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Abstract: Methylmercury (MeHg) is a well-known neurotoxicant that causes severe intoxication in
humans. In Japan, it is referred to as Minamata disease, which involves two characteristic clinical
forms: fetal type and adult type depending on the exposed age. In addition to MeHg burden level,
individual susceptibility to MeHg plays a role in the manifestation of MeHg toxicity. Research progress
has pointed out the importance of oxidative stress in the pathogenesis of MeHg toxicity. MeHg has a
high affinity for selenohydryl groups, sulfhydryl groups, and selenides. It has been clarified that such
affinity characteristics cause the impairment of antioxidant enzymes and proteins, resulting in the
disruption of antioxidant systems. Furthermore, MeHg-induced intracellular selenium deficiency due
to the greater affinity of MeHg for selenohydryl groups and selenides leads to failure in the recoding
of a UGA codon for selenocysteine and results in the degradation of antioxidant selenoenzyme
mRNA by nonsense-mediated mRNA decay. The defect of antioxidant selenoenzyme replenishment
exacerbates MeHg-mediated oxidative stress. On the other hand, it has also been revealed that MeHg
can directly activate the antioxidant Keap1/Nrf2 signaling pathway. This review summarizes the
incidence of MeHg-mediated oxidative stress from the viewpoint of the individual intracellular
redox system interactions and the MeHg-mediated aforementioned intracellular events. In addition,
the mechanisms of cellular stress pathways and neuronal cell death triggered by MeHg-mediated
oxidative stress and direct interactions of MeHg with reactive residues of proteins are mentioned.

Keywords: methylmercury; oxidative stress; binding affinity; redox signaling; selenoenzyme;
nonsense-mediated mRNA decay; posttranscriptional defect; thiol antioxidant capacity;
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1. Introduction

Methylmercury (MeHg) is a well-established neurotoxicant that affects various cellular functions
depending on the cellular context and developmental phase. Severe MeHg-intoxication episodes
in humans have been recognized in a number of countries, including Japan (Minamata disease) [1],
Iraq [2], and the USA [3]. Minamata disease was named for the first case of MeHg poisoning due to
ingestion of seafood contaminated by MeHg discharged from a chemical plant. The disease involves
two characteristic clinical forms: fetal type and adult type depending on the exposed age. Fetal-type
Minamata disease, which is caused by exposure to MeHg in utero, shows cerebral palsy-like clinical
features with delayed psychomotor development [4]. In contrast, adult-type Minamata disease, which is
caused by MeHg intoxication in adulthood, shows Hunter-Russell syndrome-like features [5]. The main
lesions are found in the central nervous and peripheral sensory nervous systems [6,7]. The patients
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show neurological signs associated with such pathological lesions. MeHg toxicity is an environmental
concern for human health, especially in susceptible populations who frequently consume substantial
amounts of fish or fish predators [8].

To date, many studies on the pathogenetic processes caused by MeHg exposure have been reported
using various cells and animal models. The pathological changes in MeHg toxicity do not correspond
directly to the accumulation of Hg in tissues. In a MeHg-exposed subacute rat model (20 ppm MeHg in
drinking water every day for 28 days), for example, the cerebellum showed the most severe pathology
with a lower Hg concentration than that in the liver or kidneys, which displayed fewer pathological
changes from high Hg content [9]. These findings suggest that cellular responsive conditions play
a role in the development of pathogenetic changes due to MeHg exposure. Research progress has
noted the importance of oxidative stress in the pathogenesis of MeHg toxicity. The early incidence
of reactive oxygen species (ROS) has been reported in many MeHg intoxication experiments [10–13].
The elimination of ROS by co-treatment with radical scavengers can prevent MeHg-cytotoxicity in vitro
and in vivo [9,11,14], but failure to protect cells against such early oxidative stress leads to further
progression of MeHg-toxicity, such as the occurrence of subsequent endoplasmic reticulum (ER) stress
and apoptosis [12].

It has been revealed that high affinity for selenohydryl groups, sulfhydryl groups, and selenides [15]
plays a critical role in the incidence of MeHg toxicity [16–18]. Many antioxidant enzymes and proteins
have thiol and selenol residues. The high affinity of MeHg for selenohydryl groups, sulfhydryl groups,
and selenides results in the impairment of antioxidant enzymes and proteins as well as the subsequent
disruption of antioxidant systems, which leads to MeHg-mediated oxidative stress. On the other hand,
it has been clarified that MeHg can also directly activate an antioxidant-signaling pathway. The high
affinity of MeHg for sulfhydryl groups can activate the cellular antioxidant transcription factor Nrf2
through the interaction of MeHg and Nrf2 regulator Keap1 [19]. Nrf2 activation and translocation to
the nucleus induce downstream antioxidant proteins and enzymes [20–22].

Furthermore, MeHg has been shown to induce posttranscriptional defects in antioxidant
selenoenzymes [23]. The high affinity of MeHg for selenohydryl groups and selenides causes
intracellular relative active selenium (Se) deficiency. Such MeHg-induced Se deficiency leads to
failure in the recoding of a UGA codon for selenocysteine and results in the degradation of antioxidant
selenoenzyme mRNA by nonsense-mediated mRNA decay (NMD). NMD is a cellular mechanism that
detects the premature termination codon (PTC) located 5′-upstream of the last exon-exon junction and
degrades PTC-containing mRNAs [24]. Generally, PTC is recognized when it is located upstream of
an exon–exon junction with a distance of at least 55 nucleotides [25]. Targets for NMD can include
mutationally-induced nonsense or frameshift codons, upstream open reading frames, alternatively
spliced or mis-spliced mRNA [26]. NMD has been considered an mRNA quality surveillance mechanism
to protect an organism against deleterious dominant-negative or gain-of-function effects of truncated
proteins that arise from PTCs.

The incidence of MeHg-mediated oxidative stress should depend on the individual capacities of
the intracellular redox systems to respond to the results of the interactions among the aforementioned
MeHg-induced events. Once MeHg-mediated oxidative stress occurs, it may trigger activation of
various cellular signaling pathways leading to cellular damage. Recent works clarified the molecular
mechanism of MeHg-induced apoptosis and cortical neuronal cell death caused by MeHg-mediated
oxidative stress.

2. Disruption of the Cellular Redox Systems by MeHg Exposure

The critical role of oxidative stress in the pathogenesis of MeHg toxicity has been demonstrated
both in vitro [11,12,27–30] and in vivo [9,31,32]. Many studies have reported an increase in ROS after
MeHg exposure [10,13], and suppression of such increases by co-treatment with the antioxidant Trolox,
sodium selenite, and ebselen have also been reported [12,23]. Oxidative stress is a condition in which
the normal function of the redox network is disrupted. MeHg can disrupt many antioxidant proteins
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and enzymes in the cellular redox system because of the high affinity of MeHg for selenohydryl groups,
sulfhydryl groups, and selenides [15,33]. In particular, the high affinity of MeHg for selenohydryl groups
and selenides leads to intracellular relative Se-deficient conditions, resulting in enhanced degradation
of antioxidant selenoenzyme mRNA targeted by NMD [23]. Defects in antioxidant selenoenzyme
replenishment due to mRNA degradation should exacerbate MeHg-induced oxidative stress.

2.1. Suppression of Antioxidant Protein and Enzyme Activity by MeHg Exposure

Glutathione (GSH) and thioredoxin (Trx) systems, which are the central regulators of cellular
redox status, include antioxidant proteins and enzymes with the selenohydryl group or sulfhydryl
group at the redox-active centers.

GSH is the most abundant thiol compound and the major antioxidant that functions as a
redox buffer. MeHg interacts with GSH and forms a GSH–MeHg complex, which is excreted from
the ATP-binding cassette sub-family C member 4 (ABCC4) transporter. GSH consumption under
MeHg exposure elicited GSH synthesis through the upregulation of glutamate–cysteine ligase (GCL),
a rate-limiting enzyme for GSH synthesis [34,35]. It has been reported that GSH content shows no
change in the brain, liver, kidneys, and muscles [9,35] or an increase in the brain [34] in rat or mice
MeHg-exposed models, suggesting the replenishment of GSH occurs during the consumption of GSH
under MeHg exposure. Glutathione peroxidase (GPx), the most abundant selenoenzyme, plays a
role in preventing the production of ROS by reducing hydrogen peroxide (H2O2) and free fatty acid
hydroperoxides. Exposure to MeHg decreases GPx1 activity [9,36,37] and GPx1 mRNA in vitro and
in vivo [23]. It has been reported that overexpression of GPx1 prevents MeHg-induced neurotoxicity
in cultured cerebellar granule cells, suggesting that GPx1 plays a critical role in MeHg-mediated
disruption of the cellular redox systems [37].

In contrast, another selenoenzyme, thioredoxin reductase (TrxR) and its substrate Trx, are known
to be involved in the regulation of a large network of redox reactions, including metallothionein,
ribonucleotide reductase, and redox-factor-1 (REF-1) [38]. REF-1 is known to maintain the cysteine
residues of transcription factors, such as nuclear factor kappa B (NF-κB), Nrf2, and p53, in the reduced
form required for DNA binding. The active site of TrxR has a redox-active selenothiol/selenylsulfide [39]
and is known to be sensitive to MeHg [40]. Since selenols have a lower pKa than thiols and are fully
ionized to selenolates under physiological conditions [39,41], selenols are more reactive toward
Hg [40]. The decrease in TrxR1 activity caused by MeHg exposure has been shown in vitro and
in vivo [23,40,42]. The reduction in activity of the cellular Trx system under MeHg exposure has also
been demonstrated [40]. Such damage to activity in the Trx system should lead to the disruption of a
large network of redox reactions [38]. It is generally known that males are more vulnerable to MeHg
toxicity than females. The recent study on litters from dam mice exposed to MeHg (5 ppm MeHg
in drinking water from early gestational period until postnatal day 21) showed that basal levels of
GPx1 and TrxR1 mRNAs in cerebrum were lower in males than in females and that the activities of
TrxR, GPx1, and Gpx1 mRNA after MeHg exposure decreased at a greater rate in males than that
in females [43]. The results suggest that sex differences in the antioxidant system may affect sex
differences in the susceptibility to MeHg.

Manganese-superoxide dismutase (Mn-SOD) localized in mitochondria functions in preventing
the production of ROS by reducing superoxide radicals. The study of the effect of MeHg on Mn-SOD
in mouse brains revealed that MeHg reduced Mn-SOD activity whereas Mn-SOD mRNA levels and
protein synthesis were not affected by MeHg administration [44]. It has been reported that MeHg
interacts with Mn-SOD through a reactive sulfhydryl group [19]. A decrease in Mn-SOD activity
caused by MeHg contributes to an increase in ROS. It has been reported that overexpression of Mn-SOD
prevents MeHg toxicity in HeLa cells [45].
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2.2. Basal Level of Antioxidant Enzymes Associated with MeHg Toxicity

Fragile cells exposed to oxidative stress should be more damaged by MeHg. The main target organ
of MeHg toxicity is the central nervous system. Adult-type Minamata disease caused the site-specific
brain lesions in the cerebellum and cerebrum. Neurons in the cerebellar cortex are arranged in three
layers. The innermost layer is densely packed with numerous, small neurons called granule cells
(cerebellar granule cells). The middle layer contains Purkinje cells, and the outmost layer, or the
molecular layer, contains stellate and basket cells. Among these cerebellar neurons, cerebellar granule
cells are the most vulnerable to MeHg. Furthermore, autopsy studies of human cerebrum revealed that
the lesions are localized in the deeper layers cerebrocortical neurons, especially layer IV, compared to
the shallow layers cerebrocortical neurons [46,47]. Such site-specific cerebral lesions were also observed
in MeHg intoxicated animal models of rats and mice [48,49].

We previously demonstrated that cerebellar granule cells susceptible to MeHg have lower in
situ expression of Mn-SOD, GPx1, and TRxR1 mRNAs than cerebellar molecular layers and Purkinje
cells, which are known to be resistant to MeHg [49]. Furthermore, our in situ analyses of antioxidative
enzymes expression using quantitative reverse transcription polymerase chain reaction from laser
micro-dissected mouse cerebral cortex samples and immunohistochemistry revealed that lower basal
expression levels of Mn-SOD and GPx1 mRNAs and proteins in the cerebrocortical neurons of deeper
layers than those in shallow layers. In addition, an increase in Mn-SOD mRNA expression induced by
MeHg exposure is lower in deeper layers than that in shallow layers [50]. These findings suggest that
the different antioxidative systems in situ, including basal levels of antioxidant enzymes, play a role in
the site-specific neurotoxicity of MeHg in the brain.

2.3. Posttranscriptional Defects of Selenoenzymes

MeHg-mediated increases in intracellular ROS cause changes in antioxidant gene expression.
Our previous study demonstrated that MeHg exposure upregulated Mn-SOD, copper, zinc (Cu,
Zn)-SOD, catalase, and TrxR1 mRNAs [23]. The upregulation of these mRNAs was mediated by ROS
because treatment with the antioxidant Trolox suppressed the increase in these mRNAs. In contrast,
selenoenzyme GPx1 mRNA was downregulated despite its decreased activity in vitro and in vivo [23].
In addition, Trolox failed to rescue such GPx1 mRNA decrease. Our in situ antioxidative enzymes
expression analyses using laser micro-dissected mouse cerebrocortical neuron samples also revealed
downregulation of GPx1 mRNA [50]. This is intriguing because oxidative stress due to the general
burden of H2O2 caused upregulation of GPx1 mRNA, indicating that the MeHg-induced GPx1 mRNA
decrease is specific to the burden of MeHg [23].

GPx1 has a single selenocysteine (Sec), in which Se is co-translationally inserted. Sec is encoded
by a UGA codon, which shares a common codon to function as a terminator for protein synthesis.
The biosynthesis of Sec occurs on its tRNA (Sec tRNA [Ser]Sec), unlike the other 20 amino acids.
Once activated Se is donated to the structure, Sec is completed [51]. The insertion of Sec into protein
requires the Sec insertion sequence (SECIS) [52], SECIS binding protein (SBP2) [53], and Sec-specific
elongation factor [54,55]. Under Se deficiency, however, the UGA codon for Sec may be recognized as a
nonsense codon, known as a PTC, due to the incomplete biosynthesis of Sec. mRNAs harboring PTCs
are known to be deleted by NMD, an mRNA quality control mechanism that is executed when PTC is
located sufficiently upstream of the exon–exon junction [24,56–58]. A previous report demonstrated
that Sec on GPx1 mRNA that resides 105 nucleotides upstream of the sole exon–exon junction was
recognized as a PTC and degraded by NMD under active Se-deficient conditions [59].

It is known that the selenohydryl group has a high affinity for Hg compared to those of the
sulfhydryl and amino groups. The order of binding affinity of the coordination groups toward MeHg is
as follows: SeH > SH≥ Se-Se > NH2 > S-S [15]. The high affinity of MeHg for the selenohydryl group and
selenide should cause relative intracellular Se-deficient conditions under MeHg exposure. Our previous
study demonstrated that the MeHg-induced decrease in GPx1 mRNA is a post-transcriptional event
by NMD, enhanced degradation of mRNA that is most likely mediated by cellular Se deficiency [23].
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This finding was confirmed by two studies: (1) MeHg-induced decrease in GPx1 mRNA was rescued
by pretreatment with sodium selenite, and (2) MeHg-induced decrease in GPx1 mRNA was inhibited
in siRNA-mediated NMD component knockdown cells. In contrast to GPx1, mRNA of another
antioxidant selenoenzyme, TrxR1, was not downregulated by MeHg exposure. The Sec codon UGA-498
on TrxR1 that resides in the last exon cannot be a substrate for NMD because at least one downstream
intron is required to trigger NMD [25,60,61]. In theory, the TrxR1 protein synthesized by NMD-skipped
TrxR1 mRNA should be truncated because the Sec codon is recognized as a nonsense codon under
Se-deficient conditions. The different pathways involved in the synthesis of GPx1 and TrxR1 under the
sufficient or MeHg-induced deficient active form of Se are summarized in Figure 1.

Figure 1. Posttranscriptional effect of methylmercury (MeHg) on antioxidant selenoenzymes.
(A) Glutathione peroxidase 1 (GPx1). The encoded UGA codon for selenocysteine (Sec) resides
105 nucleotides upstream of the sole exon–exon junction. When a UGA codon is recognized as a
Sec codon under sufficient active form of selenium (Se) (left panel), GPx1 is synthesized. However,
since UGA codon is recognized as a nonsense codon under MeHg-induced active Se deficiency (right),
GPx1 mRNA should be a natural substrate for nonsense-mediated mRNA decay (NMD; right panel).
(B) Thioredoxin reductase 1 (TrxR1). The Sec codon UGA-498 resides in the last exon on TrxR1 mRNA;
thus, TrxR1 mRNA cannot be a substrate for NMD even when a UGA codon is recognized as a nonsense
codon under MeHg-induced Se deficiency and aberrant Trx1 is synthesized (right panel).
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There are 25 known Se-containing proteins in mammals [62]. Under Se deficiency, it has been
noted that selenoprotein expression has a hierarchy regarding the level of individual selenoproteins and
Se in different organs [51]. The different distributions of MeHg accumulation after MeHg exposure [9]
should also cause MeHg-induced intracellular Se-deficient conditions to be responsive to Se status
in various tissues. In addition, the sensitivity of selenoenzyme activity to Se deficiency and mRNA
turnover may affect selenoprotein expression. Many eukaryotic selenoproteins serve as antioxidant
and redox proteins. Among them, the greater sensitivity of GPx1 activity to Se deficiency is attributed
to an increased turnover in mRNA [63], resulting in enhanced degradation by NMD. Defects in the
synthesis of GPx1 protein should exacerbate MeHg-mediated oxidative stress.

3. MeHg-Induced Mitochondrial Damage

Mitochondria is the most important sites of ROS generation. Imbalance of cellular ROS elimination
system and RNA leakage by the disruption of mitochondrial function contributes to the occurrence of
intracellular oxidative stress. It has been reported that isolated rat mitochondria show higher oxygen
consumption levels and ROS production rates in the cerebrum and the cerebellum, which are the main
lesion in MeHg toxicity, than in the liver [64]. In addition, it is known that GPx and SOD activities are
lower in cerebrum and cerebellum than those in liver [64]. These findings may explain the difference
in the distribution of MeHg-induced pathological changes.

3.1. Inhibition of Electron Transport Chain

The mitochondrial electron transport chain (ETC), composed of four respiratory enzyme complexes
(I–IV) on the inner membrane, has been recognized as one of the most important sites of ROS
generation [65,66]. Under physiological conditions, electrons are transferred fluently through the
chains via adequate levels of ETC activity, resulting in the release of a minimum of mitochondrial
ROS. When the ETC is damaged, however, electrons flowing through the chain will be disrupted,
leading to the elevation of mitochondrial ROS leakage. If MeHg directly attacks the respiratory enzyme
complexes or MeHg-mediated oxidative stress damages them, the function of ETC may be disrupted
to produce excess ROS. The elevation of mitochondrial ROS leakage should cause oxidative stress and
cell damage under the insufficient ROS elimination system. In the previous study, we demonstrated
that MeHg treatment (orally administered at 5 mg/kg/day for 12 days) decreased mitochondrial
enzymes (cytochrome c oxidase (CCO, complex IV) and succinate dehydrogenase (SDH, complex II))
activities in mitochondria-rich soleus muscle of rats [67]. Co-treatment with antioxidant Trolox clearly
prevented such decrease in CCO and SDH activities despite the retention of MeHg, suggesting that
MeHg-mediated oxidative stress caused a decrease in CCO and SDH activities [9]. MeHg-induced
increase in the generation of H2O2 and O2

− in the mitochondria has been shown using extracted
mitochondria from MeHg-exposed rat cerebellum [64]. Furthermore, the subsequent study showed
that the complex II activity decreased in the cerebellum mitochondria and released cytochrome c in
MeHg-exposed rats [68].

3.2. Mitochondria-Dependent Apoptotic Pathway

Many studies have shown that MeHg induces apoptosis due to both mitochondria- and
ER-generated processes. Mitochondrial apoptotic pathway is governed by members of B-cell
lymphoma-2 (Bcl2) protein family, which regulates mitochondrial outer membrane permeabilization
(MOMP) [69]. Once MOMP occurs, cytochrome c is released from the mitochondria to the cytosol.
Cytosolic cytochrome c interacts with apoptotic protease activating factor 1 (Apaf-1) and procaspase-9
to form a complex called apoptosome, which facilitates caspase-9 activation [70]. Caspase-9 is one of the
initiators that cleave and activate the effector caspase-3, a central component of the apoptotic response.

It has been reported that MeHg induces activation of caspase-9 and caspase-3, high levels
of cytoplasm cytochrome C, and apoptosis in cultured cortical neurons. Pre-treatment with
Trolox significantly inhibited such neuronal apoptosis as well as mitochondrial dysfunction,
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suggesting these events were caused by MeHg-mediated oxidative stress [71]. MeHg-induced activation
of mitochondria-dependent apoptotic pathway was also shown in the mouse cerebrum [72] and in
developing rat hippocampus [73]. MeHg induced an increase in executioner caspase-3 by both
mitochondrial-dependent caspase-9 and mitochondrial-independent caspase-8 in developing rat
hippocampus. Studies using cultured neuronal cells suggested that ROS-mediated activation of ERK1/2
and p38 pathways regulated mitochondria-dependent apoptotic pathways that were involved in
MeHg-induced neurotoxicity [72].

4. Cellular Stress Pathways Triggered by MeHg-Mediated Oxidative Stress

Oxidative stress generates not only free radicals but also nonradical oxidants. Free radicals tend
to be reactive, and their initiation leads to macromolecular damage. In contrast, nonradical oxidants
(e.g., H2O2, peroxynitrite, lipid hydroperoxide, and disulfides) are generated more than free radicals
during oxidative stress, resulting in the disruption of redox signaling and physiological regulation
pathways. Two major thiol- and selenol-containing GSH and Trx systems regulate such redox pathways,
including receptor signaling (e.g., estrogen and glucocorticoid receptors), transcriptional regulation
(e.g., NF-κB, Nrf2, p53, and HIF-1α), and apoptosis [38].

4.1. Apoptosis Signaling Pathway

MeHg disturbs intracellular redox systems through direct attacks on the cysteine and/or
selenocysteine residues of antioxidant enzymes and a post-transcriptional effect on the major antioxidant
selenoenzymes GPx1 and TrxR1 [23,40]. GPx1 is the most abundant selenoprotein that plays a critical
role in the reduction in cellular H2O2. In contrast, TrxR1 transfers electrons from NADPH to thioredoxin,
which in turn reduces thioredoxin peroxidase and other redox proteins [74]. It is known that TrxR1 can
reduce some substrates other than Trx, including selenite [75], lipid hydroperoxides [76], and H2O2 [77].
As such, MeHg disturbs the GSH and Trx cellular redox systems at the early stage of cytotoxicity,
which is followed by cellular stress responses.

Trx is known to be a direct physiological inhibitor of apoptosis signal-regulating kinase-1 (ASK1)
through binding of the active site dithiol with the N-terminus of ASK1 [78]. ASK1 activates c-Jun
N-terminal kinase (JNK) and p38 MAP kinase pathways and is required for stress-induced apoptosis [79].
Oxidation of the Trx active site results in the release and activation of ASK1 followed by ASK1-dependent
apoptosis. It has been demonstrated that MeHg exposure activates ASK1, subsequently resulting in
activation of the stress-activated protein kinase (SAPK)/JNK pathways and apoptosis [12,29].

4.2. ER Stress

The ER is a membrane-bound organelle specialized for folding and post-translational maturation
of secretory and membrane proteins. The ER redox state is linked to ER protein-folding homeostasis.
Disulfide bond formation in the ER lumen is highly sensitive to altered redox balance, where both
reducing and oxidizing reagents disrupt protein folding and cause ER stress [80]. In a stressed ER,
dysregulated disulfide bond formation and breakage may result in ROS accumulation and cause
oxidative stress. As such, ER stress can cause mitochondrial dysfunction and increase mitochondrial
ROS production [81].

In a previous study, we showed that failure to protect cells against MeHg-mediated early
oxidative stress triggers the subsequent ER stress and apoptosis [12]. A subsequent study showed that
pretreatment with Trolox significantly blocked MeHg-induced ER stress, unfolded protein response
activation, and apoptosis in neuronal cells [71], confirming that MeHg-mediated oxidative stress causes
ER stress and apoptosis. In contrast, it has been reported that MeHg directly causes ER stress through
interaction with protein disulfide isomerase (PDI) [18]. PDI localizes in the ER and catalyzes all of the
reactions involved in native disulfide bond formation in the ER [82]. The oxidoreductase activity of
PDI is derived from thiol groups of active site cysteines [83]. Furthermore, PDI has been identified as a
multi-domain protein related to the cytoplasmic thioredoxin [84,85]. It has been demonstrated that the
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dysfunction of PDI enzymatic activity by the oxidative modification of active cysteine by nitric oxide
(NO) induced by treatment with N-Methyl-D-aspartate causes the accumulation of newly synthesized
unfolded protein in the ER lumen, resulting ER stress [86]. Similar to NO, the MeHg-modified
C-terminal catalytic domain in PDI was detected using matrix-assisted laser desorption/ionization-time
of flight mass spectrometry (MALDI-TOF/MS) analysis, suggesting that PDI is a target protein for
MeHg in the ER [18]. In addition, treatment with MeHg significantly attenuated the enzymatic activity
of PDI. These findings suggest that MeHg can also cause ER stress through the direct disruption of
PDI function.

5. Activation of the Keap1/Nrf2 Pathway by MeHg Exposure

As a cellular compensatory function against oxidative stress, it has been known that MeHg
upregulates antioxidant gene expression of GCL [34,35] as well as Mn-SOD, Cu, Zn-SOD, catalase,
and TrxR1 mRNAs [23]. GCL is a rate-limiting enzyme for GSH synthesis and is known to be regulated
by the transcription factor Nrf2 [87]. Nrf2 is an essential factor for the protective antioxidant response
and detoxification against various environmental toxicants through the antioxidant responsive element
(ARE)-mediated induction of enzyme genes [88]. Under physiological conditions, Nrf2 localizes in the
cytoplasm and is inactivated through binding to Keap1 to repress its translocation to the nucleus [88].
Keap1 has highly reactive cysteine residues, which are the preferential targets of electrophiles and ROS.
Electrophilic agents can functionally liberate Nrf2 from repression by Keap1, allowing Nrf2 to move to
the nucleus and potentiate the ARE-mediated induction of enzyme genes [88].

It has been demonstrated by MALDI-TOF/MS analysis that MeHg reacts with Keap1 cysteine
residues to cause a structural alteration [19]. Since pretreatment with the antioxidant Trolox could
not activate Nrf2 in MeHg-exposed cells, MeHg may activate Nrf2 through direct interaction with the
cysteine residues of Keap1 rather than MeHg-mediated oxidative stress [19]. Thus, MeHg exposure
led to Keap1/Nrf2 dissociation, Nrf2 translocation to the nucleus, and ARE-mediated induction of
oxidative stress enzyme genes, such as GCL and heme oxygenase-1 (HO-1) [20–22]. The cytoprotective
role of Nrf2/Keap1 system to MeHg toxicity was confirmed by studies using Nrf2-overexpressed
SH-SY5Y cells, and Nrf2- or Keap1-deficient mouse hepatocytes [20]. On the other hand, recent findings
have shown that MeHg activates Nrf2 through the Keap1-independent pathway. It is known that Src
subfamily kinase Fyn phosphorylates Nrf2, leading to nuclear export and degradation of Nrf2 [89].
It has been demonstrated that MeHg downregulates Fyn through the phosphorylation of Akt and
glycogen synthase kinase 3 beta (GSK-3β), leading to sustained Nrf2 activity [90].

As such, MeHg can activate the antioxidant signaling pathway through direct interaction with the
cysteine residues of the Keap1 and/or Akt/GSK-3β/Fyn pathway.

6. Neuronal Hyperactivity and Cell Death Triggered by MeHg-Mediated Oxidative Stress

Recently, the mechanism of neuronal cell death caused by MeHg-mediated oxidative stress
has been clarified. Autopsy studies of human cerebrum revealed that the lesions were localized in
the cerebrocortical neurons of deeper layers, especially layer IV, compared to shallow layers [46,47].
The neocortex is formed of six cortical layers, which are numbered I to VI from the outermost to the
innermost. Layer IV, the internal granular layer, contains different types of stellate and pyramidal cells.
The site-specific cerebral lesions were also observed in MeHg-intoxicated animal models. We previously
reported that neuronal damage caused by MeHg is localized in layer IV of the cerebral cortex in
adult mice, especially within the somatosensory cortex [48]. We further demonstrated that site-specific
upregulation of c-fos and brain-derived neurotrophic factor (BDNF) preceded neuronal degeneration
in layer IV of the cerebral somatosensory cortex of MeHg-intoxicated mice [91]. Layer IV has been
shown to be mainly composed of excitable cells [92], suggesting that the characteristic of neuronal
excitability may be related to susceptibility to MeHg neurotoxicity and subsequent damage.

c-fos and BDNF are known to be proper markers of neural activity. In particular, c-fos expression
analysis is carried out extensively to identify the site-specific neural activity in the brain [93,94]. It has
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been reported that the induction of c-fos expression is observed in brain-derived tissue exposed to
several pathological agents. Exposure of a mouse hippocampal cell line to the 25–35 peptide fragments
of A beta caused a rapid and sustained increase in nuclear c-fos immunoreactivity with a decrease in
viability [95]. c-fos expression was also observed in the neocortex and paleocortex in picrotoxin-treated
rats [96]. The expressions of c-fos and c-jun were significantly up-regulated with apoptosis by T-2
toxin treatment in human neuroblastoma cells [97]. In addition, it has been demonstrated that MeHg
exposure significantly induces the expression of c-fos protein in cortex and hippocampus of rats [98].
As such, since c-fos expression has been observed during neuronal degeneration such as neuronal
cell loss, and astroglia and microglia accumulation, c-fos may play a role as a trigger of neuronal
degeneration. On the other hand, BDNF expression bears on neural activity concerning physiological
activity and social stress [99,100].

The molecular mechanism of the relation between MeHg-induced upregulation of c-fos and
neuronal cell death was investigated using all-trans-retinoic acid (RA) differentiated SH-SY5Y cells,
which show neuron-like morphological changes and express neuron/synapse markers for cerebrocortical
neurons [101]. Time course studies revealed that MeHg-induced upregulation of c-fos preceded
neuronal cell death in RA-differentiated SH-SY5Y cells. We demonstrated early expression of the
oxidative stress marker thymidine glycerol followed by activation of p44/42 mitogen-activated protein
kinase (MAPK) and p38 MAPK, and an increase in cAMP response element binding protein (CREB)
pathways. The antioxidants Trolox and edaravone significantly suppressed such MeHg-induced
thymidine glycerol expression, p38 MAPK-CREB pathway activation, and neurotoxicity. Furthermore,
treatment with SB203580, a specific inhibitor of p38 MAPK, significantly blocked the upregulation of
c-fos and neuronal cell death. These results suggest that MeHg-induced oxidative stress and subsequent
activation of the p38 MAPK-CREB pathway contribute to cerebrocortical neuronal hyperactivity and
subsequent site-specific neuronal cell death.

7. Biomarkers for Ongoing MeHg-Induced Oxidative Stress

The Hg level in the hair, blood, or nails is known to be a useful biomarker to assess the MeHg body
burden for a period of several months prior to sample collection, and the fetal umbilical cord is useful to
assess the MeHg burden during fetal development. However, neither of these biomarkers sufficiently
reflects individual toxic effects because MeHg toxicity depends on individual susceptibility to MeHg
in addition to the MeHg burden. An assessment of MeHg in preserved umbilical cords collected in
the Minamata region of Japan demonstrated that some patients with adult-type Minamata disease or
mental retardation had MeHg concentrations that were as high as fetal-type Minamata disease despite
not showing delayed psychomotor development [4], which suggests that the individual protective
capacity against the MeHg body burden plays an important role in the severity of MeHg toxicity.

As mentioned above, MeHg-induced oxidative stress is generated by disruption of the antioxidant
system caused by the high affinity of MeHg for selenohydryl groups, sulfhydryl groups, or selenides.
Such characteristics may allow plasma thiols and selenoproteins to be used as biomarkers for individual
susceptibility to MeHg and thus predict the early effects of MeHg intoxication. Thiol-disulfide
pools in plasma can be related to systemic oxidative stress through continuous interactions with
tissues and organ systems [102]. Therefore, we assessed the plasma levels of three oxidative stress
markers, dROMs (diacron reactive oxidant metabolites) as derivatives of reactive oxygen metabolites,
-SHp (thiol antioxidant barrier) as an overall measure of thiol antioxidants, and BAP (biological
antioxidant potential) as an overall measure of antioxidants. We also assessed plasma selenoproteins,
glutathione peroxidase (GPx3), and selenoprotein P1 (SeP1). We used MeHg-intoxicated model rats
(20 ppm MeHg in drinking water every day for 28 days) that showed neuropathological changes
after 4 weeks of MeHg exposure and compared the results to those obtained from rats treated with
lead (Pb) acetate or cadmium (Cd) chloride, which have been reported to cause oxidative stress
in tissues [103–105]. Three plasma oxidative stress markers were measured using a free radical
elective evaluator (FREE) (Diacron International srl, Grosseto, Italy) and dedicated reagents. In this
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measurement, dROM quantifies the metabolite ROOH to evaluate oxidative stress, -SHp was measured
using Ellman’s reagent (5,5′-dithiobis-2-nitrobenzoic acid), and BAP quantifies the reducing power
of endogenous antioxidants to iron, which acts as a sensitive antioxidant. Such measurements of
systemic oxidative stress markers using FREE have already been used clinically [106,107]. In this
study, we identified the decreased capacity of -SHp, GPx3 activity, and SeP1 as useful potential
plasma biomarkers of ongoing MeHg cytotoxicity [108]. Among them, the -SHp level significantly
decreased 2 weeks after MeHg exposure, which is an early stage at which no systemic oxidative stress,
histopathological changes, or clinical signs were detected. These findings suggest that the -SHp level is
useful for assessing the early effects of MeHg exposure and subsequent changes in structure/function
induced by MeHg intoxication. On the other hand, exposure to Pb or Cd did not alter oxidative
stress markers in the plasma, although glial fibrillary acidic protein immunolabeled astrocytes were
detected in the cerebellum of Pb-treated rats as previously reported [109,110], and the doses of Cd used
in the study were reported to induce oxidative stress or neurotoxicity in previous studies [111–113].
In contrast to MeHg, an increase in SeP1 was observed in both Pb- and Cd-treated rats. The disruption
of the antioxidant system caused by the high affinity of MeHg for the selenohydryl and sulfhydryl
groups is a specific feature of MeHg-induced oxidative stress. Plasma biomarkers reflecting such
features are useful for the evaluation of ongoing MeHg-mediated oxidative stress.

8. Prevention against MeHg-Induced Cytotoxicity

Based on the findings of the mechanism of MeHg toxicity, there have been many reports on
effective treatments to prevent cytotoxicity triggered by MeHg-induced oxidative stress in vitro and
in vivo. MeHg toxicity can be prevented by co-treatment or pretreatment with below-mentioned
chemicals. Effective treatments to prevent in vivo toxicity triggered by MeHg-induced oxidative stress
are summarized in Table 1.

Table 1. In vivo protection against methylmercury (MeHg) toxicity.

Treatment Function Animal Effectiveness Ref.

Trolox
radical scavenging rat cytotoxicity [9]

clinical feature

α-tocopherol radical scavenging rat cytotoxicity [14]
clinical feature

sodium selenite replenishment of selenium rat clinical feature [114,
115]

selenomethionine replenishment of selenium postnatal rat clinical feature [116]

NAC
replenishment of GSH rat DNA synthesis [117]

hippocampal cell number

sulforaphane Nrf2 activator mice cellular Hg content [118]
clinical feature

NAC, N-acetyl-L-cysteine; GSH, glutathione.

8.1. Radical Scavenging Chemicals

The early incidence of ROS leads to further progression of MeHg toxicity. Therefore, a number
of radical-scavenging chemicals have been tried to prevent MeHg toxicity in vitro and in vivo.
They include α-tocopherol [14,119], Trolox (a water-soluble derivative of vitamin E) [9,30], n-propyl
gallate [30,120], and tocotrienol (unsaturated vitamin E) [119]. Inhibitory effect of α-tocopherol on
MeHg-induced oxidative stress has been demonstrated in rats, which were treated with 5 mg/kg
MeHg for 12 consecutive days and 150 mg/kg α-tocopherol for 20 consecutive days after initial MeHg
administration. α-tocopherol-treated rats showed decreased lipid peroxidation and manifestation
of clinical signs (hind limb crossing sign and ataxic gait) compared to rats with MeHg alone [14].
Co-treatment with Trolox protected MeHg-treated rat skeletal muscle (20 ppm MeHg in drinking water
every day for 28 days) against the decrease in mitochondrial electron transport system enzyme activities
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(cytochrome c oxidase and succinate dehydrogenase) despite the retention of MeHg. In addition,
Trolox was effective for protecting cerebellum from MeHg-induced apoptosis in rats [9]. Pre-treatment
with n-propyl gallate protected cultured human cerebellar granular cells established from fetal brain
tissue from MeHg cytotoxicity [120].

8.2. Replenishment of GSH, Se, or GPx1

GSH interacts with MeHg to form a GSH-MeHg complex which is excreted from the ABCC4
transporter. Further, GSH functions as a redox buffer, leading to GSH consumption under MeHg
exposure. N-acetyl-L-cysteine (NAC), an amino acid derivative, provides cysteine for GSH production.
In addition, it has been shown that NAC can scavenge oxidants directly, reducing hydroxyl
radicals and hypochlorous acid [121]. Co-treatment with NAC protected cultured cells against
MeHg-cytotoxicity [11,117]. It has been reported that co-treatment with NAC reduces MeHg-induced
neurotoxicity in the developing rat hippocampus [117]. Furthermore, post-treatment with NAC
accelerated urinary MeHg excretion in mice [122].

The high affinity of MeHg for the selenohydryl group and selenide should cause relative
intracellular Se-deficient conditions, leading to the degradation of antioxidant selenoenzyme mRNA by
NMD. Therefore, the replenishment of Se should improve such impairment. It has been reported that
pretreatment with sodium selenite rescues MeHg-induced downregulation of GPx1 mRNA, an increase
in intracellular ROS, and MeHg-induced decrease in TrxR1 activity in vitro [23]. Co-treatment with
sodium selenite can suppress MeHg-mediated neurotoxicity in rats [114] and fetotoxicity in mice [115].
Co-treatment with selenomethionine, a food-based Se, prevented MeHg-induced neuronal degeneration
and reactive astrocytosis in a postnatal rat model, suggesting that dietary Se is useful for the protection
of neurons against MeHg cytotoxicity [116].

Probucol is a phenolic lipid-lowering drug with anti-inflammatory and antioxidant properties.
Probucol has been shown to increase GPx1 activity in the rat heart and prevent adriamycin-induced
myocardial toxicity [123]. Co-treatment with probucol protected mouse cerebellar granular cells
against MeHg cytotoxicity, which was correlated with increased GPx1 activity and decreased lipid
peroxidation [37].

8.3. Seleno-Organic Compound Ebselen

Ebselen, a seleno-organic compound, exhibits GPx1 mimic activity and can quench free radicals
and singlet oxygen [124]. Furthermore, ebselen is an excellent direct substrate for mammalian TrxR and
Trx [125,126]. Ebselen treatment does not increase the amount of bioavailable Se [124] but generates
the selenol form of the compound [125]. A number of reports have demonstrated the effectiveness of
ebselen. MeHg-induced glutamate release from rat brain synaptosomal preparations was inhibited
by co-treatment with ebselen [127]. Co-treatment with ebselen could also protect MeHg-induced
glutamate uptake inhibition in rat cerebral cortical slices [128]. Furthermore, pre-treatment with ebselen
suppressed MeHg-induced inhibition of glutamine uptake in rat neonatal cortical astrocytes [129].
We also demonstrated that co-treatment with ebselen effectively suppressed the downregulation of
GPx1 mRNA and the ROS increase, and finally cytotoxicity after MeHg exposure in vitro [23].

8.4. Nrf2 Activators

It has been reported that isothiocyanates causes release of Nrf2 from sequestration by Keap1,
and its subsequent translocation into the nucleus, resulting in the ARE-mediated induction of oxidative
stress enzyme genes [130]. ARE-mediated genes include GCL, glutathione S-transferase, and multidrug
resistance-associated protein, which are associated with MeHg excretion. It has been reported that
pretreatment with isothiocyanates 6-methylsulfinylhexyl isothiocyanate (6-HITC) or sulforaphane
(SFN) before MeHg exposure suppresses Hg accumulation and cytotoxicity in mouse hepatocytes [118].
Furthermore, SFN treatment prior to administration of MeHg also suppressed Hg accumulation in the
brains of mice and clinical sign hind-limb flaccidity [118].
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8.5. ER Stress Preconditioning

Cells and tissues can be protected against potentially lethal stress by pre-exposure to the
same or different milder stress. Preconditioning cytoprotection has been described in ischemic
preconditioning against myocardial infarction [131,132] or delayed neuronal cell death [133] and ER
stress preconditioning against renal epithelial cell oxidative injury [134] or cardiomyocyte oxidative
injury [135]. We demonstrated that cells preconditioned with an inhibitor of ER Ca2+-ATPase,
thapsigargin, showed resistance to MeHg-induced cytotoxicity through favorable stress responses,
which included phosphorylation of eukaryotic initiation factor 2 alpha, accumulation of activating
transcription factor 4, upregulation of stress-related proteins, and activation of the extracellular
signal-regulated kinase pathway [136].

9. Conclusions

High affinity for selenohydryl groups, sulfhydryl groups, and selenides plays a critical role in the
incidence of MeHg-mediated oxidative stress. It causes the impairment of many antioxidant enzymes and
proteins, resulting in the disruption of antioxidant systems. On the other hand, MeHg can also activate an
antioxidant signaling pathway. Cellular antioxidant transcription factor Nrf2 can be activated through the
direct interaction of MeHg and Nrf2 regulator Keap1. Furthermore, MeHg-induced Se deficiency due to
the high affinity of MeHg for selenohydryl groups and selenides leads to failure in the recoding of a UGA
codon for Sec and results in the degradation of antioxidant selenoenzyme mRNA by NMD. The incidence
of MeHg-mediated oxidative stress arises from the interactions of individual intracellular redox systems
and the aforementioned MeHg-mediated events. MeHg-mediated oxidative stress causes apoptosis
through activation of ASK1 and the subsequent SAPK/JNK pathways. MeHg induces site-specific
cerebrocortical neuronal cell death, which was observed in layer IV of the cerebral cortex mainly composed
of excitable cells. It has been demonstrated that the mechanism of MeHg-induced site specific cortical
neuronal damage is caused by cerebrocortical neuronal hyperactivity triggered by MeHg-mediated
oxidative stress and subsequent activation of the p38 MAPK-CREB pathway.

A schematic overview of MeHg-mediated oxidative stress and activation of the antioxidant Nrf2
pathway is presented in Figure 2.
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Figure 2. Schematic overview of MeHg-mediated oxidative stress and activation of the antioxidant Nrf2
pathway. (1) Thiols and selenols of many antioxidant proteins and enzymes of glutathione (GSH) and
thioredoxin (Trx) cellular redox systems, such as GSH, GPx1, and TrxR, interact with MeHg, resulting
in the disruption of the cellular redox system and the incidence of oxidative stress. The interaction of
MeHg and Trx results in release and activation of apoptosis signal-regulating kinase-1 (ASK1) followed
by ASK1-dependent apoptosis. In addition, interaction of mitochondrial Mn-SOD with MeHg may
contribute to an increase in reactive oxygen species (ROS). (2) MeHg-induced relative intracellular Se
deficiency causes failure in the recoding of a UGA codon for Sec because of active Se deficiency and
results in the degradation of antioxidant selenoenzyme mRNA by nonsense-mediated mRNA decay
(NMD). (3) The interaction of MeHg and Nrf2 regulator Keap1 leads to the activation of antioxidant
transcription factor Nrf2, resulting in the antioxidant responsive element-mediated induction of
oxidative stress enzyme genes, such as glutamate-cysteine ligase (GCL) and heme oxygenase-1 (HO-1).
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