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Abstract

Background: Bretschneidera sinensis is an endangered relic tree species in the Akaniaceae family and is sporadically distributed in
eastern Asia. As opposed to its current narrow and rare distribution, the fossil pollen of B. sinensis has been found to be frequent and
widespread in the Northern Hemisphere during the Late Miocene. B. sinensis is also a typical mycorrhizal plant, and its annual seedlings
exhibit high mortality rates in absence of mycorrhizal development. The chromosome-level high-quality genome of B. sinensis will
help us to more deeply understand the survival and demographic histories of this relic species.

Results: A total of 25.39 Gb HiFi reads and 109.17 Gb Hi-C reads were used to construct the chromosome-level genome of B. sinensis,
which is 1.21 Gb in length with the contig N50 of 64.13 Mb and chromosome N50 of 146.54 Mb. The identified transposable elements ac-
count for 55.21% of the genome. A total of 45,839 protein-coding genes were predicted in B. sinensis. A lineage-specific whole-genome
duplication was detected, and 7,283 lineage-specific expanded gene families with functions related to the specialized endotrophic
mycorrhizal adaptation were identified. The historical effective population size (Ne) of B. sinensis was found to oscillate greatly in re-
sponse to Quaternary climatic changes. The Ne of B. sinensis has decreased rapidly in the recent past, making its extant Ne extremely
lower. Our additional evolutionary genomic analyses suggested that the developed mycorrhizal adaption might have been repeat-
edly disrupted by environmental changes caused by Quaternary climatic oscillations. The environmental changes and an already
decreased population size during the Holocene may have led to the current rarity of B. sinensis.

Conclusion: This is a detailed report of the genome sequences for the family Akaniaceae distributed in evergreen forests in eastern
Asia. Such a high-quality genomic resource may provide critical clues for comparative genomics studies of this family in the future.
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Background
An increasing number of species around the world are becom-
ing endangered and are at an extremely high risk of extinction
due to climate changes and increased human pressure [1]. Disen-
tangling the factors that might have caused such endangerment
offers an interesting avenue for research because such endanger-
ment arises from different factors, including demographic histo-
ries, disruption of environmental adaptation, and human activi-
ties [2]. For example, the Quaternary climate changes greatly de-
creased the population size of endangered species, and owing to
lack of beneficial genetic variations, they could not recover the
original distribution at the end of the glacial period [1, 3–5]. In
addition, some species that may have developed specific adapta-
tions to special habitats through environmental interactions will
likely become endangered when such suitable habitats are dis-
rupted [6–8]. This may be especially true for species with special-
ized endotrophic mycorrhizal adaptation [9]. Such species usu-
ally develop complex inter-regulation systems with unique envi-
ronments through numerous genes. The genome sequence pro-
vides critical information to identify the underlying factors and
the endangerment process of a species [10]. For instance, genomic
data suggest that the Quaternary climatic changes rapidly de-

creased the population size of Ostrya rehderiana (Betulaceae), while
recent anthropogenic disturbances further exacerbated this pop-
ulation decline. Repeated bottlenecks accelerated inbreeding and
promoted the accumulation of deleterious mutations despite ex-
tinction mitigation due to the removal of severely deleterious re-
cessive variations [10]. Other tree species have become endan-
gered similarly owing to continuously decreasing population sizes
during the past climatic oscillations [11–13].

Bretschneidera sinensis Hemsley (NCBI:txid28529; 2n = 18) is a
relic tree species that belongs to the Akaniaceae (turnipwood)
family [14, 15] and usually occurs in the evergreen and/or broad-
leaved pure or mixed forest in eastern Asia at elevations between
300 and 1,700 m [16]. This species has been assigned an endan-
gered status and is listed in the International Union for Conser-
vation of Nature (IUCN) red list [17] and the List of National Key
Protected Wild Plants in China [18]. As opposed to its current nar-
row and rare distributions, the fossil pollen of B. sinensis was found
to be frequent and widespread in the Northern Hemisphere dur-
ing the Late Miocene [19, 20]. In addition, B. sinensis is a typical
mycorrhizal plant and its annual seedlings exhibit high mortal-
ity rates in absence of mycorrhizal development [21, 22]. Here, we
performed a chromosome-level de novo assembly of the genome

Received: November 14, 2021. Revised: March 2, 2022. Accepted: April 23, 2022
C© The Author(s) 2022. Published by Oxford University Press GigaScience. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided
the original work is properly cited.

http://orcid.org/0000-0001-6707-7983
http://orcid.org/0000-0002-6866-5100
http://orcid.org/0000-0002-2475-1509
http://orcid.org/0000-0001-6912-6718
mailto:yangyz@lzu.edu.cn
https://creativecommons.org/licenses/by/4.0/


2 | GigaScience, 2022, Vol. 11, No. 1

sequence of B. sinensis using high-fidelity (HiFi) reads and chromo-
some conformation capture (Hi-C) approaches. The high-quality
genome and further demographic and evolutionary comparisons
provide critically important evidence for advancing our under-
standing of the major factors that led to the rarity of the relic B.
sinensis.

Data Description
Plant materials and genome sequencing
Fresh leaves were collected from a young stem of 1 adult plant
of Bretschneidera sinensis grown in Mount Emei Botanical Garden,
Sichuan province, China. The collected leaves were immediately
frozen in liquid nitrogen and then sent to BGI-Shenzhen Com-
pany (Wuhan, China) for the following genomic sequencing ap-
proach. The high-quality genomic DNA was extracted by the
DNAsecure Plant Kit (Tiangen Biotech Co., Ltd, Beijing, China).
The DNA quality was determined by running 1% agarose gel
electrophoresis.

For short-read sequencing, a standard DNA fragmentation
step was performed using an Ultrasonic Processor Covaris S220
(Woburn, MA, USA) to generate DNA fragments of length 350 bp.
The sequencing libraries were built following the protocols pro-
vided by the MGIEasy Kit (BGI, Wuhan, China) and then sequenced
on DNBSEQ-G400 (DNBSEQ-G400, RRID:SCR_017980; BGI, Wuhan,
China). The raw short reads were filtered by SOAPnuke V2.1.6
(SOAPnuke, RRID:SCR_015025) [23] to remove adapters and low-
quality reads with parameters of "-n 0.01 -l 20 -q 0.1 -i -Q 2 -G -M
2 -A 0.5 -d". A total of 132.99 Gb of clean paired-end reads were
obtained for B. sinensis (Supplementary Table S1).

For Pacific Biosciences HiFi sequencing (Pacific Biosciences Se-
quel II System, RRID:SCR_017990), a 15-kb HiFi library was con-
structed according to the manufacturer’s protocol (Pacific Bio-
sciences, PN 101-853-100 Version 03). The high-quality genomic
DNAs were sheared using the Megaruptor®3 (Diagenode), and
15-kb fragments were further selected using Sage ELF to pre-
pare the libraries. The Pacific Biosciences Sequel II platform
was used to produce 25.39 Gb long clean reads (Supplementary
Table S1).

The Hi-C technology was further performed to anchor con-
tigs into pseudo-chromosomes. Fresh young leaves of the same
tree were used to build Hi-C libraries according to the custom
procedure [24]. The MboI-digested chromatin was end-labeled
with dATP and then used for DNA ligation. Next, the prepared
DNA was purified and sheared using Qiagen MinElute PCR Pu-
rification Kit (QIAGEN, Hilden, Germany). The purified concen-
tration was detected by Qubit® dsDNA HS Assay Kit (Thermo
Fisher Scientific, MA, USA). After tailing, pulldown, and adapter
ligation, the DNA library was sequenced on an Illumina HiSeq X
Ten System (Illumina HiSeq X Ten, RRID:SCR_016385), and a to-
tal of 109.17 Gb raw Hi-C reads were generated (Supplementary
Table S1).

Estimate of genome size
The k-mer–based method [25] was used to perform the
genome size inference with clean short reads. Jellyfish (Jelly-
fish, RRID:SCR_005491) [26] was used to construct the k-mer
depth distribution with k-mer size of 21, and then GenomeScope
v1.0 (GenomeScope, RRID:SCR_017014) [27] was used to estimate
the genome size of B. sinensis. The genome size of 1,206.79 Mb and
genomic heterozygosity of 0.204% were estimated in B. sinensis
(Supplementary Fig. S1).

De novo genome assembly and quality evaluation
The 25.39 Gb (∼21×) HiFi reads were first used to de novo assemble
contigs by means of HIFIasm (Hifiasm, RRID:SCR_021069) v0.15.4-
r347 with default parameters. The final contig assembly contained
the total length of 1,213.76 Mb (constituting 100.58% of the esti-
mated genome sizes) with 630 contigs (N50 length of 64.13 Mb)
(Supplementary Table S2). Then we used 109.17 Gb (∼90×) Hi-C
data to produce the chromosome-level assembly. HiC-Pro v 3.0.0
(HiC-Pro, RRID:SCR_017643) [28] was used to divide the clean reads
into valid (i.e., unique mapped read pairs) and invalid interaction
pairs, and only valid interaction pairs were retained for further
chromosome assembly with the following aligned parameters: –
very-sensitive -L 30 –score-min L,-0.6,-0.2 –end-to-end –reorder.
3D-DNA v180114 [29] was further applied to cluster, sort, and ori-
ent contig sequences to generate a chromosome-level genome. In
total, 95.38% (1,157.96 Mb) of the total assembly length could be
anchored onto 9 pseudo-chromosomes with a total number of 36
gaps that consist of the previously reported chromosome num-
bers of B. sinensis [30, 31] (Fig. 1, Supplementary Fig. S2 and Table
S3). The longest and shortest chromosomes were 166.61 and 89.86
Mb, respectively, in our final chromosome-level assembly (Supple-
mentary Table S3).

To evaluate the quality of our assembly, the guanine cytosine
(GC) ratio of B. sinensis was first calculated, and it was found to
be similar to the GC ratio of other closely related species (Sup-
plementary Table S2 and Fig. S3). Then the short clean reads
were mapped onto the genome by means of BWA-MEM2 v2.0,
and 99.30% reads could be appropriately mapped. Finally, BUSCO
v5.2.2 (BUSCO, RRID:SCR_015008) [32] with "Embryophyta_ODB10"
was carried out to assess the integrity of the genome assembly. A
total of 1,596 (98.90%) BUSCO genes could be completely covered
in the B. sinensis genome (Supplementary Table S4). Furthermore,
the assembly consensus quality value (QV) was also estimated by
Merqury v1.3 [33] with 46.5413, which reached the Q40 quality
standard. Both these analyses showed that the assembled genome
has high accuracy, continuity, and completeness.

Gene prediction and function annotation
A combination of ab initio and homology-based approaches were
executed to predict high-quality protein-coding genes in B. sinen-
sis. For ab initio, Augustus v.3.2.3 (Augustus, RRID:SCR_008417)
[34], GenScan (GENSCAN, RRID:SCR_013362) [35], and Glim-
merHMM v.3.0.4 (GlimmerHMM, RRID:SCR_002654) [36] were
used for gene prediction. The training set of Arabidopsis thaliana
was used in GenScan and GlimmerHMM, and the specific train-
ing set of B. sinensis was used in Augustus, which was cre-
ated by BUSCO during the genome quality assessment. For
homology-based prediction, protein sequences from A. thaliana:
GCF_000001735.4 and Vitis vinifera: GCF_000003745.3, and the
other 2 Brassicales (Carica papaya: GCF_000150535.2, and Tarenaya
hassleriana: GCF_000463585.1) were selected, and GeMoMa v1.6.4
(GeMoMa, RRID:SCR_017646) [37] was used to obtain the corre-
sponding gene structures. EVidenceModeler v1.1.1 (EVidenceMod-
eler, RRID:SCR_014659) [38] was used to generate consensus gene
sets by combing both ab initio and homology-based results, and
PASA v2.4.1 (PASA, RRID:SCR_014656) [39] was used to correct the
predicted result. Finally, a total of 45,839 high-quality genes were
predicted in B. sinensis with a mean CDS length of 1,141.24, mean
exon number of 5.20, mean gene length of 4,519.58 bp, and mean
intron length of 810.78 bp (Supplementary Table S5). Compared
to the other recently published plant genomes, we found that
the mean CDS length, exon length, and exon number were highly
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Figure 1: Chromosome features of Bretschneidera sinensis. (a) GC density, (b) gene density, (c) repeat density, (d) copia density, (e) gypsy density.

conserved in B. sinensis and other species (Supplementary Table
S6). Moreover, 1,576 (97.6%) BUSCO genes could be completely
matched to our predicted B. sinensis gene set (Supplementary Ta-
ble S4).

Gene functionality was predicted using BLASTP v.2.7.1+ (E-
value ≤ 1e−5) by best matching the protein sequences annotated
in Clusters of Orthologous Genes (COG), EuKaryotic Orthologous
Groups (KOG), NCBI’s NR, SwissProt, and TrEMBL databases. Pro-
tein domains and motifs were annotated using InterProScan v
5.51-85.0 [40] and Hmmer v3.1b2 (Hmmer, RRID:SCR_005305) [41]
by searching against pfam (Pfam, RRID:SCR_004726) databases.
The Gene Ontology (GO) terms for each gene were retrieved from
the corresponding InterProScan (InterProScan, RRID:SCR_005829)
results. We also mapped each gene of B. sinensis to the KEGG path-
way maps by means of KAAS (KEGG Automatic Annotation Server)
[42]. Functional annotation indicated that a total of 89.55% genes
had ≥1 hit against the following public databases: COG (32.05%),

GO (52.23%), KEGG (22.34%), KOG (49.89%), Swiss-Prot (63.19%),
TrEMBL (95.98%), and NCBI-NR (89.55%) Supplementary Table S7).

Repetitive sequence annotation
Tandem repeats and transposable elements (TEs) were sepa-
rately identified. Tandem repeats were searched throughout the
genome using TRF v4.09 [43] with the following parameters:
"2,7,7,80,10,50,2000". TEs were predicted using a combination of
de novo and homology-based methods. For the de novo method,
RepeatModeler v2.0 (RepeatModeler, RRID:SCR_015027) [44] and
LTR_Finder (LTR_Finder, RRID:SCR_015247) [45] were used to build
a repeat library with default parameters and then RepeatMasker
v4.0.7 (RepeatMasker, RRID:SCR_012954) [46] was run through-
out the genome. For homology-based prediction, TEs in the target
genome were identified and classified using RepeatMasker against
the Repbase v20.05 (Repbase, RRID:SCR_021169) [47] of known



4 | GigaScience, 2022, Vol. 11, No. 1

repeat sequences, with -nolow -no_is -norna -species “mesan-
giospermae”. Next, RepeatProteinMask was performed to pre-
dict the TEs with parameters “-noLowSimple -pvalue 0.0001” by
aligning the target genome sequences against the TE protein
database.

TEs composed a total of 55.21% of the B. sinensis genome,
in which long terminal repeats (LTRs) were the most abundant
component, occupying 50.41% (611,963,735 bp) of the genome
sequences (Supplementary Table S8). Among LTRs, copia and
gypsy were the dominant types and occupied 17.81% and 31.75%
genome sequences, respectively. We further inferred the inser-
tion time of the complete LTRs by means of LTR_retriever v2.8
(LTR_retriever, RRID:SCR_017623) [48] with default parameters.
The results showed that the insertion of LTRs began ∼5 mil-
lion years ago (Mya) and approached a peak ∼2 Mya, which
represented a recent wave of TE burst (Fig. 2C). The other ma-
jor types of TEs, such as short interspersed nuclear elements
(SINEs), long interspersed nuclear elements (LINEs), and DNA
transposons, respectively, occupied 0.02%, 2.06%, and 2.72% (Sup-
plementary Table S8). In addition, TEs were unevenly distributed
in the genome and were accumulated more in the intergenic re-
gions rather than genic regions, and accumulation was high to-
wards introns compared to exons (Fig. 2D). Furthermore, we iden-
tified that 15,426 genes have the TE insertion. The functional en-
richment analyses showed that these genes were mainly involved
in plant growth and development (including biological process,
cellular component, and molecular function) (Supplementary
Fig. S4).

Phylogenetic analyses
A total of 12 species were selected to construct the
gene families, which included 2 species from the ANA
(AmborellalesNymphaeales-Austrobaileyales) grade ( Amborella
trichopoda and Nymphaea colorata), 1 monocot (Oryza sativa), and
9 eudicots: 5 Brassicales (A. thaliana, B. sinensis, Brassica rapa,
Carica papaya, and Moringa oleifera), 1 Malvales (Theobroma cacao),
1 Sapindales (Xanthoceras sorbifolium), 1 Vitales (Vitis vinifera),
and 1 early-diverging eudicot lineage of Ranunculales (Aqui-
legia coerulea). The proteomes of these species were used to
perform an all-vs-all comparison with BLASTP v.2.7.1 (BLASTP,
RRID:SCR_001010) with an E-value cut-off of ≤ 1e−5, and then Or-
thoMCL v2.0.9 was used to assign genes into gene families. A total
of 297,069 (82.90%) genes were clustered into 32,758 gene families,
and 262 gene families were identified as single-copy gene families
(Fig. 2A and Supplementary Table S9). MAFFT v.7.453 (MAFFT,
RRID:SCR_011811) and PAL2NAL v.14 were used to generate the
coding DNA sequence (CDS) alignments for each single-copy gene
family. We used both the concatenated and coalescence method
to infer the phylogenetic relationship among the 12 species. For
the concatenated method, all the CDS alignments were con-
catenated into a supermatrix and then IQ-TREE v2.1.3 (IQ-TREE,
RRID:SCR_017254) was used to construct a maximum likelihood
(ML) tree with parameters "-bb 1000 –m MFP". For coalescent infer-
ence, gene trees were constructed by IQ-TREE and then ASTRAL
v5.15.1 was used to infer coalescence-based tree based on all the
single-copy gene family trees. Both methods robustly supported
that B. sinensis belongs to Brassicales, and sister to the clade
formed by C. papaya and M. oleifera (Supplementary Figs S5 and
S6), which is consistent with the recently recovered angiosperm
phylogeny [49].

We further estimated the divergence time among these 12
species by MCMCtree in PAML v4.9 (PAML, RRID:SCR_014932) [50]

with the concatenated CDS alignments and the following para-
ments: burn-in iterations of 10,000, MCMC runs of 20,000, and
sampling frequency of 1,000. Two vetted time points from the on-
line resource Timetree (TimeTree, RRID:SCR_021162) were used
to calibrate our tree: the split between Amborella and other
angiosperms was constrained to 173–199 Mya, and the split of
Nymphaea-Oryza was confined to 171–203 Mya. The divergence
time analyses showed that B. sinensis diverged with C. papaya and
M. oleifera ∼60.68 Mya (Fig. 2A and Supplementary Fig. S6a). To
achieve a more informative result of the dating analyses, we addi-
tionally added BEAST v1.10.4 (BEAST, RRID:SCR_010228) analysis
[51] to infer the divergence time, and the parameter settings were
as follows: site model of GTR, clock model of strict clock, length
of chain 10,000,000. A highly similar result was obtained between
MCMCTree and BEAST: the correlation coefficient reached 0.997
(Supplementary Fig. S6b). The mutation rate of B. sinensis was also
calculated based on the divergence time and the branch length
of concatenated tree as the following formula [52]: the mutation
rate of A. thaliana ∗ (B. sinensis branch length/divergence time)/(A.
thaliana branch length/divergence time) ∗ generation time of B.
sinensis = 2.57e-8 per generation.

Gene family expansion analyses were additionally performed
by CAFÉ v3.1 (CAFE, RRID:SCR_005983) [53] with the ultramet-
ric time tree and gene family clustering results. A total of 7,283
expanded gene families were identified belonging to B. sinen-
sis (Fig. 2A) and the following functional enrichment analyses
were performed in agriGO v2.0 (agriGO, RRID:SCR_006989) [54]
and displayed in R. We found that these expanded genes were
mainly associated with response to auxin, response to endoge-
nous stimulus, organic transport, and other processes involved in
plant development and reproduction (Supplementary Fig. S7 and
Table S10).

Whole-genome duplication analyses
To clarify the whole-genome duplication (WGD) history in B. sinen-
sis, we performed intragenomic and intergenomic analyses within
V. vinifera and B. sinensis. ColinearScan v1.0.1 [55] was used to iden-
tify syntenic blocks within each species and between species, and
WGDI [56] was used to calculate the synonymous substitutions
per synonymous site (Ks) between collinear genes according to the
Nei-Gojobori approach [57]. We selected V. vinifera in this analysis
as a reference because it only experienced the γ (whole-genome
triplication) event, which is shared by all core eudicots [58]. Only
the syntenic blocks containing >5 collinear genes were retained
and the median Ks of each block were selected to perform the Ks
distribution and Gaussian fitting analyses. We found that B. sinen-
sis experienced another recent WGD (Ks peak: ∼0.165) after the
γ event (Ks peak: ∼1.355) (Fig. 3A). The syntenic depth ratio of 1:2
was identified in the intergenomic Vitis–Bretschneidera comparison,
similar to Carica–Bretschneidera and Moringa–Bretschneidera (Fig. 3B
and C, Supplementary Fig. S8), which confirmed the occurrence
of an additional recent WGD event in B. sinensis. We also found
a clear syntenic depth ratio of 1:1 of the large collinear blocks
within intragenomic analysis of B. sinensis that represent the re-
cent WGD, and many small and fragmented collinear blocks were
also identified that represented the ancient γ -event (Fig. 3 and
Supplementary Fig. S8). On the basis of DupGen_finder [59] analy-
ses, we found that 56.86% genes originated from the WGD events
(Supplementary Table S11), which showed the higher retention of
WGD genes; this may be the major reason for the larger gene num-
ber in B. sinensis when compared with the related C. papaya and M.
oleifera. Genes originating from the recent WGD of each species
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were determined with 2 conditions: genes should locate at the
syntenic blocks and the Ks values of each paired gene should lo-
cate at the 95% confidence interval of the Ks peak of the recent
WGD event. A total of 4,117 genes were identified that originated
from the recent WGD event, and these functions were mainly in-
volved in growth and environmental adaptations (Supplementary
Fig. S9).

Evolution of auxin-related gene families in B.
sinensis
The endangered B. sinensis is an endotrophic mycorrhizal tree
plant of many interesting features [60]. Colonization of its micro-
biota can activate microbe-associated molecular pattern (MAMP)-
triggered immunity (MTI), and this special trait was associated
with the functional enrichment of expanded genes in B. sinen-
sis (Supplementary Fig. S7). The symbiotic microbes usually uti-
lize phytohormone auxin to dynamically regulate the growth
and development of the host in the likely pathways [9]. Thus,
we focused on the evolution of gene families that are auxin-
responsive, which includes 13 gene families: MLP (major latex pro-
teins), NBS (nucleotide-binding site), RBOH (respiratory burst oxi-
dase homologs), IPT (isopentenyltransferase), PLD (phospholipase
D), ABCB (ATP Binding Cassette B), ARFs (auxin response factors),
AUX/IAAs (auxin/indoleacetic acid proteins), AUX/LAX (auxin re-
sistant 1/like aux1), GH3s (Gretchen Hagen 3), PIN (PIN-FORMED),
SAURs (small auxin up RNAs), and YUCCA (flavin monooxyge-
nase).

We mainly compared the gene numbers between B. sinensis and
its 2 closely related non-mycorrhizal species: M. oleifera and C pa-
paya. We found that except for the IPT gene family, the other 12
gene families all showed an obviously expanded gene number in
B. sinensis compared with that in the other 2 species. MLP and NBS
both play an integral role in defending plants [61, 62], and we iden-
tified 22 and 205 genes in B. sinensis, respectively, which is nearly
double the numbers present in the other 2 species (Supplemen-
tary Table S12). RBOH is the main producer of reactive oxygen
species (ROS), which is the key molecule involved in plant growth
and development, and disease resistance signaling [63, 64]. A total
of 11 RBOH genes were identified in the B. sinensis genome, while
the other 2 species showed a conserved copy number of RBOHs of
7 (Supplementary Fig. S10 and Table S12). All 9 auxin-responsive
gene families were expanded in B. sinensis, and SAURs showed the
largest gene number change in our 3 investigated species (Supple-
mentary Table S12). These genes play an important role in the reg-
ulation of dynamic and adaptive growth [65]. A total of 93 SAURs
were identified in B. sinensis, which is nearly 3 and 4 times higher
than that in M. oleifera (34) and C. papaya (25), respectively. Our
phylogenetic analysis of SAURs indicates that the tandem dupli-
cation should have contributed mainly to the rapid expansion of
this family (Supplementary Fig. S11).

Demographic history
Pairwise sequentially Markovian coalescent (PSMC) model has
been considered an effective method to reconstruct species’ ef-
fective population size (Ne) over a long evolutionary time [66]. In
this study, the PSMC model was applied to examine the histori-
cal changes in the Ne. The 350-bp paired-end reads were mapped
to the assembled reference genome to obtain the consensus se-
quences using the pipeline of BWA-MEM2 v2.0pre2 [32] and SAM-
tools v1.9 (SAMTOOLS, RRID:SCR_002105) [67]. Then, we ran the
PSMC v0.6.5-r67 (PSMC, RRID:SCR_017229) analysis with the fol-
lowing parameters: ‘−N25 − t15 − r5 − p “4 + 25 × 2 + 4 + 6”’.

We assumed a generation time of 15 years and a mutation rate
(μ) of 2.57 × 10–8 [52]. The PSMC result showed that the historical
effective population size (Ne) of B. sinensis had multiple rounds of
expansion and contraction throughout the evolutionary history.
At ∼1 Mya, B. sinensis reached its largest Ne size, and soon the
first sharp decline occurred during 1–0.5 Mya, corresponding to
the Xixiabangma Glaciation (1,170–800 kiloannum [ka] BP, = Alps-
Gunz, XG). Then this species gradually recovered its Ne during 0.5–
0.1 Mya. During 0.1–0.02 Mya, the Ne showed repeated fluctua-
tions with decline-increase-decline, and the last decline occurred
during 0.03–0.01 Mya, corresponding to the last glacial maximum
(LGM) [68]. After the LGM, B. sinensis showed an extremely low his-
torical Ne, which reached near zero in spite of a very small recov-
ery (Fig. 4).

Conclusion
In this study, we reported the high-quality chromosome-level
genome assembly of B. sinensis using HiFi and Hi-C sequencing
technologies. This assembled genome is 1,213.76 Mb in length
with the contig N50 length of 64.13 Mb. A total of 45,839 genes
were predicted for B. sinensis. This is a detailed report of the
genome sequences for the monotypic family Akaniaceae dis-
tributed in the evergreen forests in eastern Asia. Such a genomic
resource is critical for comparative genomics studies of this fam-
ily in the future.

Compared to its closely related 2 Brassicales species (M. oleifera:
217 Mb and C. papaya: 372 Mb) [69–72] within 5 Mya differentiation,
B. sinensis contains a large genome size. The genome expansion
seems to be common in other Tertiary relic trees in eastern Asia
[11–13]. We found that besides the shared whole-genome triplica-
tion for all core eudicots, this species experienced an additional
species-specific WGD, which generated more genes that may en-
hance the survival ability of this species and may contribute to
the historical prosperity (Fig. 4 and Supplementary Fig. S9). The
WGD event may not be the main factor causing genome expan-
sion in B. sinensis because it was nearly 6 times larger than M.
oleifera and 3 times larger than C. papaya. Therefore, we further
focused on the TE activities, which have been proven to take pri-
mary responsibility for change in genome size [73, 74]. A total of
670.21 Mb (55.21%) TEs were identified in the B. sinensis genome,
while only 144.1 and 87.94 Mb TEs were identified in C. papaya [69]
and M. oleifera [71], respectively, which suggests that TE activities
is another possible factor for the large genome size of B. sinensis.
A total of 12,959 genes with TE insertions were also detected, and
their functions were mainly associated with growth and develop-
ment in B. sinensis (Supplementary Fig. S4). It should be noted that
TEs could change gene expression and function [75, 76] and are
usually considered as mildly deleterious [77]. The LTR burst for B.
sinensis started ∼5 Mya and reached a peak ∼2 Mya, and this burst
corresponded to contrasting demographic histories of this species
inferred from the PSMC analyses. It is likely that these TE inser-
tions may partly account for the special demographic histories of
this endangered species although the underlying mechanisms re-
main unclear.

The current population size of the endangered and relic B. sinen-
sis is small, with fewer mature individuals [14, 15]. However, B.
sinensis occurred as a predominant tree of the boreotropical flora
in the Northern Hemisphere with high fossil pollen frequencies
in the late Miocene [19]. Our PSMC-based demographic analysis
of this species has recovered its special Ne dynamics (Fig. 4). First,
B. sinensis had a large Ne before 1 Mya. This seems to be consistent
with high frequencies and widespread distribution of B. sinensis in
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Figure 4: Demographic history of Bretschneidera sinensis estimated using PSMC. A generation time of 15 years and a mutation rate of 2.57 × 10–8 were
assumed for both species. Grey represents 2 well-known glacial periods: XG (Xixiabangma Glaciation, 1,170–800 kiloannum [ka] BP), LGM (the last
glaciation maximum, 26.5–19 ka BP).

the late Miocene [19, 20]. Second, the Ne of B. sinensis corresponded
to the Quaternary climatic oscillations with a distinct decrease in
the cold stage but an increase in the warm stage. This is differ-
ent from the investigated relics and extremely endangered trees
in eastern Asia [11–13]. Third, since the end of the LGM (26,500–
19,000 BP), the Ne of B. sinensis decreased to near zero, resulting in
its current endangerment. This is similar to other relics and en-
dangered trees in eastern Asia [78].

Apart from direct destruction by humans, the population col-
lapse of an endangered species resulted mainly from interactions
between its genetic variations and environmental changes caused
by climate, human, and other factors [6–8, 21, 79]. Besides the spe-
cial demographic histories, B. sinensis had further evolved different
genomic characteristics. For the endangered B. sinensis, we found
many TE insertions and the inserted genes in this species are more
enriched with growth and development. In addition, we found that
B. sinensis has developed more gene copies in the gene families
related to the development, growth, and biosynthesis of phyto-
hormone auxin, which all play critical roles in interactive adap-
tations of the endotrophic mycorrhizal plants [9]. In the 9 auxin-
related gene families, especially the SAUR gene family, more genes
are recovered in B. sinensis than its closely related 2 species (Sup-
plementary Table S12). Likely, B. sinensis genetically specialized
its adaptation to favorable environments because of mycorrhizal
growth [21, 22]. When the environments changed with climatic
oscillations during the Quaternary, the historical Ne of B. sinen-
sis correspondingly decreased or increased as indicated by the
PSMC analyses (Fig. 4). However, after the last glaciation, such fa-
vorable environments for B. sinensis might have decreased more
as a result of extensive human activities and other factors [79].
In addition, the extremely small effective population size of B.
sinensis at this stage might also have blocked its postglacial re-
covery but accelerated its Ne decrease because of genetic loss
when the climate became warm. All these hypotheses need fur-
ther tests because of complex interactions between genetic varia-
tions and the highly dynamic environments. Our findings and the
genomic resources reported herein provide new insights into the
demographic history and population collapse of the relic and rare
B. sinensis.
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