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Abstract 
Recently developed MinHash-based techniques were proven 
successful in quickly estimating the level of similarity between large 
nucleotide sequences. This article discusses their usage and 
limitations in practice to approximating uncorrected distances 
between genomes, and transforming these pairwise dissimilarities 
into proper evolutionary distances. It is notably shown that complex 
distance measures can be easily approximated using simple 
transformation formulae based on few parameters. MinHash-based 
techniques can therefore be very useful for implementing fast yet 
accurate alignment-free phylogenetic reconstruction procedures from 
large sets of genomes. This last point of view is assessed with a 
simulation study using a dedicated bioinformatics tool.
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Introduction
To estimate the level of proximity between two non-aligned 
genome sequences x and y, recent methods (e.g. 1–7) have  
focused on decomposing the two genomes into their respective 
sets K

x
 and K

y
 of non-duplicated nucleotide k-mers (i.e. oligonu-

cleotides of size k). A pairwise similarity may then be easily esti-
mated based on the Jaccard index j = |K

x
 ∩ K

y
| / |K

x 
∪ K

y
|8. The  

Jaccard index between two sets of k-mers is a useful meas-
ure for two main reasons. First, it can be quickly approxi-
mated using MinHash-based techniques (MH9), as implemented 
in e.g. Mash2, sourmash3, Dashing4, Kmer-db6, FastANI5, or  
BinDash7. Such techniques select a small subset (of size σ) of 
hashed and sorted k-mers (called sketch) from each K

x
 and K

y
, and 

approximate j by comparing these two subsets (for more details,  
see 2,9–12). Second, the proportion p of observed differences 
between the two aligned genomes (often called uncorrected 
distance or p-distance) can be approximated from j (therefore  
without alignment) with the following formula (e.g. 13,14):

                                    
1 /

2
1 ,

1

k
jp

j
 

= −  
+ 

                                    (1)

provided that both sizes σ and k are large enough, and j is not  
too low (see below).

As a consequence, a pairwise evolutionary distance d can be 
derived from the Jaccard index j using transformation formulae  
of the following form:

                              ���������         1 2log (1 / ),ed b p b= − −                        (2)

where p is obtained using Equation (1). Parameters b
1 

and b
2 

can be defined according to explicit models to estimate the  
number d of nucleotide substitutions per character that have 
occurred during the evolution of the sequences x and y,  
e.g. 15–24. When b

1 
= b

2 
= 1, Equation (2) corresponds to the  

Poisson correction (PC; e.g. 21) distance. Although it is based 
on a simplistic model of nucleotide substitution1,16,25,26, PC  
is the p-distance transformation implemented in many MH 
tools (e.g. Mash, Dashing, FastANI, Kmer-db, BinDash). How-
ever, more accurate distance estimates may be obtained by 
using substitution models based on more parameters. Among 
these models, equal-input (EI, sometimes called F8118,19,24,27–29)  
takes into account the equilibrium frequency π

r 
of each  

residue r in Σ = {A, C, G, T}. An EI distance can be esti-

mated using Equation (2) with 2

1 1 π
∈Σ

= − ∑ rr
b  and 

2 1 ,π π
∈Σ

= − ∑ r rr x y
b  where πrx

 and πry
 are the frequencies 

of r in the two sequences x and y, respectively20. Further  
assuming that the heterogeneous replacement rates among  
nucleotide pairs and sites can be modelled with a Γ distribution,  
an EI distance d can be derived from p using the following  
formula:

                           ������      1/

1 2[(1 / ) 1],
ad ab p b −= − −                       (3)

where a > 0 is the (unknown) shape parameter of the Γ dis-
tribution, e.g. 22,24,30–33. It is worth noticing that when a is  
high, Equation (2) and Equation (3) yield very similar distance  
estimates (for any fixed b

1 
and b

2
).

The aim of this study is to assess the accuracy of Equation (2)  
and Equation (3) in transforming a MH p-distance p̂ , where 

p̂  is derived from the MH Jaccard index ĵ  using Equation (1).  
In the following, analyses of large sets of simulated nucleotide 
sequences show three complementary results. First, current  
MH implementations enable p-distances to be conveniently esti-
mated under several conditions. Second, PC and EI transfor-
mations (2) and (3) of MH p-distance estimates can suitably 
approximate evolutionary distances derived from general time  
reversible (GTR; e.g. 34) models of nucleotide substitution. 
Third, PC and EI distances derived from MH estimates enable  
accurate phylogenetic tree reconstruction from unaligned nucle-
otide sequences.

Results and discussion
MinHash-based p-distance approximation
Varying d from 0.05 to 1.00 (step = 0.05), a total of 200 nucle-
otide sequence pairs with d substitution events per charac-
ter were simulated under the models GTR and GTR+Γ. Each  
model was adjusted with three different equilibrium fre-
quencies: equal frequencies (f

1
; π

A 
= π

C 
= π

G 
= π

T 
= 25%),  

GC-rich (f
2
; π

A 
= 10%, π

C 
= 30%, π

G 
= 40%, π

T 
= 20%), and  

AT-rich (f
3
; π

A 
= π

T 
= 40%, π

C 
= π

G 
= 10%). The GTR substitution  

rates and the Γ shape parameters were obtained based on a 
maximum likelihood (ML) analysis of 142 real-case phylog-
enomics datasets. Overall, ML estimates of Γ shape param-
eters were quite low (i.e. varying from 0.162 to 0.422, with  
an average of 0.314), confirming that the heterogeneity of the 
substitution rates across sites is a non-negligible factor when 
studying evolutionary processes. Every simulation was com-
pleted with indel events, resulting in sequences > 3 Mbs with  
relative lengths (i.e. longer/shorter) varying from 1.0196  
(d = 0.05) to 1.1117 (d = 1.00), on average. 

For each of the 2 (GTR, GTR+Γ) × 3 (f
1
, f

2
, f

3
) × 20  

(d = 0.05, 0.10, ..., 1.00) × 200 = 24,000 simulated sequence 
pairs x and y, the corresponding p-distance was estimated using 
three MH tools: Mash, BinDash and Dashing. Of note, the accu-
racy of a MH estimate ĵ  of the Jaccard index between K

x
 and 

K
y
 is mainly dependent on two parameters: the k-mer size k and 

the sketch size σ. The size k should be large enough to mini-
mize the probability q of observing a random k-mer shared by x 
and y by chance alone. Such a value can be obtained from q by  
k = ⌈log|Σ| (g(1−q)/q) − 0.5⌉, where g is the length of the  
largest sequence2,35,29. The size σ should be large enough to  
minimize the error bounds of ĵ 2, but also to avoid the inconven-
ient estimate ĵ  = 0. Following 29, σ was set by the proportion  
s of the average sequence length.

To investigate the impact of both parameters σ and k on 
the accuracy of the MH estimates, each MH tool was used  
with s = 0.2, 0.4, 0.6, 0.8 and q = 10−3, 10−6, 10−9, 10−12. As in 
simulated sequences, g ranges from 4.99 Mbs (d = 0.05) to  
3.38 Mbs (d = 1.00) on average, s translates into moderately 
to very large sketch sizes σ, and q into k-mer sizes k = 16, 21,  
26, 31.

Two statistics were calculated to assess the linear relationship 
between the MH estimate p̂  (derived from ĵ ≠ 0) and the  
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’true’ p-distance p: the coefficient of determination R2 and the 
slope β of the linear least-square regression p̂  = βp. Let Ψ(p

max
) 

be the subset of pairs (p, p̂) such that p ≤ p
max

. Varying p
max  

from 0.10 to 0.55, R2 and β were estimated from Ψ(p
max

)  
(Figure 1). The cumulative proportions ˆ 0jf =  of MH Jaccard  
index ĵ  = 0 within [0, p

max
] were also measured (Figure 1).  

Finally, every value p
r>0.99 

was estimated, where p
r>0.99 

is 
defined as the highest p-distance such that the subset Ψ(p

r>0.99
)  

provides a coefficient of correlation r > 0.99 (as assessed by a  
Fisher transformation z-test with p-value < 1%; Figure 1). The  

highest values p
r>0.99 

were obtained with parameters k = 26  
(q ≤ 10−9) and s = 0.8 (illustrated in Figure 2).

One important result (Figure 1) is that current MH imple-
mentations return suitable estimates of p as long as p ≤ 0.25,  
provided that k is sufficiently large. Indeed, when k ≥ 21 (and 
any s ≥ 0.2), the statistics p

r>0.99 
are higher than 0.25 (Figure 1), 

therefore showing that p and p̂  are highly linearly correlated 
when p ≤ 0.25 (see e.g. Figure 2). Interestingly, when p ≤ 0.25, 
the worthless estimate ĵ  = 0 was almost never observed with  
the different selected parameters s and q (Figure 1).

Figure 1. Accuracy of MH tools for estimating p-distances from unaligned nucleotide sequences. For each sketch size (columns; 
set by s = 0.2, 0.4, 0.6, 0.8) and each k-mer size (rows; k = 16, 21, 26, 31), three line charts represent different statistics determined with 
Mash (green), BinDash (red), and Dashing (blue). For pmax ranging from 0.10 to 0.55 (x-axes), represented statistics are (i) the coefficient of 
determination R2 (up; y-axis ranging from 0.85 to 1.00) and (ii) the slope of the linear least-square regression through the origin (middle; 
y-axis ranging from 0.8 to 1.2) computed from estimated p̂  and corresponding ’true’ p-distances p ≤ pmax, as well as (iii) the cumulative 
proportion ˆ 0jf =  of estimated Jaccard index ĵ  = 0 within [0, pmax] (bottom; y-axis ranging from 0.0 to 0.3). Circles in R2 line charts (up) indicate 
the largest value pr>0.99 such that the subset of pairs (p, p̂ ) defined by p ≤ pr>0.99 provides a coefficient of correlation r > 0.99.
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Figure 2. MH p-distance estimates between 24,000 pairs of unaligned nucleotide sequences. The p-distances p̂  estimated by Mash 
(up left), BinDash (up right) and Dashing (bottom left) with k = 26 (q = 10−9) and s = 0.8 are plotted against the ’true’ p-distances p between 
24,000 pairs of nucleotide sequences simulated under six scenaria of evolution: GTR with equilibrium frequencies f1 = (0.25, 0.25, 0.25, 0.25) 
(green points), f2 = (0.10, 0.30, 0.40, 0.20) (red) and f3 = (0.40, 0.10, 0.10, 0.40) (blue), and GTR+Γ with f1 (cyan), f2 (orange) and f3 (magenta). 
Points corresponding to ĵ  = 0 are not represented. Each scatter plot is completed with the least-square regression line through the origin 
(dashed black line) estimated from the subset of points (p, p̂ ) such that p ≤ pr>0.99, where pr>0.99 = 0.345 (Mash), 0.335 (BinDash) and 0.330 
(Dashing).

Furthermore, when p > 0.25, large k-mers are required to 
obtain satisfactory estimates, i.e. k > 21 or q < 10−6 (Figure 1).  
However, dealing with k > 21 involves using large sketch sizes 
to minimize the cases ĵ  = 0 (see ˆ 0jf =  in Figure 1). Simulation 
results suggest that k = 26 (i.e. q = 10−9) and s > 0.4 yield suit-
able estimates of p, obtained from sequences of lengths > 4 Mbs  
with pairwise p < 0.35 (see Figure 1 and Figure 2). Indeed, 
when p ranges between 0.25 and 0.35, small sizes k (e.g. k ≤ 21  
or q ≥ 10−6) always provide underestimated p̂  (with any s). 
Large size k (e.g. k = 31 or q = 10−12) results in the same trend, 
but also in high numbers of useless estimates ĵ  = 0 (even with  
large σ; see ˆ 0jf =  in Figure 1).

When p ≥ 0.35, MH tools always underestimate the p-distances  
between the sequences simulated for this study (Figure 1 
and Figure 2). One could suggest that more accurate MH 

estimates p̂  will be expected with larger sketch sizes σ.  
Nevertheless, results represented in Figure 2 (i.e. q = 10−9 and  
s = 0.8, providing the highest p

r>0.99
) are based on average  

σ varying from ∼2.7 × 106 (d = 1.00) to ∼3.6 × 106 (d = 0.35),  
which are larger than some real genomes.

Transformation of p-distances into evolutionary 
distances
When a pairwise p-distance p can be estimated from unaligned 
nucleotide sequences, it may be transformed into an evolu-
tionary distance d, based on Equation (2) or Equation (3). The 
relationship between p and d was represented in Figure 3  
for different distance estimators: PC transformation (2)  
(b

1 
= b

2 
= 1), and EI transformations (2) and (3) with equilibrium 

frequencies f
1 

(b
1 

= b
2 

= 0.75 under homogeneous substitution  
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Figure 3. Relationships between p-distances and different evolutionary distance estimates under various models of nucleotide 
substitution. The six charts represent the evolutionary distance d (y-axis ranging from 0.00 to 1.00) against the p-distance p (x-axis ranging 
from 0 to 0.55). Gray points (p, d) are derived from the simulation of sets of 4,000 sequence pairs, each under six different scenaria of 
evolution: GTR (top) and GTR+Γ (bottom) with equilibrium frequencies f1 = (0.25, 0.25, 0.25, 0.25) (left), f2 = (0.10, 0.30, 0.40, 0.20) (middle) 
and f3 = (0.40, 0.10, 0.10, 0.40) (right). PC and EI versions of Equation (2) are represented with red and green curves, respectively. EI version 
of Equation (3) is represented with blue curves for a = 1, and with black curves for the values a = 4.590 and a = 0.291 determined by least-
square regression from the gray points derived from the models GTR (top) and GTR+Γ (bottom), respectively.

pattern20), f
2 

(b
1 

= b
2 

= 0.70) and f
3  

(b
1 

= b
2 

= 0.66). Parameter a 
in EI Equation (3) was estimated by least-square regression 
from the pairs (p, d) derived from the sequences simulated  
under the models GTR and GTR+Γ (see above).

PC and EI p-distance transformations (2) result in improper 
underestimates as the expected distance d increases. Indeed, 
when compared with realistic GTR-based distances d, PC and 
EI transformations (2) give distance estimates that are always 
lower than d, especially under GTR+Γ and when d is large  
(e.g. d > 0.1; Figure 3). This downward bias is somewhat  
expected, knowing that PC and EI transformations (2) are  
based on less parameters than both models GTR and GTR+Γ.  
However, the additional parameter a in Equation (3) may help  
dealing with heterogeneous substitution rates among residue 
pairs (e.g. 36). Hence, the relationship between GTR distances  
d and the corresponding p-distances p can be approximated by 
the EI transformation (3) with a = 4.590 (Figure 3). Moreover,  
as d returned by Equation (3) is inversely proportional to a  
(for any fixed p), the relationship between d and p under the  

model GTR+Γ (with Γ shape parameter of 0.314, on average) 
can also be approximated by the EI transformation (3) with  
a = 0.291 (Figure 3). 

These results show that complex distance measures can be 
approximated by simple analytical formulae based on few 
parameters. In practice, nucleotide frequencies (four parameters)  
can be trivially computed and p-distances (a fifth param-
eter) can be estimated using MH tools (see above). Therefore,  
the evolutionary distance d between two sequences that have 
evolved under the parameter-rich model GTR+Γ can be 
approximated from these only five parameters using (3) with  
a ≤ 4.590 (Figure 3).

At this point, it should be stressed that MH p̂  tends to be  
overestimated. Indeed, MH estimates are of the form p̂  ≈ βp  
with slope β varying from 1.08 (BinDash, k = 31, s = 0.2) to 
1.15 (Dashing, k = 26, s = 0.2) when p ≤ p

r>0.99 
(Figure 1).  

This has a direct impact on the derived distances: using PC and 
EI transformations (2) on p̂  = βp with β = 1.15 and p ≤ 0.35 
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reference phylogenetic trees were obtained based on a ML  
analysis of real-case phylogenomics datasets. Sizes of the ref-
erence trees ranged from 10 to 154 taxa (31 on average), with 
diameters (i.e. maximum distance between any two leaves of a 
tree) varying from 0.204 to 2.883 (0.975 on average). Sequence 
lengths and indel events were simulated in the same way as the  
previous sequence pair simulations. 

The script JolyTree v2.0 was used to reconstruct phylogenetic 
trees from the simulated sequences. For each pair of unaligned  
sequences, this script estimates the MH p-distance using 
Mash, and transforms it into an evolutionary distance. Using 
these MH-based distances, JolyTree next reconstructs a mini-
mum evolution phylogenetic tree with confidence supports at  
branches, based on a ratchet-based hill-climbing procedure (for 
more details, see 29). To obtain accurate MH p-distance esti-
mates, JolyTree was run with parameters q = 10−9 and s = 0.5 
(see above). Evolutionary distances were estimated using the  
PC and EI transformations (2), as well as the EI transformation  
(3). To observe the impact of the parameter a, the EI transfor-
mation (3) was computed with a varying from 0.05 to 10.0. 
The accuracy of each p-distance transformation for phy-
logenetic inference was assessed by the percentage of recovered  
reference trees, i.e. identical topologies (Figure 5).

Using JolyTree with EI transformations improves the percent-
age of recovered reference trees (Figure 5). In spite of their limi-
tations, PC distances result in the recovery of 75.3% of the 142 
reference trees, but EI transformation (2) increases this percent-
age to 76.7% (Figure 5). Furthermore, the EI transformation  
(3) generally provides better results in a large range of a, i.e. 
up to 83.1% of recovered reference trees (Figure 5). Low  
a-values (e.g. a ≤ 0.3) translate into many incorrect tree topolo-
gies, whereas high ones (e.g. a > 6) tend to provide the same 
reference tree recovering percentage as the EI transformation (2)  
(Figure 5). Most suitable values of a (corresponding to the 
highest reference tree recovering percentages, e.g. 80%)  
seem to range in the interval [1.0, 2.0] (Figure 5).

These simulation results are consistent with two views 
which are somehow contradictory. On the one hand, accurate  
(parameter-rich) distance estimates are required, because 
biased ones (i.e. corresponding to a concave or convex func-
tion of the actual evolutionary distances) may result in incorrect  
phylogenetic trees23,37. On the other hand, simple (underparam-
eterized) distance estimates should often be preferred, because 
they frequently result in more accurate tree topologies21,38–42. 
Here, the simple PC and EI transformations (2) (one and five  
parameters, respectively) enable many reference trees to be  
recovered (Figure 5). However, the EI transformation (3) is 
able to approximate realistic distance measures (e.g. GTR+Γ)  
by using only one supplementary parameter a (Figure 3). It  
therefore enables more reference trees to be recovered  
(Figure 5). 

In line with 43, most suitable values of a (e.g. between 1.0 and 
2.0) are all higher than the Γ shape parameter values used 
for simulating the sequence datasets (i.e. varying from 0.162  

provide distance estimates that are quite comparable to the ones 
returned by Equation (3) with a ranging from 1.000 to 4.590 (see  
Figure 4 for the equilibrium frequencies f

2
; similar results were 

observed with f
1 

and f
3 

– not shown). The PC transformation  
(2) on the upward biased MH p̂  returns distances that are then 
comparable to some complex distance measures (e.g. derived 
from a GTR model), therefore justifying its use by many MH 
tools. Nevertheless, the EI transformation (3) remains neces-
sary when dealing with distantly related sequences (e.g. p > 0.2)  
and strong heterogeneity of the substitution rate across sites 
(e.g. often observed Γ shape parameter < 1.000). In such 
cases, the value of the parameter a should always be slightly 
increased to compensate the MH upward bias. For instance, EI  
transformation (3) on p with a = 0.291 (i.e. GTR+Γ distance 
least-square fitting in Figure 3) can be approximated by the  
same equation on p̂  = βp with β = 1.15 and a = 0.431.

Phylogenetic reconstruction from MinHash-based 
evolutionary distances
To assess whether MH p-distance transformations may trans-
late into reliable phylogenetic trees, additional simulations were  
performed. A total of 142 sets of sequences was simulated  
under the model GTR+Γ along reference phylogenetic trees. 
Representative GTR+Γ model parameters (same as above) and 

Figure 4. Impact of the MH p-distance upward bias on PC and 
EI transformations. The relationship between the p-distance  
p (x-axis ranging from 0.00 to 0.35) and the corresponding 
evolutionary distance d (y-axis ranging from 0.00 to 0.70) is 
represented when using PC (red dots) and EI (with equilibrium 
frequencies f2; green dots) transformations (2) on p̂  = β p with β 
= 1.15. For ease of comparison with Figure 3, EI (f2) transformation 
(3) on p are represented with a = 1.000 (blue curve) and a = 4.590 
(black curve).
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to 0.422, with an average of 0.314). This can be explained by 
the MH upward bias (see above), but also by the large vari-
ance of the estimate (3) when a becomes low. Reminding  
that the Γ shape parameters (and the reference trees) used 
in these simulations were inferred from real-case datasets,  
these results suggest that using EI transformation (3)  
with a ≈ 1.5 may be suitable to infer genus phylogenetic trees. 
In light of this, it should be stressed that the article29 describ-
ing the first distributed version of JolyTree (v1.1) incorrectly 
stated that the Mash output is the MH estimate p̂  (instead  
of its PC transformation). As JolyTree v1.1 uses the EI trans-
formation (2), this misinterpretation translates into the odd 
transformation formula δ = −b

1 
log

e
 (1 + log

e
(1 − p̂) / b

2
).  

However, as δ can be approximated on p̂  ≤ 0.35 by the EI 
transformation (3) with a = 1.208, this explains the overall 
accuracy of JolyTree v1.1 despite its use of δ29.

Conclusions
Alignment-free phylogenetic inference from pairwise MH-based  
distance estimates is a promising approach. It enables  
phylogenetic trees to be quickly reconstructed from a large 
number of genomes without the burden of multiple sequence 
alignments (see e.g. 2,29,44–52). This report confirms this 
view by showing that proper evolutionary distances can be  
easily derived from MH p-distance estimates, therefore  
enabling accurate phylogenetic inferences. 

First, although implemented to approximate nearest neigh-
bors in sequence sets, current MH tools (e.g. Mash, BinDash,  
Dashing) were shown to be able to conveniently estimate  
pairwise p-distances p up to p ≈ 0.35. In practice, as p is very 
similar to the one-complement of the Average Nucleotide Iden-
tity (ANI; e.g. 29,53,54), MH estimates of p can then be obtained 
between genomes gathered from many bacteria, archaea or  
eukaryota genera, i.e. with pairwise ANI > 65%.

Second, the EI p-distance transformation (3) was proven 
efficient to approximate complex distance measures, e.g. 
derived from GTR model with heterogeneous substitution  
rates across sites. Because of an upward bias observed in MH  
p-distance estimates, simpler transformations (based on few 
parameters, as the commonly used PC) still provide distance 
measures that are comparable to GTR ones, but with (unrealistic)  
homogeneous substitution rates across sites. However, thanks 
to its supplementary parameter a, EI transformation (3) remains  
necessary to approximate distance measures between dis-
tantly related sequences that have arisen from more realistic  
substitution events. 

Third, as proper evolutionary distances can be derived from 
MH p-distance estimates, their efficiency in phylogenetic infer-
ence was established using the dedicated tool JolyTree29. In  
particular, the EI transformation (3) with a ≈ 1.5 enables  
accurate phylogenetic trees to be inferred.

Methods
Model parameter estimation
To simulate the evolution of nucleotide sequences accord-
ing to realistic substitution processes, the 187 genus datasets  
compiled in 29 (available at https://doi.org/10.3897/rio.5.e36178.
suppl2) were first considered to infer a representative range 
of GTR parameter values. For each of the 187 genera, the asso-
ciated genome assemblies were processed using Gklust v0.1  
to obtain one representative genome assembly for each puta-
tive species. This analysis provided 142 sets of representative 
genome assemblies after discarding genera containing < 10 
putative species. For each of these 142 sets, coding sequences 
were clustered using Roary v3.1255. Each cluster with at least 
four coding sequences was used to build a multiple amino acid  
sequence alignment using MAFFT v7.40756. Multiple sequence 
alignments were back-translated at the codon level and con-
catenated, leading to 142 supermatrices of nucleotide charac-
ters. A phylogenetic tree was inferred from each supermatrix of 
characters using IQ-TREE v1.6.7.257 with evolutionary model  
GTR+Γ. All data related to these analyses are publicly available  
as Extended data at https://doi.org/10.5281/zenodo.403424458.

Sequence simulation
To assess the accuracy of different pairwise distance esti-
mates, a simulation of sequence pairs was performed under 
both models GTR and GTR+Γ with three different sets  
(π

A
, π

C
, π

G
, π

T
) of equilibrium frequencies: f

1 
= (0.25, 0.25, 0.25, 

0.25), f
2 

= (0.10, 0.30, 0.40, 0.20), and f
3 

= (0.40, 0.10, 0.10, 
0.40). For each of these six scenaria and for each d varying 
from 0.05 to 1.00 (step = 0.05), the program INDELible v1.0359  

Figure 5. Accuracy of different p-distance transformations for 
phylogenetic inference. The percentage of recovered reference 
trees (y-axis ranging from 50% to 100%) is represented (light blue 
dots) in function of the parameter a (x-axis ranging from 0.0 to 
10.0) in EI formula (3). The overall trend of these dots is illustrated 
using a moving average (dark blue curve). Dashed lines represent 
the percentages of recovered reference trees obtained with the PC 
(red) and EI (green) transformations (2).
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was used to simulate the evolution of 200 sequence pairs with 
d substitution events per character. Initial sequence length 
was 5 Mbs, and an indel rate of 0.01 was set with indel length 
drawn from [1, 50000] according to a Zipf distribution with  
parameter 1.5. For each simulated sequence pair, model param-
eters (i.e. GTR: six relative rates of nucleotide substitution; 
GTR+Γ: six rates and one Γ shape parameter) were randomly  
drawn from the 142 sets of estimated ones (see above). All sim-
ulated sequences are publicly available as Extended data at  
https://doi.org/10.5281/zenodo.403446160. 

To compare the efficiency of p-distance transformations for  
phylogenetic reconstruction, the program INDELible v1.03 was 
also used to simulate the evolution of a sequence along each  
of the 142 phylogenetic trees previously inferred from differ-
ent genera (see above). For each of the 142 genera, sequence 
evolution was simulated under the model GTR+Γ with the  
corresponding parameters (i.e. four nucleotide frequencies,  
six relative rates, and one Γ shape parameter). Sequence length 
and indel events were simulated as described above. The 142 
simulated sequence sets are publicly available as Extended data  
at https://doi.org/10.5281/zenodo.403464361.

Sequence and phylogenetic analyses
MH p-distances were estimated with Mash v2.2, BinDash v1.0, 
and Dashing v0.3.4-11-gb44a. BinDash and Dashing were  
used with the MH b-bit flavor with b = 18. Of note, as Mash and 
Bindash directly return the PC distance d, the corresponding  
p-distance was computed by p = 1 − e−d . 

Phylogenetic tree reconstructions from simulated sequences 
were performed with the script JolyTree v2.0. This ver-
sion implements the PC and EI transformations (2) and (3) of 
the pairwise p-distances estimated by Mash. If any, missing  
evolutionary distances d

uv
 = ∅ (i.e. corresponding to ĵ  = 0 or  

p ≥ b
2
) between sequences u and v are approximated by 

JolyTree from the other non-missing evolutionary distances  
by 

, ; ,min ( ).uv x u v d d xu xvxu xv
d d d≠ ≠∅= +  This fast approximation 

is derived from the triangle inequality property d
uv

 ≤ d
xu

 + d
xv

  
expected from the triplet of evolutionary distances induced by  
any sequence triplet u, v, x (see e.g. 62).

Data availability
Source data
A list of the 14,244 genome assemblies used to build the 187  
genus datasets (Supplementary material of 29). https://doi.org/ 
10.3897/rio.5.e36178.suppl2. 

Extended data
Zenodo: Phylogenomic analyses of 142 prokaryotic genera.  
https://doi.org/10.5281/zenodo.403424458.

Zenodo: Simulated pairs of nucleotide sequences for testing 
(alignment-free) genome distance estimate methods. https://doi.
org/10.5281/zenodo.403446160.

Zenodo: Model trees and associated simulated nucleotide  
sequences for testing phylogenetic inference methods. https://doi.
org/10.5281/zenodo.403464361.

Data are available under the terms of the Creative Commons  
Attribution 4.0 International license (CC-BY 4.0). 
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I have no special criticism on the methodology and my comments on that part are really minor. 
First, what is the justification to the choice of a value equal to 1.5 for the shape of the Zipf 
distribution used to simulate the indels. As a user of INDELible myself I know very well how this 
value can be of importance so I would like to know how this value was chosen (arbitrary choice?). 
Second, I am not sure that the right reference for the computation of missing distances from the 
triangle inequality property is Guénoche and Grancolas (1999). The first paper I have seen on that 
topic is Lapointe and Kirsch (19951). Also, I have no concerns on the results presented and 
everything seems ok for me. 
 
The conclusion of the manuscript presents the approach of phylogenetic inference from pairwise 
MH-based distance estimates as a possible alternative to classical methods of phylogenetic 
reconstruction (especially in bacteria). Indeed, a classical phylogenomic approach involves the 
chaining of a complex set of procedures: the identification of orthologous genes in multiple 
species; the alignment of these genes; and finally, the building of a tree from the concatenation of 
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classical approaches try to minimize this influence. 
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The author investigates how phylogenetic distances between genomic sequences, calculated by 
MinHash methods, can be transformed into more meaningful distances, based on complex 
models of nucleotide substitutions. 
 
In the last few years, a number of alignment-free methods have been developed to calculate 
distances between genomic sequences. While earlier alignment-free methods used rough 
measures of sequence (dis)similarity, some methods have been proposed recently that accurately 
estimate distances - the number of substitutions per position since two sequences evolved from 
their last common ancestor - based on stochastic models of evolution (see below). These methods 
are restricted, however, to the simplest possible model, the Jukes-Cantor model. 
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In recent papers, MinHash techniques were proposed as an attractive way of estimating the p-
distance between DNA sequences, i.e. the number of mismatches per position in an (unknown) 
alignment of the compared sequences. 
  
The present paper shows how distances based on complex models of evolution (GTR, GTR + 
\Gamma) can be approximated using MinHash-based p-distances. The approach is carefully 
evaluated based on simulated sequences. 
 
The proposed method is a welcome and useful addition to existing alignment-free methods, 
extending them to more realistic models of evolution. The approach is novel, the paper is very well 
written and clear, and suitable references are given to the literature for more details. Therefore, I 
support indexing of the manuscript.   
 
A certain limitation is that the manuscript is restricted to MinHash distances. According to the 
author, these methods are accurate for p-distances roughly < 0.25 (for reasonable k-mer length), 
but are less accurate for larger distances. However, a number of other alignment-free methods 
have been proposed that accurately estimate distances for much larger distances, e.g. Kr (Haubold 
et al., 20091), FSWM (Leimeister et al., 20172), Phylonium (Klötzl and Haubold, 20193), Slope-SpaM 
(Röhling et al., 20204). All these methods estimate distances based on the simple Jukes-Cantor 
model; the program Co-phylog estimates non-corrected p-distances (Yi and Jin, 20135). It should 
be straight-forward to transform these distances to more complex models, as done in the present 
paper, and to compare them to the MinHash methods evaluated in the paper. 
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The manuscript describes a series of simulations assessing various parametric transformations of 
MinHash-based genomic distance estimates into more robust evolutionary distances. It concludes 
that (1) MinHash methods accurately estimate nucleotide distances, (2) that accurate estimates of 
corrected evolutionary distances can be derived from these, with the more parameterized of two 
models performing better, and (3) that accurate phylogenies can be inferred from those 
estimates. 
 
The manuscript is well written and generally clear, although some of the methods are described 
so technically as to be hard to follow (e.g. pmax and pr>0.99 in "MinHash-based p-distance 
approximation"). 
 
My main concern, which is not large, is the choice of the sketch size, s (or σ). The MinHash family 
of algorithms assumes s << G (genome size). The smallest sketch size tested here, however, is 1/5 
of the average genome size. This size, described as "moderately large," is actually two or three 
orders of magnitude larger than Mash's default, for example. The justification for this is to lower 
the error bounds. As a consequence, however, what is being tested here is, in a sense, the viability 
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of pure k-mer counting a la Fan et al., rather than the MinHash approaches, which trade some 
accuracy of the Jaccard estimation for speed. This is still useful, but could be somewhat misleading 
for those that need the speed benefits of running MinHash with more typical parameters. 
Additionally, since the sweep of s is linear, but MinHash error bounds relate to an exponential of s, 
the sweep ends up being less informative than it could be, which is likely why the columns of 
Figure 1 are nearly identical. 
 
As a simple remedy, I would suggest sweeping the parameter s exponentially rather than linearly, 
starting closer to the default sketch size for the tools. It could still end closer to the genome size to 
get a sense of the behavior of MinHash as it degenerates to the actual k-mer Jaccard score. Along 
these lines, it would also make sense for the later phylogenetic experiments to either use a 
smaller s or do another sweep of values. 
 
As a minor point when listing relevant software in the introduction: Dashing is based on 
HyperLogLog sketching, which is similar in concept to MinHash but algorithmically distinct.
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