)

were alternated by a program with a cycle time of 120 seconds for

5 consecutive weeks. The oxygen concentration in the CTL group

was kept at 21%. Mice weight in each group was determined every

week. Tumor volume (length × width2 × 0.5) was recorded every

third day. Tumor tissues were harvested 35 days later. A K-M

survival plot was applied to analyze the survival of mice. All

experiment were approved by the Animal Care and Use

Committee of West China Hospital, Sichuan University.
Statistical analysis

All analyses were performed with R version 3.4.1 and related

packages. The experimental data of this study were repeated for

more than three replicates. For other comparisons in this study,

Student’s t-test was used to detect differences between groups.

The selection of statistical methods is described in the specific

study methods. Differences were considered statistically

significant at P less than 0.05 (*p< 0.05, **p< 0.01, ***p< 0.001,

**** p< 0.0001). Differences between groups were analyzed by

GraphPad Prism 8.
Results

Differential expression analysis of HRGs

The 867 samples were grouped into three significantly

different clusters based on the consensus clustering

(Figure 1A). Principal component analysis (PCA) results

illustrated the three clusters could be clearly distinguished

(Figure 1B). By K-M analysis, we found the Cluster 1 patients

exhibited a worse prognosis than patients of Clusters 2 and 3

(Figure 1C). Therefore, cluster 1 with the worst prognosis was

defined as Hypoxia.high. Clusters 2 and 3 with better prognosis
TABLE 1 Primers for 8 candidate hypoxia-immune related genes and
Gapdh.

GENE Primer

DDIT4-F CTCCTCTTCGCCCTCGTCCT

DDIT4-R AGCCACTGTTGCTGCTGTCC

DNTT-F CACATCGTAGCAGAGAACAA

DNTT-R CTGACACGCATACTGGGAGA

FAM133A-F CGTTCATACAAATCATCCCA

FAM133A-R TTCTCGCTCTTCACACCTTC

CHRDL1-F CCCCAGTGAACAATAAGGTGA

CHRDL1-R AGTGAGAGCGGTGGTAAGAAT

MYB-F GTTCCATACCCTGTAGCGTTA

MYB-R GGTTCTGTGTCTGCTGTCCTT

PRR15-F CCAACAGCAGAAAGAAAAGC

PRR15-R TGGGGGTCACCAGGAAAGCC

QTRT1-F ATGGTGTCGCTGGTGTCTCT

QTRT1-R CGTCTCGCTTGGTCATCTCT

ZNF275-F CTTTTGGGCGTTCCTGTT

ZNF275-R GAGTCCCCGTGCTGTCTG

GAPDH-F CCCATCACCATCTTCCAGG

GAPDH-R CATCACGCCACAGTTTCCC
TABLE 2 SiRNA sequence.

GENE SPECIES SENSE(5'-3')

DDIT4 Homo sapiens 5′-GCAAGAGCUGCCAUAGUGUTT-3′
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were combined and defined as Hypoxia.low. Finally, there were

582 and 285 MMs in the HL group and HH group respectively.

1407DE-HRGswere screened, including 823 upregulated genes

(risk DE-HRGs) and 584 downregulated genes (protective DE-

HRGs) (Figure 1D and Table S1). Moreover we found that in

Hypoxia.high group, PRDM1, SPATS2, BMP6, PLPP5, EIF2AK3

and TXNDC15 were significantly upregulated, and. NFIX, CTBP2

and SVBP were significantly downregulated (Figure 1D).
Frontiers in Oncology 05
Differential expression analysis of IRGs

729 and 138 MMs were grouped into the IMH and IML

groups based on the optimal immune score cutoff (2581.809).

Moreover, K-M analysis illustrated that the overall survival (OS)

time of MMs in the IMH group was longer (Figure 1E). We

screened 1405 DE-IRGs between groups with high and low

immune scores including 1129 upregulated genes (risk DE-
B

C D

E F

G H

A

FIGURE 1

Differential expression analysis of HRGs, IRGs and H-IRGs. (A) The cumulative distribution function (CDF) value, the cluster diagram when K = 3.
(B) Principal component analysis. (C) The K-M survival analysis among the three clusters. (D) Volcano plot and heatmap of DEGs between the
HH and HL groups. (E) K-M analysis between the IMH and IML groups. (F) Volcano plot and heatmap of DEGs between the IMH and IML groups.
(G) K-M analysis among the HL/IMH, HH/IML and mixed groups. (H) Volcano plot and heatmap of DEGs between the HL/IMH and HH/IML
groups.
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IRGs) and 276 downregulated genes (protective DE-IRGs)

(Figure 1F and Table S2). Figure 1F visualized the expression

of DEGs in the two Immune groups. High levels of MNDA,

FCN1, GCA and PLBD1 were accumulated in the IMH group.
Differential expression analysis of H-IRGs

A total of 867 MM samples were classified according to

hypoxia status and immune score and were classified into HL/

IMH (n = 513), HH/IMH (n = 69) and mixed groups (n = 285).

K-M analysis result demonstrated that there was a significant

difference in the prognosis of MMs among these three groups

(p< 0.0001), and the prognosis of MMs in the HL/IMH group

was better than others (Figure 1G). We screened 3474 DE-H-

IRGs (HH/IML vs HL/IMH), consisting of 1743 upregulated

genes (risk DE-H-IRGs) and 1731 downregulated genes

(protective DE-H-IRGs) (Figure 1H and Table S3). In

addition, the expression of DEGs in different groups were

visualized in Figure 1H. High levels of TNFRSF17, BMP6 and

MZB1 accumulated in the HL/IMH group.
Screening and functional analysis of
protective and risk genes

To obtain more meaningful DEGs, we overlapped the three

groups of risk DEGs and protective DEGs (Figure 2A). There

were 472 protective DEGs and 205 risk DEGs with supporting

evidence from all three groups.

The functional enrichment results revealed that protective

DEGs were enriched in 191 GO terms and 13 KEGG pathways,

including the immune response, innate immune response,

neutrophil chemotaxis, and other immune-related pathways.

The risk DEGs were enriched in 37 GO terms and 4 KEGG

pathways, among which immune-related pathways were

enriched such as adaptive immune response (Figure 2B).
Construction of a prognostic gene
signature related to MM

We screened 2633 DEGs between normal and MM patients

in GSE47522, including 817 upregulated genes and 1816

downregulated genes. A Venn diagram showed the overlap of

MM vs normal DEGs, protective DEGs and risk DEGs, and 81

key DE-H-IRGs overlapped (Figure 2C). The univariate Cox

analysis was utilized on 81 key genes in the training set

(GSE136324), and 44 prognostic DE-H-IRGs statistically

related to the OS time of MMs were identified (Figure 2D).

Then, an 8-gene signature (including CHRDL1, DDIT4, DNTT,
Frontiers in Oncology 06
FAM133A, MYB, PRR15, QTRT1, and ZNF275) was identified

using the LASSO regression algorithm (Figure 2E).
Assessment of the prognostic value of
the 8-gene signature

434 and 433 MM patients were selected to high- and low-

risk groups with the median risk score (1.368411315). It can be

found that the OS of MMs in the low-risk group was longer in

the GSE136324 (Figure 2F). The AUC of 1-year ROC curve in

the training cohort was greater than 0.7, which indicated the

good prognostic value of the signature (Figure 2G).

The risk curves of the signature demonstrated that the

sample could be clearly classified into risk groups (Figure 2H).

Analysis of the expression of the signature in the two risk groups

showed that CHRDL1, DNTT and MYB genes expressed higher

in high-risk MMs. The expressions of DDIT4, FAM133A,

PRR15, QTRT1 and ZNF275 were higher in the low-risk group

(Figure 2H). Additionally, the prognostic significance of this 8-

gene signature was verified in GSE136337. (Figure S1A-E).
The risk score is an independent
prognostic indicator

Univariate Cox analysis utilized that risk score, age, albumin,

b2m, ldh and iss were significantly related to patient OS

(Figure 3A). Then, the six factors were applied for multivariate

Cox analysis, and b2m, risk score and age were significantly

related to OS in the training and validation cohorts, which could

be considered independent risk factors for MM (Figure 3B).

Moreover, the risk score and clinical factors (age, albumin,

b2m, idh, iss) were used to utilize a nomogram (Figure 3C). The

survival probability at 1-, 3- and 5-years could be predicted

according to the total score of the nomogram. The slope of the

probability of 5-year was close to 1 in the correction curve, and

the AUCs of 1-year and 5-year were greater than 0.7 in the ROC

curve, which indicated that the nomogram could be used as an

effective model (Figures 3D, E).
Analysis of immune infiltration and
immunotherapy responses in high- and
low-risk groups

The CIBERSORT result demonstrate that among the MM

samples in both risk groups, we found 17 types of immune cells

were differentially accumulated (Figure 4A, B), such as B cells naïve

and Plasma cells. Correlation analysis between each signature and the

above differentiated immune cells showed thatZNF275was positively
frontiersin.org
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correlated with Plasma cells, andMYB was positively correlated with

Monocytes and Neutrophils (Figure 4C). Furthermore, we found

significant difference in the expressions of the HLAs and immune

checkpoints between the risk groups (Figure 4D, E). The expressions

of the immune checkpoints IDO1, VTCN1, PDCD1LG2 and CD274

were higher in the high-risk group.
Frontiers in Oncology frontiersin.org07
Differential expression analysis

1092 DEGs (561 upregulated and 531 downregulated) were

obtained (Figure 5A). The heatmap demonstrated the expression

of DEGs in the high- and low-risk groups (Figure 5B). Moreover,

we found that upregulated genes were enriched in 201 GO BP
B

C

D

E F

G H

A

FIGURE 2

Analysis protective and risk genes, construct and assess the prognostic gene signature related to MM. (A) Venn diagram of protective and risk
DEGs. (B) GO and KEGG terms enriched in protective and risk DEGs. (C) The Venn diagram among the protective DEGs, risk DEGs and DEGs
related to MM. (D) Forest plot of hazard ratios for 44 prognostic DE-H-IRGs. (E) Threefold cross-validation for tuning parameter selection in the
LASSO model. (F) K-M analysis between the high- and low-risk groups. (G) ROC curve at 1-, 3- and 5-years of prognostic value of the
prognostic index. (H) The distributions of risk score, survival status and expression profile of signature genes between the risk groups.
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FIGURE 3

The Risk Score is an independent prognostic indicator. (A, B) The forest plot of hazard ratios for clinicopathological characteristics by Cox
analysis. The upper panel shows the GSE136324 training cohort, and the lower panel shows the GSE136337 validation cohort. (C–E) The
nomogram was used to show the survival probability at 1-, 3- and 5-years. The correction curves and the ROC curves were utilized to verify the
efficiency of the nomogram. The left panel shows the GSE136324 training cohort, and the right panel shows the GSE136337 validation cohort.
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FIGURE 4

Analysis of immune infiltration and immunotherapy responses in high- and low-risk groups. (A) Heatmap of immune cell subset proportions. (B) Violin plot
of the infiltration abundance of 22 immune cell types in two groups. (C) Heatmap of the correlation between signatures and differentiated immune cells.
(D, E) The HLA family and immune checkpoint genes expression in the two groups. (*, p< 0.05; **, p< 0.01; ****, p< 0.0001; vs. CONTROL).
Frontiers in Oncology frontiersin.org09

https://doi.org/10.3389/fonc.2022.992387
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yu et al. 10.3389/fonc.2022.992387
terms and 29 KEGG pathways including negative regulation of

immune system processes and other immune-related pathways.

Downregulated genes were enriched in 255 GO BP terms and 27

KEGG pathways such as neutrophil mediated immunity,

regulation of adaptive immune response and other immune

related pathways. Collectively, these DEGs were associated with

autoimmunity (Figures 5C, D). The GSEA results demonstrated
Frontiers in Oncology 10
that the enriched biological processes of the high-risk group

mostly involved responses to endoplasmic reticulum stress,

glycosylation, cellular responses to topologically incorrect

proteins and responses to topologically incorrect proteins. The

enriched biological processes of the low-risk group were mainly

involved in the response to acetylcholine, digestion, hydrogen

peroxide catabolic processes and metal ion export. The KEGG
B

C

D

A

FIGURE 5

Differential expression analysis of high- and low-risk groups. (A, B) The volcano plot and heatmap of DEGs between the two groups. (C, D) The
top 10 GO BP and KEGG terms of up- and downregulated DEGs in the two groups.
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pathways with the most abundant genes in the high-risk groups

were N glycan biosynthesis, protein export, Vibrio cholerae

infection, and the hedgehog signaling pathway. (The GSEA

results were shown in Supplementary Material 1).
Validation of the expression of the
8-gene signature

The qRT–PCR results showed a significant upregulation in

the expressions of DDIT4, FAM133A, PRR15 and QTRT1 in

patients. Higher expression of DNTT, CHRDL1, MYB and

ZNF275 accumulated in the normal control (Figure 6A). Then,

the function of the DDIT4 was explored in RPMI8226 and NCI-

H929. After knocking down the DDIT4, the cell viability was

significantly inhibited in the hypoxia groups (Figure 6B).

Correspondingly, we discovered that DDIT4 knockdown

promoted cell apoptosis (Figure 6C) and impaired tumor

migratory and invasive potential (Figures 6D, E).
DDIT4 inhibited tumor formation in vivo
under hypoxia

We constructed a murine xenograft model to confirm the

effect of DDIT4 in MM. Mice in the IH group lost body weight

clearly at weeks 3 - 5 compared to the IH+shDDIT4 group

(Figure 7A). Meanwhile, the K-M curve revealed that the

survival rate of the IH+shDDIT4 group was obviously higher

(Figure 7B). Moreover, in the IH+shDDIT4 group, both tumor

volume and tumor weight were significantly reduced at 3 weeks

under hypoxia (Figures 7C-E).
Discussion

Multiple myeloma displays characteristics of plasma

cells malignant proliferation. Hypoxia and the immune

microenvironment play vital roles in the carcinogenicity and

evolution of MM (18, 19). A recent study showed that a gene

marker (SKY92) that effectively predicted treatment response

and prognosis in MM by combining with the International

Staging System (20). However, researchers have found that

many previous genetic signatures do not appear to have

overlapping genes (21). Therefore, novel therapeutic targets

and disease prognostic indicators needs to be explored for next

treatment of MM patients.

In this study, we overlapped the three groups of DEGs to

estimate risk DEGs and protective DEGs, and we explored their

potential functions in MM through functional enrichment

analysis. There was an association between protective DEGs

and immunity, including the immune response, innate immune
Frontiers in Oncology 11
response, neutrophil chemotaxis, and positive regulation of T-

cell proliferation. In the innate immune response to tissue injury

or infection, neutrophils are recruited to the inflammatory site.

Neutrophil chemotaxis inhibitors were found in the sera of

myeloma patients (22). In immunotherapy against MM,

positive regulation of T-cell proliferation played a crucial role.

In patients with early-stage MM related to advanced diseases,

clonal CD8+ T-cell expansions were significantly more frequent

(23). It has become evident that endogenous T cells can be used

as a treatment for multiple myeloma (24).

The tumor microenvironment (TME) make up tumor tissue

and their clinicopathological significance in predicting curative

effects and therapeutic effects in MM (25). Scharping et al. (26)

found that metabolic pressure originating frommitochondria under

hypoxia could accelerate T-cell dysfunction and failure (Da Vià

et al.). We found that 17 kinds of immune cells differ between the

low- and high-risk groups by evaluating the proportion of immune

cells (Figure 4B). Activated memory CD4+ T cells were significantly

higher in the low-risk groups. Several studies revealed that adoptive

transfer of idiotype-specific CD4+ T cells might play the role of

resistingMM (27, 28).We hypothesized whether thesememory cells

are adoptively transferred to idiotype-specific CD4+ T cells. Single-

cell sequencing analysis was applied to further clarify the origin and

characteristics of these activated memory CD4+ T cells from low-

risk groups.

We identified that hypoxia-immune-related prognostic DEGs,

in MM patients, statistically correlated with the overall survival by

K-M survival analysis. In the high-risk group, ZNF275, FAM133A,

PRR15, QTRT1 andDDIT4 were significantly higher than the low-

risk group. Foltyn et al. (29) found that knockout of the DDIT4

could make tumor cells sensitive to hypoxia, while overexpression

of DDIT4 could enhance cell proliferation and promote resistance

to temozolomide, radiotherapy and hypoxia. Similarly, we found

that knockdown of the DDIT4 inhibited MM cell viability,

migration and invasion potential and promoted cell apoptosis

under hypoxia. We also demonstrated thatDDIT4 inhibited tumor

formation in a xenograft tumor mouse model under hypoxia.

Now, the role of DDIT4 in MM has not been elucidated. It can be

regarded as a potential target for anti-MM therapy or as a

molecular marker of the hypoxic state in our research.

Human leukocyte antigens (HLAs) are composed of the major

histocompatibility complexes that recognized self and non-self

antigens. Christopher MJ et al. (30) found that the lower

expression of HLA-DPA1 was associated with immune

function-related pathways dysregulation, which caused acute

myeloid leukemia relapse after transplantation. We found that

HLA-DPA1 expression was lower in the high-risk groups.

Notably, a recent study considered that downregulated HLA-

DPA1 expression was related with poor outcome in MM (31),

which was consistent with our research. Known as surface antigen

differentiation cluster 274 (CD274), programmed cell death ligand

1 (PD-L1) located in the cell membrane and endometrial system.
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PD-L1 was detected on hematopoietic and nonhematopoietic

healthy tissue cells (32). The mRNA level of PD-L1 was higher

inMM and RRMMpatients than in healthy controls (33). We also

found that expression of CD274 in the high-risk groups was

enhanced. Considering the poor effect of PD-L1 treatment alone, it

is necessary to clarify the response of high-risk patients to PD-L1

treatment and its mechanism in forward study.

In the study, the prognosis and stratification of MM were

evaluated by transcription and microenvironmental remodeling.

Our study illustrated that the survival of patients with MM was

linked to the hypoxia remodeled tumor microenvironment and

relative immune status. Hypoxia and immune status were found to
Frontiers in Oncology 12
be significantly related to prognosis by stratifying patients according

to clinicopathological risk factors. Univariate regression and

multivariate regression were applied to analyze independent

prognosis and the risk score of each clinical factor. Finally, we

screened an eight-gene signature based on hypoxia-immunity as a

prognostic classifier and verified its efficiency in risk stratification.

For our study, some limitations must be acknowledged. First and

foremost, this is a retrospective study, so the prognostic robustness

and clinical usefulness of hypoxia-immune related gene signatures

need further examination. Second, we verified external datasets, the

relevant regions information of patients involved in this study was

not analyzed in vitro or in patient samples. Therefore, our findings
B

C

D E

A

FIGURE 6

Validation of the expression of the 8-gene signature. The gene expression levels of CHRDL1, DDIT4, DNTT, FAM133A, MYB, PRR15, QTRT1 and
ZNF275 between normal and bone marrow from 9 MM patients and peripheral blood samples from 7 control patients. (A) The relative
expression levels of the 8 genes compared with GAPDH in normal (n = 7) and RRMM (n = 9) samples (*, p< 0.05; **, p< 0.01; ***, p< 0.001; ****,
p< 0.0001). (B) The knockdown of DDIT4 reduced the cell viability of two myeloma cell lines relative. (C) The knockdown of DDIT4 increased
the apoptosis rate of two myeloma cell lines. (D, E) Invasion and migration ratio of MM cells toward four groups through Transwell membranes
(5-mm pore size) were assessed. Independent experiments were performed 3 times. n = 5 per group (**, p< 0.01; ***, p< 0.001; vs. CONTROL;
ns, no significance).
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will be further verified by multicenter RCT studies. Meanwhile, due

to limited biology investigation, more experiments in cell and animal

model will be performed to elucidate how the gene signatures

modulate the outcome of MM.
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FIGURE 7

DDIT4 restrained tumor formation in vivo under hypoxia. (A) The body weight of mice was measured after intermittent hypoxia (IH)
administration in the CTL, CTL+shDDIT4, IH, and IH+shDDIT4 groups at 0~5 weeks. (B) The survival rate in different groups were detected for 5
weeks after injecting NCI-H929 cells into the mice. (C, D) Tumor volume and weight were measured in the 5th week after intermittent hypoxia
administration. All experiments were performed triplicate. (E) The representative tumor size was photographed in four groups. CTL, normoxia
control; CTL+shDDIT4, normoxia shDDIT4; IH, intermittent hypoxia control; IH+shDDIT4, intermittent hypoxia+shDDIT4. Independent
experiments were performed 3 times. n = 5 per group (*, p< 0.05; **, p< 0.01; vs. CONTROL).
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