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a b s t r a c t

This study presents a mathematical model for optimal vaccination strategies in inter-
connected metropolitan areas, considering commuting patterns. It is a compartmental
model with a vaccination rate for each city, acting as a control function. The commuting
patterns are incorporated through a weighted adjacency matrix and a parameter that
selects day and night periods. The optimal control problem is formulated to minimize a
functional cost that balances the number of hospitalizations and vaccines, including re-
strictions of a weekly availability cap and an application capacity of vaccines per unit of
time. The key findings of this work are bounds for the basic reproduction number,
particularly in the case of a metropolitan area, and the study of the optimal control
problem. Theoretical analysis and numerical simulations provide insights into disease
dynamics and the effectiveness of control measures. The research highlights the impor-
tance of prioritizing vaccination in the capital to better control the disease spread, as we
depicted in our numerical simulations. This model serves as a tool to improve resource
allocation in epidemic control across metropolitan regions.

© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Metropolitan areas consist of a densely populated urban core, such as a capital city, along with its surrounding territories
that share social, economic, and infrastructural ties. One defining characteristic of these regions is commuting: the routine
movement of individuals between their city of residence and the city of the workplace. For instance, in the Rio de Janeiro
Metropolitan Area, over two million people commute daily, in a 13-million inhabitants region (Sebrae, 2013). Such mobility
creates a complex network of interconnected cities, where the links are weighted by the flux of people. The recent global
health outbreaks, such as the Zika virus epidemic and the COVID-19 pandemic, have shown how these dense and inter-
connected urban areas can amplify disease transmissibility. Therefore, devising strategies that efficiently reduce the impact of
outbreaks is essential, and mathematical modeling serves as an indispensable tool to perform this rigorously.

Mathematical Epidemiology has been instrumental in understanding how social interactions and human mobility in-
fluence outbreaks. The main tool in this field is compartmental models, which divide the population into groups based on
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their disease status (e.g., susceptible, infectious, recovered) with differential equations representing the dynamics. They can
integrate various real-life factors, including age, spatial effects, etc. The inclusion of spatial effects is particularly relevant as
the transmission of infectious diseases often depends on proximity and movement patterns of individuals. The spatial aspect
can be approached in either continuous or discrete ways. The latter, known as the patch ormetapopulation model, first divides
the population into distinct subpopulations, then further into compartments, resulting in a large set of equations, one for each
compartment. Introduced in ecology to study competitive species (Levin et al., 1993), this approach gained prominence in
epidemiology after thework of Rvachev and Longini (1985), who used the airplane network to predict the spread of influenza,
focusing on the 1968 Hong Kong epidemic.

Building on this foundational work, Sattenspiel and Dietz (1995) and Arino and Van den Driessche (2003) discussed the
integration of mobility between regions into epidemic models, with the latter arguing in favor of space-discrete models and
obtaining inequalities for the basic reproduction numberR0. Extending the approaches into epidemic propagation, Takeuchi
Saito et al. (2006) analyzed the impact of transport-related infections on disease transmission, followed by Liu et al. (Liu &
Stechlinski, 2013; Liu & Zhou, 2009). Considering the structure of the graph associated with the city's connectivity, Colizza
et al. (2007) and Colizza and Vespignani (2008) calculated a global threshold for disease invasion and provided extensive
Monte Carlo simulations to verify their findings. They also analyzed the effect of the topology of the graph on the phase
diagram in metapopulation models. The works of Pastor-Satorras et al. (2015) and Pastor-Satorras and Vespignani (2001,
2002) were also prominent in understanding infectious diseases in networks of individuals. We refer the reader to Yin et al.
(2020) to see the combination of metapopulation and agent-basedmodels for two cities. Stolerman et al. (2015) introduced an
SIR-network model to understand the impact of infection rates onR0, inferring that nodes with higher infection rates are the
most important drivers of outbreaks (Stolerman et al., 2015).

To effectively tame the epidemic's outbreak, optimal control theory has shown to be useful for theoretical basis and
practical solutions (Brauer et al., 2008; Lenhart & Workman, 2007; Mandal et al., 2020; Sharomi & Malik, 2017). In optimal
control formulations, one usually aims at minimizing the number of infections, deaths, or other epidemic-related quantity, at
the expense of some control measure, such as quarantine, testing, treatment, and/or vaccination. Several works came in this
sense, such as Behncke (2000) who proved that the optimal strategy is to vaccinate as many people as possible as quickly as
possible, subject to the resources. See also (Gaff & Schaefer, 2009; Neilan & Lenhart, 2010) for other related references. The
interplay of optimal control theory with metapopulation models in epidemiology has contributions from €Ogren and Martin
(2002), Asano et al. (2008), Rowthorn et al. (2009), with increasing traction after the COVID-19 pandemic. The focus of these
studies was to improve vaccination strategies, especially in urbanized, mobile populations, and provide solutions tailored to
economic constraints and quarantined settings.

However, most optimal control applications in epidemiology involved only simple constraints, while the interest in
including real-world restrictions has grown. Hansen and Day (2011) notably included resource constraints in their SIR
models. These advancements in constrained optimal control problems were studied by Biswas et al. (2014) and De Pinho et al.
(2015). The COVID-19 pandemic accelerated these developments, with research like that of Avram et al. (2022), integrating
constraints to simulate the capacity of intensive care units. Lemaitre et al. (2022) developed a method that combines
distributed direct multiple shooting, automatic differentiation, and large-scale nonlinear programming to optimally allocate
COVID-19 vaccines, considering both supply and logistic constraints. When applying their approach to cities in Italy, they used
a SEPIAHQRD-V model. They specified that individuals in certain compartments do not commute and accounted for mobility
fluxes and infection forces that depend on each region. Another work that emerged to deal with coronavirus was the Robot
Dance platform, developed by Nonato et al. (2022). This platform is a computational tool aiding policymakers in curating
response strategies tailored to regional nuances, intercity commuting mobility, and hospital capacities, applied to the state of
S~ao Paulo, Brazil.

In this work, we delve into the intricate dynamics of epidemic spread in metropolitan areas, emphasizing the role of
commuting patterns and vaccination strategies. We derive tight bounds for the basic reproduction number, for both a general
network of cities and one associated with a metropolitan area. Utilizing optimal control theory, we devise efficient strategies
for disease control in metropolitan areas, which we illustrate through a series of numerical experiments that corroborate our
findings.
1.1. Contributions

In this work, we study a mathematical model that combines commuting and vaccination in a constrained optimal control
problem to manage the propagation of infectious diseases within interconnected cities and networks that resemble
metropolitan areas, providing a more realistic representation of disease transmission and an efficient strategy to control it.
Our main contributions are three-fold:

C Analysis of a mathematical model for epidemics that considers commuting dynamics in interconnected cities and derivation of upper and lower bounds
for the basic reproduction number.

C Formulation of a constrained control-affine optimization problem for finding optimal vaccination strategies in a network.
C Extensive numerical simulations, illustrating various situations and validating the theoretical results.
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2. Methods

The formulation of the vaccination model and the associated optimal control problem is composed of three elements: (I)
the epidemiological model that combines a compartmental SIR model and commuting patterns to describe the transmission
dynamics; (II) an objective function to be minimized, which contemplates the number of infections and applied vaccines; (III)
a set of constraints on the state and control variables that ensure resource limitations for the production, distribution, and
application of the vaccines.

2.1. Epidemiological modeling

Consider a directed graph G¼ (V, E), where the set of nodes V corresponds to K interconnected cities, and the set of ordered
pairs E indicates connectivity between cities. Each link (i, j) has aweight pij denoting the fraction of the population of city i that
commutes daily to the city j. This forms a weighted adjacency matrix [P]ij ¼ pij, with P being a right stochastic matrix, e.g. the
elements of each row sum up 1. Each city i has a total population ni divided into three compartments representing the
proportion of susceptible (Si), infectious (Ii), and recovered (Ri) individuals, satisfying:

SiðtÞ þ IiðtÞ þ RiðtÞ ¼ 1;

for all t � 0 and all i ¼ 1, …, K.
In this model, we incorporate a birth rate m and a natural death rate m for each compartment in each city. The rates are

chosen such that the total population of each city remains constant over time. We also introduce a, a daily periodic function,
such that a(t) ¼ 0 during daytime and a(t) ¼ 1 at night. For instance, a realistic setting for a could be a(t) ¼ 0 for t2 (k þ 1/4,
k þ 3/4), and a(t) ¼ 1 for t;(k þ 1/4, k þ 3/4), for each day k ¼ 0, 1,…, T. During nighttime, the evolution of the system is not
influenced by mobility, leading to the SIR model:

dSi
dt

ðtÞ ¼ m� biSiIi �mSi;

dIi
dt

ðtÞ ¼ biSiIi �gIi �mIi;

dRi
dt

ðtÞ ¼ gIi �mRi;

where bi represents city i's infection rate, which is directly affected by the population density and the probability of infection
given contact, and g�1 refers to the average infection period.

During the day, commuting changes the infection dynamics. We model this feature using the same approach as Nonato
et al. (2022). The effective population in city i during working hours is given by

Peffi ¼
XK
j¼1

pjinj;
which sums over the parcels of the populations that travel from any city j to i. The proportion of susceptible workers from city
i that get exposed to the infectious individuals in city j is pijSiI

eff
j , where Ieffj is the effective proportion of infectious people in

city j during the day and it is defined by

Ieffj ¼ 1

Peffj

XK
k¼1

pkjIknk:
The complete model is

dSi
dt

ðtÞ ¼ m� aðtÞbiSiIi � ð1� aðtÞÞSi
XK
j¼1

bjpijI
eff
j � mSi;

dIi
dt

ðtÞ ¼ aðtÞbiSiIi þ ð1� aðtÞÞSi
XK
j¼1

bjpijI
eff
j � gIi � mIi;

dRi
dt

ðtÞ ¼ gIi � mRi;

(1)
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Fig. 1. Graphical representation of city interactions and the SIR model. The cities are connected composing a network, pij being the proportion of individuals
from city i who work during the day at j. At night, cities do not interact, and the epidemic follows a standard SIR dynamic. During the day, some individuals
commute, interact with infected individuals in the destination city, and may transport the infection.
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for i ¼ 1,…, K, subject to the initial conditions Si(0) ¼ Si0, Ii(0) ¼ Ii0 and Ri(0) ¼ Ri0, for i ¼ 1, …, k. We use the following vector
notations SðtÞ ¼ ðS1ðtÞ;…;SKðtÞÞ2RK , IðtÞ ¼ ðI1ðtÞ;…; IKðtÞÞ2RK and RðtÞ ¼ ðR1ðtÞ;…;RKðtÞÞ2RK . Fig. 1 represents this model
graphically.

Remark 2.1. In this study, we do not consider disease-specific mortality. This decision is based on two observations: firstly,
including an additional mortality rate due to the disease does not change the disease dynamics. Secondly, our primary focus
lies in analyzing the impact of vaccination strategies during the initial months of the epidemic, a period where the relative
impact of disease-specific mortality on the outcomes is usually minimal. Our main objective is to control the rate of new
infections, which is not influenced by the mortality rate.

It can be proved that

C :¼ fX2RK�3
�0 : Xi1 þXi2 þXi3 ¼1; for i¼1;…;Kg

is invariant under system (1). The complete statement and its proof are in Appendix B.
2.2. The basic reproduction number

Following the method developed by Van den Driessche and Watmough (2002), we derive the basic reproduction number
using the formula R0 ¼ rðFV�1Þ. Here F and V are matrices associated with the Jacobian of the dynamics at the disease-free
equilibrium (DFE). The detailed definitions are included in Appendix A and the derivation is given in Appendix A.1. Given the
problem's dimension, we could not obtain an explicit expression for R0. However, we obtained in Theorem 2.1, 2.1 and
Theorem 2.2 below, sharp inequalities for R0 in terms of simple expressions involving the parameters.

Let Ri
0 be the basic reproduction number of city i if the cities were isolated. This is given by the well-known formula
1201
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Ri
0 ¼ bi

gþ m
: (2)

We get the following result, the proof of which is in Appendix B.
Theorem 2.1. The basic reproduction number R0 for system (1) satisfies the following inequalities

min
1�i�K

aRi
0 þ ð1�aÞ

XK
k¼1

pikRk
0 � R0 � max

1�i�K
aRi

0 þ ð1�aÞ
XK
k¼1

pikRk
0: (3)
The inequality in (3) can be written as

min
1�i�K

wi � R0 � max
1�i�K

wi; where w :¼ ðaI þ ð1� aÞPÞb
gþ m

2RK ;

in which b ¼ (b1, …, bK). The matrix aI þ (1 � a)P is right stochastic and balances the static state, where people are in their
residence cities, with probability a, and the transition matrix P, that represents commuting, with probability 1� a. Therefore,
the entrywi represents the expected basic reproduction number for city i, calculated as the average ofRj

0 values for all cities j,
with the weights determined by the probability of individuals from city i work in city j.

Corollary 2.1. The following inequality holds:

min
1�i�K

Ri
0 � R0 � max

1�i�K
Ri

0:

In particular, if we consider, without loss of generality, that b1 ¼ max1�i � Kbi, we have that R0 � R1
0.

The proof is in Appendix B.
From now on, unless indicated, we make the following assumption, which summarizes the idea that commuting majorly

occurs between the capital and the other cities as illustrated by Fig. 2.

Assumption 2.1. (Metropolitan area structure).In a metropolitan area, there is a capital, the big city with a higher population
density and a larger number of inhabitants, along with other connected cities. We assume that individuals residing in the
capital city both stay andwork there, while people in other cities either commute to the capital or work in their home city. We
further enumerate the cities according to their populations in decreasing order of population size. Consequently, matrix P
reduces to the form:

P ¼

2
66664

1 0 0 / 0
p21 p22 0 / 0
p31 0 p33 / 0
« « « 1 «

pK1 0 0 / pKK

3
77775:
Fig. 2. Version of Fig. 1 considering a metropolitan area and 2.1. Graphical representation of commuting patterns in a metropolitan region (with a network
satisfying 2.1).
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Fig. 3. Transition matrix of the Rio de Janeiro metropolitan area. A heatmap showing the matrix P in the case of the Rio de Janeiro metropolitan area (mobility
data taken from (Sebrae and Mobilidade urbana e mercado, 2013)). In each entry ij, where i and j represent cities of the metropolitan region of Rio de Janeiro, the
color indicates the magnitude of pij. On the right of the heat map, the scale of colors is exhibited.
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The above assumption adjusts to the reality of several regions. For instance, Fig. 3 shows the matrix P of the Rio de Janeiro
metropolitan area through a heatmap. A similar mobility structure is present in the Buenos Aires metropolitan region
(Guti�errez et al., 2021). Other patterns of mobility may occur in different regions. For instance, in Île-de-France, Paris
metropolitan area, a portion of individuals from the capital work in the surroundings (de Lapasse & Pr�evost, 2021).

At this point it is worth mentioning that (3) holds for any network of cities, not necessarily satisfying above Assumption
2.1. When applying the specific structure of Assumption 2.1 to the dynamics described in equation (1), we derive a different
inequality for the reproductive number R0 (the proof is in Appendix B).

Theorem 2.2. The basic reproduction number R0 for system (1) under Assumption 2.1, satisfies the following inequalities

x

gþ m
� R0 � 1

gþ m

 
xþ ð1�aÞ b1

Peff1

XK
i¼1

nip
2
i1

!
; (4)

where x ¼ max1�i � Kabi þ (1 � a)piibi(1 � di1), where dij is the Kronecker function.

Under Assumption 2.1, calculating R0 reduces to a problem of finding the spectral radius of a diagonal plus a rank-one
matrix. As far as we know, there is no closed-form expression for it, and obtaining tighter bounds is an open question in
the field of Matrix Perturbation Theory (Li, 2006).

Remark 2.2. Higher values of g correspond to faster recovery rates and lower values of R0. As a balances day and night
periods, when it approaches 1, the night period becomes more relevant, and R0 tends to the maximum of Ri

0, for i ¼ 1, …, K,
meaning that infections in the residence city governed the dynamics. The parameters bi directly amplify R0. Through nu-
merical experiments, we observed that the highest value among the bi parameters is the most significant driver (see e.g.
Fig. 7). Finally, although the individual population sizes ni do not directly influence eigenvalue behaviors, the ratios ni/n1 offer
a subdued effect, predominantly guided by (1 � a)max1�i � Kbi.
2.3. Vaccination and optimal control problem

We implement vaccination as a control policy by introducing a time-dependent vaccination rate ui in each city i. We
consider that susceptible individuals can receive the vaccine and immediately move to compartment Ri. Once vaccinated,
these individuals no longer contribute to the spread of the disease during the period under consideration. We could also
suppose other sets of hypotheses or model formulations, as we did in Moschen (2023). The introduction of vaccination leads
to a modified SIR epidemiological model, to which we add a vaccine counter Vi, resulting in the following set of equations:
1203
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dSi
dt

¼ m� abiSiIi � ð1� aÞSi
XK
j¼1

bjpijI
eff
j � uiSi � mSi;

dIi
dt

¼ abiSiIi þ ð1� aÞSi
XK
j¼1

bjpijI
eff
j � gIi � mIi;

dRi
dt

¼ uiSi þ gIi � mRi;

dVi

dt
¼ uiSi:

(5)

This framework assumes that infected individuals are recognizable and do not receive the vaccine. This assumption can be
challenging in real-life scenarios, but we believe that vaccinating infectious and/or recovered individuals would not change
the qualitative results of this work.

For the control system (5), it can be shown that the set

C ¼ fX2RK�4
�0 : Xi1 þXi2 þXi3 ¼1; for i¼1;…;Kg

is positively invariant under the flow of system (5), for each measurable function u. For details, see Appendix B.
Following the steps of Appendix A.1, we can calculate the basic reproduction numberRvac

0 for the model (5) with constant
vaccination. Although Rvac

0 does not have a closed-form expression, the vaccination rate inversely impacts Rvac
0 . The

inequality presented in equation (3) of Theorem 2.1 can be adapted for this context by replacing Ri
0 with a modified version

Rvac;i
0 , where

Rvac;i
0 ¼ m

mþ ui
Ri

0 ¼ m

mþ ui

bi
gþ m

:

Building upon the formulation of the dynamics, we develop an optimal control problem in which we vaccinate the
population of the metropolitan area while considering the cost of vaccination and the cost of hospitalization of infected
individuals. The number of applied doses in city i until time t is

ni

Z t

0
uiðtÞSiðtÞ dt ¼ niViðtÞ:

We suppose that a rate rh of infected individuals are hospitalized with a daily unity cost of ch, and we assume that the unity
cost of vaccination is cv. Therefore, we define the cost functional

J½u1;…;uK � :¼
XK
i¼1

cvni

Z T

0
uiðtÞSiðtÞ dt þ chrhni

Z T

0
IiðtÞ dt: (6)

Due to limitations of resources of the health system, a limited number of people can be vaccinated at each time t, so we
impose the (mixed control-state) constraint on the vaccination rate

uiðtÞSiðtÞ � vmax
i ; for t2½0; T� and i ¼ 1;…;K; (7)

which implies the following constraint on the daily cap

Z dþ1

d
uiðtÞSiðtÞ dt � vmax

i ; for d ¼ 0;…; T � 1:

Through the latter constraint, we indirectly ensure that a proportion of at most q individuals can be immunized by setting

XK
i¼1

niv
max
i � q

XK
i¼1

ni;

for some q 2 (0, 1).
We consider a scenariowhere cities receiveweekly vaccine shipments from a centralized authority.We use Vmax

w to denote
the number of vaccines to be received at week w ¼ 0, …, T/7 � 1. From this, we define the function of cumulative vaccine
shipments by
1204



Fig. 4. Example of the function of delivered vaccines. This is a graphical example of the type of function described by equation (8). Shipments arrive at the
beginning of each week and have a one-day delay to be distributed among the vaccination centers.
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DðtÞd

8>>>>><
>>>>>:

Xw�1

n¼0

Vmax
n þ Vmax

w ðt � 7wÞ; t2½7w;7wþ 1�;

Xw
n¼0

Vmax
n ; t2½7wþ 1;7ðwþ 1Þ�;

(8)

for w ¼ 0, 1, …, T/7 � 1 and T a multiple of 7 for simplicity. The function D is piecewise linear non-decreasing. Note that, to
account for the delay in delivering vaccines across cities and healthcare centers, D increases linearly on the first day of each
week, after which it remains constant for the rest of the week. This induces the following constraint:

XK
i¼1

ni

Z t

0
uiðtÞSiðtÞ dt ¼

XK
i¼1

niViðtÞ � DðtÞ: (9)

Observe that any unused vaccines can be employed over the subsequent weeks. Fig. 4 illustrates an example of this function.
Aggregating the dynamics in (5), the cost function in (6), the constraints in (7), (9) and ui � 0, we get the following optimal

control problem with u taken in the set of measurable functions from [0, T] to RK ,

min
XK
i¼1

cvni

Z T

0
uiðtÞSiðtÞ dt þ chrhni

Z T

0
IiðtÞ dt;

s:t: _Si ¼ m� abiSiIi � ð1� aÞSi
XK
j¼1

bjpijI
eff
j � uiSi � mSi

_Ii ¼ abiSiIi þ ð1� aÞSi
XK
j¼1

bjpijI
eff
j � gIi � mIi

_Ri ¼ uiSi þ gIi � mRi
_Vi ¼ uiSiXK

i¼1

niViðtÞ � DðtÞ; a:e: t2½0; T�

uiðtÞSiðtÞ � vmax
i ; a:e: t2½0; T �

uiðtÞ � 0; a:e: t2½0; T�
Sið0Þ ¼ si0; Iið0Þ ¼ ii0; Rið0Þ ¼ ri0; Við0Þ ¼ 0:

(10)
Remark 2.3. In most of the studies involving vaccination and optimal control, a quadratic cost on the control is considered.
That assumption guarantees the existence of a solution, stability of numerical methods, and direct application of Pontryagin's
Maximum Principle to get a feedback expression for the optimal control. Nevertheless, we believe that a linear cost in this
context is a more realistic representation of operational costs, since it computes the total amount of vaccines or hospitali-
zations, for instance. In particular, the cost of vaccination should be linear or concave with respect to the quantity of vaccines;
a strongly convex assumption does not accurately mirror practical aspects.
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3. Results

The core objective of our study is to analyze the effects of different vaccination strategies on the spread of infectious
diseases in a network of cities modeled by (5). Particular focus is given to metropolitan regions, this is, networks that comply
with Assumption 2.1 or some approximation of it, meaning that small values can appear in the entries that are assumed to be
zero (see e.g. the simulation for Rio de Janeiro in Subsection 3.5). We have carried out a series of experiments that provide a
practical platform to evaluate the efficacy of these strategies under controlled conditions. We start by presenting simulations
that delineate the behavior of the basic reproduction number. This is followed by exploring the impact of constant vaccination
rates on the disease dynamics. We then optimize vaccination strategies, by solving the optimal control problem (10). Lastly,
we assess the performance of a practical feedback solution, which we develop by considering a modified problem.

For solving differential equations, we use the explicit Runge-Kutta method of order 5(4) (‘rk45’), using the SciPy Python
library (Virtanen et al., 2020). For the optimal control solution, we adopt a first discretize, then optimize approach facilitated by
the Gekko Python library (Beal et al., 2018), which uses IPOPT for non-linear optimization. All experimentswere performed on
a Linux PC equipped with an AMD Ryzen 9 5950X processor (16 cores) and 128 GB of memory. The computer code to
reproduce the experiments and implement the proposed models is available under a license at https://github.com/
lucasmoschen/network-controllability.
3.1. Simulations for the basic reproduction number

Before we introduce vaccination, we examine the impact of the parameters on the basic reproduction number R0, as
described in Methods and the bounds for R0 provided by the aforementioned Theorems 2.1 and 2.2. For all the simulations
throughout this article, we fix g to 1/7, which means that the recovery time from infection is on average 7 days, and m ¼ 3.6 ,
10�5 to represent approximately the average life expectancy of 75 years.

To open the discussion, we analyze the simpler situation of two cities, where the parameter p21, the proportion of in-
dividuals that reside in city 2 and work in city 1, uniquely determines the transition matrix P. Let us set n2 ¼ 1 since only the
ratio ni/n1 is relevant toR0, not the magnitude. Fig. 5 presents the dynamics of the epidemic in two different scenarios for b,
considering a single infected initial individual in the population of the first city. Notice that higher values of R0 give higher
and faster epidemic peaks.

In Fig. 6 we show the level curves of R0 when p21, n1/n2 and a vary. For the chosen parameters b, g and m, we have R1
0 >1

and R2
0 <1, which represents a situation for which Corollary 2.1 cannot determine whether R0 is greater or smaller than 1.

Looking at Fig. 6, we notice that higher values of a increase the value ofR0. The impact of p21 is nonlinear and complex, but its
behavior is similar to a quadratic function in R0. On the other hand, the impact of p21 and a is small when the population
proportion n1/n2 increases.

In Fig. 7, we analyze the bounds forR0 provided by Theorem 2.1 and Theorem 2.2. We mainly observe thatR0 is primarily
driven by b1, the highest effective transmission rate, while a, p21, and b2 have little impact. Higher values of a improve the
bounds of Theorem 2.2, depicted in orange, mainly due to the term factor of (1 � a) appearing on the right-hand side of (4).
However, the fourth graph (where b2 varies) illustrates the fact that r(aB þ (1 � a)L) remains constant until ab2 þ (1 � a)
b2p22 < ab1, beyond which the upper bound (in orange dashed line) gets worse.

In the context of multiple cities, we consider a scenario of K¼ 5 cities. We first examine five distinct mobility scenarios: (I)
metropolitan area where 10% of the residents of each city work in the capital; (II) metropolitan area where 40% of each city
works in the capital; (III) all cities are interconnected, where 60% of the residents work in their city, while the remaining are
distributed evenly across the other four cities; (IV) a variant of the metropolitan area where 30% of each city's residents work
in the capital and 10% of the capital's workforce is employed in the other cities; (V) no commuting between cities.

Our findings, summarized in Table C.2 and illustrated in Fig. 8, reveal that in the capital city e compared to the other cities
e the peak size is higher, the peak day occurs earlier, the outbreak (the period between t ¼ 0 and the time at which the
Fig. 5. Dynamics of the Epidemic in Two Cities. Epidemic dynamics in two cities under two different scenarios. The settings are a ¼ 0.64, p21 ¼ 0.2 and n1 ¼10.
The proportion of susceptible individuals is plotted in blue, and the proportion of infectious individuals in orange. The larger city is represented by a solid line,
while the smaller city is represented by a dashed line.
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Fig. 6. Basic reproduction number as function of a and p21 for two cities. Contour plot of the values of R0 for different values of a 2 (0, 1), p21 2 (0, 0.9) and
n1/n2 ¼ (1, 2, 5, 10) considering b ¼ (0.4, 0.1). The graphs show the variation of R0 in the (a, p21)-plane.

Fig. 7. Impact of the parameters on the bounds of R0 . Using the same setting as in Fig. 5, we visualize the impact of a, p21, b1 and b2 on R0 (depicted in black).
In orange, we see the bounds from Theorem 2.2, and in blue, the bounds from Theorem 2.1. The dotted lines are the lower bounds while the dashed lines are the
upper bounds.
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proportion of infectious individuals falls below 10�5) lasts less and the attack rate is larger. Additionally, higher commuting
rates correlate with a shorter epidemic span, as scenarios (II) and (III) exhibit and the capital's peak day tends to dictate the
overall trajectory of the disease spread across the network. Further, the outcomes of scenarios (II) and (III) are similar, which
indicates that depending on the structure of the network, we may approximate it using the metropolitan hypothesis in
Assumption 2.1.
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Fig. 8. Simulation results for different structures of the transition matrix. Comparison of Peak Size (maximum proportion of infectious individuals), Peak Day
(day of the peak size), Duration (time from epidemic onset to the day when the proportion of infectious individuals achieves 10�5), and Attack Rate (proportion of
individuals who contract the disease during 350 days of the epidemic) across different mobility scenarios. The aggregated data is the weighted average,
considering their population size, from cities 2 to 5. For this experiment, b ¼ (0.4, 0.25, 0.2, 0.15, 0.1), a ¼ 0.64, and the population sizes are 105 , (50, 10, 10, 1, 1).
Lastly, the initial conditions are I1(0) ¼ I2(0) ¼ I3(0) ¼ 10�4 and no recovered individuals.
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In Fig. 9, we vary the infection rate b. We consider an experiment of four different scenarios in five cities and depict only
three cities to better exhibit the results. When comparing scenarios (I) and (II), both haveR0 greater than 1. However, a minor
adjustment in b1 from 0.2 to 0.15 results in a nearly 100-fold decrease in peak size, changing the entire aspect of the epidemic.
Interestingly, we observed that even ifRi

0 <1, for i ¼ 2,…, 5, the epidemic still manages to spread in these cities. Turning our
attention to scenario (III), this setting represents a situation where R0 <1, achieved by modifying the city with the highest
transmissibility rate: from the capital to the city 3, the second largest city. This implies that the capital, being the main hub of
mobility, plays a significant role in accelerating the spread of the disease. Finally, scenario (IV) fixes the same infection rate for
all cities. Notice in this case that the behavior of the epidemic is very similar for all cities and mobility does not play a big role
in the capital.
Fig. 9. Infectious curves for different scenarios of b. Curves of infectious individuals from cities 1, 3, and 5 under four scenarios of the b specification. Here
a ¼ 0.64, pi1 ¼ 0.2 for i � 2 and n1 ¼ 5n2 ¼ 5n3 ¼ 50n4 ¼ 50n5 ¼ 5 , 106. The four scenarios considered are (I) b ¼ (0.2, 0.1, 0.1, 0.1, 0.1), indicating R1

0 >1 andRi
0 <1

for i s 1; (II) b ¼ (0.15, 0.1, 0.1, 0.1, 0.1), a situation similar to (I), but with a slower transmissibility rate, even though R0 >1; (III) b ¼ (0.1, 0.1, 0.15, 0.1, 0.1), a
situation similar to (II), but with the highest transmissibility rate not in the capital. This scenario results in R0 <1; (IV) b ¼ (0.2, 0.2, 0.2, 0.2, 0.2), where all cities
have the same transmissibility rate.
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3.2. Constant vaccination rates

We now turn our attention to the analysis of the vaccination policy considering a constant rate ui for each city i, as outlined
by the equations in (5).

In this scenario, we consider an ongoing epidemic that is subject to a vaccination strategy to control it, starting on a
specified day s. In the two-city scenario, we set b¼ (0.5, 0.3) to ensure thatR1

0 >1 andR2
0 >1. The vaccination rates are varied

within the range u ¼ ðu1;u2Þ2½10�6;10�3�2 to generate Fig. 10, which is presented on the log-log scale. For this setting, the
basic reproduction number without vaccination is R0z3:48. Numerically, by a fitting method, we observe that

Rvac
0 ðu1;u2Þz

R0

1þ u1,bðu2Þ
; (11)

where b is approximately a constant function of u2, as we observe in Fig. 10. By this figure and by equation (11), we infer that
the vaccination rate of the capital city governs Rvac

0 .
To analyze the significance of vaccinating the capital, we perform a simplified version of the optimal control problem

introduced in equation (10) only considering the constant vaccination strategies.We use a constant vector u2 [0,0.05]K as the
decision variable. In this constant vaccination case, we can simplify the constraints and consider the following:

XK
k¼1

VkðTÞnk � 0:8
XK
k¼1

nk

to ensure that the total number of vaccinated individuals at the final time T is at most 80% of the population. We set
T ¼ 8� 7 ¼ 56 days, the hospitalization rate rh ¼ 0.1 and the hospitalization cost ch ¼ 1000. Vaccination starts at the 70th day
after the first infection in the capital. Finally, we consider three different scenarios for the parameter b and three specifications
of the unity cost of a vaccine cv. As we can see in Table 1, it is evident that in all scenarios, the capital city not only receives the
majority of vaccines but also achieves the highest vaccination rate, particularly reaching the upper bound in b(2) and b(3)

scenarios. In the first scenario, which is characterized by a uniform infection rate across the cities, vaccine distribution is more
equitable, yet the capital still maintains an advantage. The behavior is similar when uj is allowed to vary up to 0.1 for each city
j. However, it is important to note that the relevance of vaccinating the capital can diminish in scenarios where the susceptible
population decreases rapidly, as vaccine allocation depends significantly on the size of the available population.

As seen in Table 1, when the first day of vaccination is determined by the number of infectious individuals, for instance, the
day onwhich 1% of the total population is infected, all scenarios indicate that the capital should receive vaccines at the highest
rate, regardless of cv. The same result is obtained when the initial susceptible population is uniform across the cities. This
analysis showcases that it is preferable to vaccinate the capital at a higher rate.
3.3. Performance of time-variable vaccination strategies

In this section, we perform numerical simulations that incorporate vaccination as a time-variable control function. By
integrating vaccination strategies into our metropolitan area model, the goal is to provide a comprehensive understanding of
disease dynamics and control measures. We start by examining the interaction between two cities, as shown in Fig. 11. This
figure illustrates the optimal trajectory and control for a capital city with a population 10 times greater than the second city
and a higher infection rate. Vaccination begins on the 100th day following the arrival of the first infected individual in the
capital.
Fig. 10. Basic reproduction number Rvac
0 in the vaccination model. The basic reproduction number Rvac

0 for the model described in (5) as a function of u1 and
u2 across K ¼ 2 cities. The settings are: b ¼ (0.5, 0.3), a ¼ 0.64, p21 ¼ 0.2 and the ratio n1/n2 ¼ 10. Both axes u1 and u2 are in the logarithmic scale.
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Table 1
Optimal constant vaccination rates across cities for different parameter settings: vaccination rates in five different cities under nine parameter settings
combining three values for b and three for cv. We set b(1)¼ (0.3, 0.3, 0.3, 0.3, 0.3); b(2) ¼ (0.3, 0.2, 0.12, 0.12, 0.1); and b(3) ¼ (0.3, 0.12, 0.12, 0.1, 0.05), and c1v ¼
0:001; c2v ¼ 0:1; and c3v ¼ 10. Each row corresponds to a different combination of b and cv values, representing different scenarios of disease transmission
rate and vaccination cost. For each row, in bold, we highlight the highest rate.

b cv Capital City 2 City 3 City 4 City 5

b(1) c1v 4.26 , 10�2 3.41 , 10�2 3.41 , 10�2 3.41 , 10�2 3.41 , 10�2

c2v 4.26 , 10�2 3.41 , 10�2 3.41 , 10�2 3.41 , 10�2 3.41 , 10�2

c3v 4.26 , 10�2 3.41 , 10�2 3.41 , 10�2 3.41 , 10�2 3.41 , 10�2

b(2) c1v 5.00 , 10�2 5.00 , 10�2 9.63 , 10�3 9.63 , 10�3 3.42 , 10�8

c2v 5.00 , 10�2 5.00 , 10�2 9.63 , 10�3 9.63 , 10�3 3.02 , 10�7

c3v 5.00 , 10�2 1.38 , 10�2 1.65 , 10�8 1.70 , 10�7 1.62 , 10�7

b(3) c1v 5.00 , 10�2 5.00 , 10�2 1.06 , 10�2 1.54 , 10�7 5.01 , 10�8

c2v 5.00 , 10�2 5.00 , 10�2 1.06 , 10�2 1.76 , 10�7 3.36 , 10�8

c3v 5.00 , 10�2 7.65 , 10�9 7.65 , 10�9 7.91 , 10�8 6.20 , 10�8

Fig. 11. Optimal trajectories and control for two-city interaction. Optimal trajectory of the proportion of susceptible and infectious individuals in two cities,
the capital in orange and the second city in blue. The fourth subplot illustrates the variables uiðtÞSiðtÞ2f0;vmax

i g; i ¼ 1;2. The settings for this experiment are: b ¼
(0.25, 0.18), a ¼ 0.64, p21 ¼ 0.2, n1 ¼ 106 and n2 ¼ 105. For the optimal control problem, cv ¼ 0.01, ch ¼ 1000, vmax

1 ¼ vmax
2 ¼ 0:8=42 and a weekly cap allowing the

vaccination of at most 1/13 of the population per week.
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Notably, during the initial two weeks, the optimal solution allocates all vaccines to the capital, administering them at the
maximum possible rate according to the weekly cap. Subsequently, as the susceptible population in the capital decreases to
around 60%, it becomes advantageous to start vaccinating the second city, which has a lower daily cap. The fourth graph
illustrates the bang-bang (Sch€attler and Ledzewicz, 2012) behavior of the effective vaccination rate uiSi, this is, in which
u*i ðtÞS*i ðtÞ2f0; vmax

i g holds for i ¼ 1, 2, along the whole interval [0, T]. The gap of the weekly cap constraint is depicted in
Fig. 12. We assign a high unity cost to hospitalization ch ¼ 1000 in contrast to a relatively low unity cost for vaccination, with
cv ¼ 0.01 to reflect the burden of hospitalization. Both healthcare resources and patient well-being are comparatively way
more expensive than the minor inconvenience and price of vaccination. Furthermore, the benefits of vaccination are
amplified when administered on a large scale. This simulation took around 33 s to run.

Whenwe equalize the infection rates of the two cities, setting b1¼ b2¼ 0.25, while keeping the other parameters fixed, we
obtain the solution in Fig. 13. One can see that the behavior of the solution is similar to that of the previous experiment but
with a uniform optimal solution across both cities. This suggests that the transmission rate b is the most important driver
when deciding vaccination strategies. Our prior conclusion about the importance of the susceptible population in deciding
which city retains the vaccination is also evident in the figure.

Finally, we consider four different scenarios: first infection in the second city (Scenario (I)), uniform initial conditions for
the control problem (Scenario (II)), and two that express a higher transmissibility in the capital, but a lower vaccination rate
limitation (Scenarios (III) and (IV)). The result is shown in Fig. 14. It establishes that the vaccination always starts in the capital
1210



Fig. 12. Weekly constraint analysis. Function DðtÞ �PK
k¼1nkVkðtÞ for the experiment presented in Fig. 11. For that setting, the graph shows the availability of

vaccines as a function of time. In red, we fix the value 0 to give a reference.

Fig. 13. Optimal trajectories and control for two-city interaction for uniform infection rates. On the left, optimal trajectories of the proportion of susceptible
and infectious individuals in two cities. On the right, optimal control. The simulations use the same settings as Fig. 11 except b ¼ (0.25, 0.25).
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in all scenarios, evenwith the infection starting in the second city. Moreover, Scenarios (III) and (IV) confirm that this behavior
does not come from the maximum effective vaccination rate, highlighting that even though we can vaccinate more rapidly in
the second city, the capital starts first.
Fig. 14. Optimal effective vaccination rate for two-city interaction. Scenario (I) considers the same setting as Fig. 11 except for the first infection happening in
the second city and vmax

1 ¼ 0:9=42 (while vmax
2 ¼ 0:8=42). Scenario (II) considers I1(0) ¼ I2(0) ¼ 0.05 and R1(0) ¼ R2(0) ¼ 0.02. Scenarios (III) and (IV) fix the same

parameters of Fig. 11 but with different maximum rates vmax
1 and vmax

2 . In (III), we set vmax
1 ¼ 0:8=42< vmax

2 ¼ 0:9=42, while in (IV), vmax
1 ¼ 0:6= 42< vmax

2 ¼ 0:9=
42.
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Having considered the simplified two-city case, we extend our analysis to more cities in the metropolitan area. We first
observe that the dimensionality of the problem escalates quickly, which makes efficient implementations a challenging
aspect yet to be addressed in the literature. Lemaitre et al. (2022) consider a similar optimal control problem and offer a viable
solution, which we could further explore in future research.

For a simulation with K ¼ 5 cities, refer to Fig. 15. The results contained in the image are parallel to those in the two-city
scenario in which the vaccines are preferentially allocated to the capital in contrast to other cities, vaccinating as fast as
possible saturating the constraints. During the fourth week, when the susceptible population is reduced to less than 60% in
the capital, the vaccination expands to the second city, which has the second highest transmission rate. The behavior of the
control function aligns again with the bang-bang type of solution. In total, the experiment required approximately 3 min and
31 iterations.

In addition to the analysis of the optimal control problem in multi-city interaction, we introduce a comparative visuali-
zation depicted in Fig. 16. This figure presents a dual-bar plot comparison between the impact of two distinct vaccination
strategies on the total number of infections across varying transmission rates of the capital city. The transmission rate of the
capital was chosen as a comparison factor since it drives most of the epidemic. The bars in blue correspond to the application
of the optimal control strategy as the solution of problem (10). In orange, we consider a constant vaccination approach, where
the vaccination rate is uniform in different cities and over time. This comparison highlights that following the optimal
strategy leads to fewer people having the disease during the epidemic. Additionally, the higher the transmission rate in the
capital, the greater the impact of the optimal solution.

3.4. Performance of feedback practical solution

We bring to attention the fact that the optimal solution is hard to implement in real-world applications since the exact
number of susceptible, infected, and recovered individuals is difficult to estimate. Because of this, we propose a numerical
simulation that substitutes the constraint uiðtÞSiðtÞ � vmax

i by

uiðtÞð1�ViðtÞÞ � vmax
i

which also leads to a bang-bang type of solution where we get u*i ðtÞð1�V*
i ðtÞÞ2f0; vmax

i g for t 2 [0, T]. If m ¼ 0 (which is a
reasonable approximation for short horizons), this solution is an admissible control to the original problem since

d
dt

ðVi þ Si þ IiÞ ¼ mRi � gIi � 0;

which implies
Fig. 15. Optimal trajectories and control functions for 5 cities. Optimal trajectories and controls for a problem involving 5 cities. The settings are b ¼ (0.4, 0.3,
0.15, 0.15, 0.1), a ¼ 0.64, pk1 ¼ 0.2 for each city k > 1, n ¼ 105(50, 10, 10, 1, 1), cv ¼ 0.01, ch ¼ 1000, and rh ¼ 0.1. The model allows for a weekly vaccination of up to 1/
20 of the susceptible population. The maximum rate of vaccinated individuals is set at vmax

1 ¼ / ¼ vmax
5 ¼ 0:8=42.
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Fig. 16. Comparison between optimal and constant vaccination strategies for different values of b1. Comparison among the total number of infections
accumulated until day 42 in the metropolitan area, which is calculated by integrating the new infections and taking the mean over the cities, for two scenarios.
The first, in blue, solves the optimal control problem (10), and the second, in orange, chooses the best constant vaccination rate across all cities.
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ViðtÞ þ SiðtÞ � ViðtÞ þ SiðtÞ þ IiðtÞ � Við0Þ þ Sið0Þ þ Iið0Þ � 1

and, therefore,

uiðtÞð1�ViðtÞÞ � uiðtÞSiðtÞ:

Moreover, it is possible to apply in a real-world scenario, because Vi(t) is naturally known by the Health System. Fig. 17 shows
that this solution yields very similar results regarding the optimal trajectories since the curves of susceptible and infectious
individuals end very closely. The difference appears in the optimal vaccination policy since fewer vaccines can be adminis-
trated daily, but these are compensated by vaccinating during more days in the week.
3.5. Evaluating vaccination strategies in the Rio de Janeiro Metropolitan area

The last section of the numerical experiments considers real data on commuting patterns and population dynamics within
the Rio de Janeiro metropolitan area (Sebrae and Mobilidade urbana e mercado, 2013). We examine the mobility matrix P, as
depicted in Fig. 3. Despite the similarity of this matrix and the metropolitan structure outlined in Assumption 2.1, the dif-
ferences warrant further analysis. Fig. 18 shows a comparative study of the optimal vaccination strategies derived from both
the actual matrix P and its approximation considering the metropolitan hypothesis of Assumption 2.1. This comparison re-
veals that the metropolitan structure approximation of the matrix P yields an optimal solution that is similar to the one
obtained using the original matrix.

Remark 3.1. The parameter b is proportional to the average contact rate of a random person. It is generally an increasing
function of the population density. Given the heterogeneous density in Rio de Janeiro's metropolitan area, which includes
large green spaces like the Tijuca Forest in the capital city, it would not be enough to only consider b as proportional to the
average density of each city. For this reason, we consider random values for b and sort them by population size.
Fig. 17. Comparison between optimal and practical solution in the metropolitan area. Optimal trajectories and effective vaccination rate for the metropolitan
area considering the settings of Fig. 15. It compares the optimal solution with a more practicable solution, which is only based on the knowledge of vaccinated
individuals. We observe that the effective vaccination rate here is the daily proportion of vaccinated individuals in the metropolitan area as a whole.
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Fig. 18. Comparative Analysis of Optimal Vaccination Strategies in the Rio de Janeiro Metropolitan Area. Optimal vaccination strategies for Rio de Janeiro
considering the original and approximated Pmatrices. The settings are a ¼ 0.64, a maximum vaccination rate of 0.6/56 per city, and weekly vaccine shipments for
vaccinating up to 1/20 of the total susceptible population. The transmission rate b is randomly chosen between 0.01 and 0.3, and sorted by city population size.
Vaccination starts when the susceptible population falls below 95% after the first infection in the capital. The approximation of P in a metropolitan context is
calculated by normalizing pi1 and pii by its sum.
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Vaccination in the capital and the other cities is compared in Fig. 19. This analysis tracks on a daily basis the number of
cities that vaccinate while the capital is not, i.e., u1(t) ¼ 0 and some ui(t)s 0 for i � 2. We notice that most of the time, either
the capital is vaccinating or none of the cities are. The first deviation from this fact happens when the susceptible population
is less than 25%, which corroborates our findings on the behavior of the optimal control function.

We conclude this section by presenting the evolution of the disease across the Rio de Janeiro metropolitan area in Fig. 20.
This figure compares three scenarios: the optimal solution of problem (10), a uniform time-varying vaccination strategy
across all cities, and a scenariowith no vaccination.We verify that the optimal solution induces a lower incidence of infections
over the period. Moreover, it brings attention to the fact that smaller cities, such as Nil�opolis, exhibit a higher proportion of
infections under the optimal solution (19% over 56 days) compared to the uniform vaccination strategy (16%), due to the
weighting of population sizes in the cost function (6).

4. Discussion and conclusions

Our research has led to significant advances in comprehending how epidemics behave within general networks of cities
and, in particular, regions that resemble metropolitan areas, especially in relation to the most effective vaccination strategies.
The key achievement of our study is the theoretical analysis of a mathematical model that combines commuting patterns
with constrained optimal control to mimic andmanage the propagation of infectious diseases. The study here presented aims
to offer a realistic representation of disease transmission within densely populated urban regions.

Naturally, variants of the studied model can be considered. For instance, one could take into account the different
commuting times associated with each pair of cities and hence consider coefficients aij, for each i, j ¼ 1, …, K. Another aspect
that could reflect the real world in more detail would be adding to the model the possibility of vaccinating people in their
places of work and evaluating the impact of this compared to vaccinating only in the city of residence.

As mentioned in the text, the application of optimal control in epidemiological models allows us to determine the most
effective strategies for mitigating the impact of disease outbreaks while satisfying resource restrictions. By incorporating
commuting patterns into the model, we could capture the complex dynamics of disease spread in metropolitan areas.
Ignoring them may lead to inaccurate predictions and ineffective control strategies. Moreover, a strategy that does not
consider several cities in its plan is doomed to failure due to mobility.
Fig. 19. Analysis of Effective Vaccination Rates in the Rio de Janeiro Metropolitan Area. The red curve represents the proportion of susceptible individuals in
Rio de Janeiro city, while the gray bars show the number of cities vaccinating when the capital is not. The settings of this experiment are identical to those in
Fig. 18.
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Fig. 20. Disease Progression in the Rio de Janeiro Metropolitan Area under Various Vaccination Scenarios. The graph shows the infection level of each city at
days 7, 24, 40 and 56 from the beginning of vaccination. Total incidence in each subgraph indicates the percentage of infections over the total population in the
indicated period of time. The parameters are the same of Fig. 18. Data sourced from Brazilian Institute of Geography and Statistics (IBGE).
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The literature review highlights the importance of integrating spatial heterogeneity and human/social behavior into
epidemiological models. It also evidences the need for more realistic and detailed models tailored to specific research
questions.

One of the key findings of this work regards the upper and lower bounds for the basic reproduction number, R0, in
particular for the case of a metropolitan region. However, a closed-form expression for it is still an open question since
calculating the spectral radius of a diagonal plus one-rankmatrix remains an open question in linear algebra. We showed that
R0 is close to R1

0 and most influenced by the infection rate in the capital city, b1. Thus, the upper bound may serve as an
estimate forR0. Efficient numerical methods for calculatingR0 were discussed, but they are also open research in the field of
perturbation theory.

The optimal control model possesses mixed control-state and pure-state constraints, in addition to control-affine dy-
namics and cost functional. This complex structure leads to many theoretical and numerical challenges, such as the occur-
rence of singular arcs, the presence of a multiplier that belongs to the space of measures, and others. We are developing the
theoretical aspects related to the optimal control model (10) in another article (some results are already present in Moschen
(2023)).

Our numerical simulations have provided valuable insights into the dynamics of the disease and the effectiveness of
control measures. In particular, they showed that higher vaccination rates in the capital can significantly reduce the number
of infections and the overall impact of the epidemic in the whole metropolitan area. This underscores the importance of
targeted vaccination strategies in controlling disease outbreaks. We also highlighted how the infection rate of the capital
drives most of the dynamics.

In conclusion, this study has contributed to our understanding of epidemic dynamics in metropolitan areas and the role of
optimal control in mitigating disease outbreaks. It has also opened up several interesting directions for future research. As we
continue to grapple with the challenges posed by infectious diseases, studies like this one will be crucial in guiding our
response and ensuring the health and well-being of our communities.
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Appendix A. The basic reproduction number for general compartmental models

We present the calculus of R0 within the framework of a general compartmental model, following the seminal work of
Van den Driessche andWatmough (2002). They focus on autonomous systems, namely, thosewhose right-hand side does not
explicitly depend on t. Let x2Rmþn

�0 (real vectors with non-negative entries) be the number (or proportion) of individuals in
m þ n compartments, where the first m are infected states and the remaining n are non-infected states. The rate of new
infections in the ith infected compartment is denoted by F i, the rate of transfer into the ith compartment (except new in-
fections) by Vþ

i , and the rate of transfer out of the ith compartment by V�
i . The net transfer is then given by Vi ¼ V�

i � Vþ
i . The

disease transmission model consists of the equations

x0i ¼ fiðxÞ ¼ F iðxÞ � V iðxÞ; for i ¼ 1;…;mþ n:

The choice of the infected and non-infected compartments depends on the model's interpretation.
A disease-free state is a state x2Rmþn

�0 such that xi ¼ 0 for i ¼ 1, …, m, and a disease-free equilibrium (DFE) is a disease-free
state that is an asymptotically stable equilibrium. We ensure the model's well-posedness and the existence of such equi-
librium, we make the following assumptions:

1. The transfer of individuals between compartments is non-negative: if x2Rmþn
�0 , then

F iðxÞ;Vþ
i ðxÞ;V�

i ðxÞ � 0:

�
2. There is no transfer out of an empty compartment: if x ¼ 0, then Vi ðxÞ ¼ 0.
3. Non-infected compartments do not receive new infections: F iðxÞ ¼ 0 for i > m.
4. The set of the disease-free states is invariant: if xi ¼ 0 for i ¼ 1, …, m, then F iðxÞ ¼ Vþ

i ðxÞ ¼ 0 for i ¼ 1, …, m.
5. The DFE is stable in the absence of new infections: if FðxÞ ¼ 0 and x0 is a DFE, Df(x0) is a Hurwitz matrix.

From these assumptions and if x0 is a DFE, we obtain that

DFðx0Þ ¼
�
F 0
0 0

�
; DVðx0Þ ¼

�
V 0
J3 J4

�
;

where F is non-negative, V is a non-singularM-matrix and the eigenvalues of J4 have positive real part [32, Lemma 1]. A square

matrix B is an M-matrix if it can be expressed as B ¼ sI � P, where P is a matrix with non-negative elements, and s is a real
scalar such that s � r(P). If s > r(P), then B is a non-singular M-matrix. If s ¼ r(P), it is a singular M-matrix. The matrix FV�1 is
named the next generation matrix for the model and

R0 ¼ rðFV�1Þ; (A.1)
in which r(A) is the spectral radius of the matrix A. The (i, j) entry of matrix FV�1 estimates how many new infections are

expected to arise in compartment i if an infected individual is introduced into compartment j. This definition implies that x0 is
asymptotically stable if R0 <1, but unstable if R0 >1 [32, Theorem 2].
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Appendix A.1. Computing the basic reproduction number for our model

Following the notation of Appendix A, we reorder the compartments as follows:

x ¼ ðI1;…; IK ; S1;…; SK ;R1;…;RKÞ:

The rate of new infections is

F i ¼ abiSiIi þ ð1�aÞSi
XK
j¼1

bjpijI
eff
j ; for i ¼ 1;…;K;

and zero for non-infected compartments. The rate of transfer between compartments is defined as

Vk ¼

8>>><
>>>:

ðgþ mÞIi; 1 � k � K; i ¼ k;

abiSiIi þ ð1� aÞSi
XK

j¼1
bjpijI

eff
j þ mSi � m; K þ 1 � k � 2K; i ¼ k� K;

mRi � gIi; 2K þ 1 � k � 3K; i ¼ k� 2K:

Utilizing the auxiliary result

dIeffk
dIj

¼ pjknj
Peffk

;

we proceed to calculate matrices F and V. The elements of these matrices are given by
Fij ¼ abiSiIidij þ ð1�aÞSi
XK
k¼1

bkpikpjk
nj
Peffk

;

Vij ¼ gþ m;

where dij ¼ 1 if i ¼ j and 0 otherwise. We can represent the matrix F as
F ¼ aSBþ ð1�aÞSPBE�1PTN ¼ S
h
aBþ ð1�aÞPBE�1PTN

i
; (A.2)

where S;N;B and E are diagonal matrices, such that Sii ¼ Si, Nii ¼ ni, Bii ¼ bi and Eii ¼ Peffi . Intuitively, the entry (i, j) of F is the
rate at which infected individuals in city j contribute to new infections in city i. Therefore, the sum

PK A quantifies the total
j¼1 ij
rate of new infections in city i. Then

FV�1 ¼ 1
gþ m

F;

the eigenvalues of FV�1 are the eigenvalues of F divided by g þ m, and R0 ¼ rðFÞ=ðg þ mÞ. We can readily see that matrix F is
equivalent to a symmetric matrix, which implies the following lemma.
Lemma Appendix A.1. The eigenvalues of FV�1 are real
As far as we know, there is no closed-form expression for the spectral radius of F as a function of the parameters of the

model. However, we can simplify equation (A.2) by applying Assumption 1 which defines a specific format for P. Conse-
quently, we calculate that

PBE�1 ¼

2
6666666666666666664

b1

Peff1

0 0 / 0

b1

Peff1

p21
b2

Peff2

p22 0 / 0

b1

Peff1

p31 0
b3

Peff3

p33 / 0

« « « 1 «

b1

Peff1

pK1 0 0 /
bK

PeffK

pKK

3
7777777777777777775

and, subsequently,
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PBE�1PTN ¼ b1

Peff1

ppTN þL;

where p ¼ ð1; p21;…; pK1Þ and L ¼ diagðbkpkkð1� dk1ÞÞk¼1;…;K , with Peffk ¼ pkknk for k > 1. Therefore, we can express the
matrix F from (A.2) as

F ¼ S
"
aBþ ð1� aÞ

 
b1

Peff1

ppTN þL

!#

¼ S½aBþ ð1� aÞL� þ ð1� aÞ b1

Peff1

ðSpÞðpTNÞ;
(A.3)

which is a sum of a diagonal matrix and a product of vectors. The problem of finding the eigenvalues of matrices with this
structure, referred to as diagonal plus rank-one matrix, such as matrix F, is well-known in the literature, and there are specific
algorithms to solve it, such as Golub (1973) and Stor et al. (2015). An inequality for R0 can be computed through Weyl's
inequality by considering this structure.

The unique disease-free equilibrium of system (1) sets Si¼ 1 and Ii¼ Ri¼ 0 for all cities i¼ 1,…, K, which simplifies S to the
identity matrix. In the modified model (5) with a constant vaccination rate in the population, the dynamics of compartments
Ii are unchanged, which leads to the same calculation of the basic reproduction number. However, the disease-free equi-
librium is redefined as

m� mSi
� uiSi

¼ 0 ⟹

¼ m

mþ ui
and Ri ¼

ui
mþ ui

;

besides Ii ¼ 0. Therefore the only change is on the diagonal matrix S.

Appendix B. Proofs

This section includes all the proofs of results given throughout the text.

Proposition Appendix B.1 (Positive Invariance). The set

C :¼ fX2RK�3
�0 : Xi1 þXi2 þXi3 ¼1; for i¼1;…;Kg

is positively invariant under the flow of system (1).
Proof. Firstly, by the smoothness of the system, existence and uniqueness of solution [S(t), I(t), R(t)] in [0, T] such that ½Sð0Þ;

Ið0Þ;Rð0Þ�2C is guaranteed. By the uniqueness, since ~IðtÞ ¼ ~RðtÞ ¼ 0 is also a solution over [0, T], we have Ii(t), Ri(t) � 0 for all
i ¼ 1, …, K. Moreover, notice that

S0iðtÞ � �SiðtÞ
2
4abiIi þ ð1�aÞ

XK
j¼1

bjpijI
eff
j þ m

3
5;

which implies, by Gronwall's Inequality, that

�SiðtÞ � �Sið0Þexp
8<
:�

Z T

0
abiIiðsÞ þ ð1�aÞ

XK
j¼1

bjpijI
eff
j ðsÞ ds� m

9=
; � 0:

This proves the non-negativity of the solution. Finally it is straightforward that for each i, S0iðtÞþ I0iðtÞþ R0iðtÞ ¼ 0, which
implies that Si(t) þ Ii(t) þ Ri(t) ¼ Si(0) þ Ii(0) þ Ri(0) ¼ 1 for all t2 [0, T]. If we consider the parameter a as a constant by parts
function, notice that the result is proven by induction in each interval in which a(,) is constant. ,

Proof of Theorem 2.1. Formula (2) is derived from the basic reproduction number from a simple SIR model. By considering
the expression (A.2) for matrix F, for each 1 � i, j � K,
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Fij ¼ Si

�
abidij þð1�aÞ

�
PBE�1PTN

�
ij

�

¼ Si

"
abidij þð1�aÞ

XK
k¼1

�
PBE�1

�
ik

�
PTN

�
kj

#

¼ Si

"
abidij þð1�aÞ

XK
k¼1

pikbkpjknj = P
eff
k

#
;

where dij ¼ 1 ⇔ i ¼ j and dij ¼ 0 otherwise. Assuming a > 0 and that for all cities Si > 0 and bi > 0, we infer that Fij > 0. This

means that F is a positive matrix and satisfies Perron-Frobenius's theorem. We conclude that there is r > 0 such that r is an
eigenvalue of F and r(F) ¼ r. Furthermore,

min
i

XK
j¼1

Fij � r � max
i

XK
j¼1

Fij:

Calculating,
XK
j¼1

Fij ¼ Si

2
4abi þ ð1� aÞ

XK
j¼1

XK
k¼1

pikbk=P
eff
k pjknj

3
5

¼ Si

2
4abi þ ð1� aÞ

XK
k¼1

pikbk=P
eff
k

XK
j¼1

pjknj

3
5

¼ Si

"
abi þ ð1� aÞ

XK
k¼1

pikbk

#
;

which implies that
min
i

Si

"
abi þ ð1�aÞ

XK
k¼1

pikbk

#
� rðFÞ � max

i
Si

"
abi þ ð1�aÞ

XK
k¼1

pikbk

#
:

At the DFE, where Si ¼ 1 for all cities i, we conclude that
min
i

abi þ ð1� aÞPK
k¼1pikbk

gþ m
� R0 �

max
i

abi þ ð1� aÞPK
k¼1pikbk

gþ m

or, in terms of the basic reproduction numbers of the isolated cities,
min
i

aRi
0 þ ð1�aÞ

XK
k¼1

pikRk
0 � R0 � max

i
aRi

0 þ ð1�aÞ
XK
k¼1

pikRk
0:

PK 1 K
Proof of Corollary 2.1. Immediate since aþ ð1�aÞ k¼1pik ¼ 1 and, therefore, wi is a convex combination of R0;…;R0 . ,
Proof of Theorem 2.2. Following the expression (A.3), rewrite the matrix F as

F ¼ N�1=2S1=2

"
aSBþ ð1�aÞSLþ ð1�aÞ b1

Peff1

S1=2N1=2ppTN1=2S1=2

#
S�1=2N1=2;

which is similar, and therefore has the same eigenvalues, to

F ¼ aSBþ ð1�aÞSLþ ð1�aÞ b1

Peff1

S1=2N1=2p
�
S1=2N1=2p

�T
:

By setting S as the identity matrix (DFE) and utilizing the symmetry of the matrices, we can applyWeyl's inequality to obtain

rðaBþð1�aÞLÞ � rðFÞ � rðaBþð1�aÞLÞ þ ð1�aÞ b1

Peff1

ðN1=2pÞTN1=2p;
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since the only non-zero eigenvalue of a matrix vvT is vTv. We finally set x ¼ r(aB þ (1 � a)L) and calculate ðN1=2pÞTN1=2p ¼PK
i¼1nip

2
i1. ,
Proposition Appendix B.2 (Positive Invariance with control). The region

C ¼ fX2RK�4
�0 : Xi1 þXi2 þXi3 ¼1; for i¼1;…;Kg

is positively invariant under the flow of system (5), for each measurable function u.
Proof. Let u be a measurable function in [0, T] and suppose it assumes values on a compact set U. Since the dynamic is

smooth, there is a unique solution [S(t), I(t), R(t), V(t)] for t 2 [0, T] (Bressan & Piccoli, 2007). As similarly proven for
Proposition Appendix B.1,

�SiðtÞ � �Sið0Þexp
(

�
Z T

0
abiIiðsÞ þ ð1�aÞ

XK

j¼1
bjpijI

eff
j ðsÞ þ uiðsÞ ds� m

)
� 0; (B.4)

for each i ¼ 1,…, K. By uniqueness, Ii(t) � 0 for each i ¼ 1,…, K since the solution cannot cross the solution with no infections.
Moreover, R0iðtÞ � � mRiðtÞ, which results, by Gronwall's Inequality, in

�RiðtÞ � �Rið0Þe�mt � 0:

Finally V 0
iðtÞ � 0 for every t 2 [0, T], which implies Vi(t) � Vi(0) ¼ 0 for every t 2 [0, T]. We conclude by observing that

dðSi þ Ii þ RiÞ
dt

¼ 0 ⟹

¼ ðSi þ Ii þRiÞð0Þ ¼ 1;

for all t > 0 and i¼ 1,…, K. Supposing that U is compact waswithout loss of generality becausewe impose that uiðtÞSiðtÞ � vmax
i

for each i and each t. Therefore,

vmax
i � uiðtÞSiðtÞ

� uiðtÞ min
t2½0;T�

SiðtÞ ⟹

� uiðtÞ � vmax
i

�
min
t2½0;T�

SiðtÞ

and mint 2 [0,T]Si(t) > 0 ⇔ Si(0) > 0 by inequality (B.4). ,
Proof of Lemma Appendix A.1. The matrix F can be rewritten as

F ¼ N�1=2S1=2½aBS þ ð1�aÞS1=2N1=2PBE�1PTN1=2S1=2�S�1=2N1=2;

which is similar, in the sense of matrices, to

aBS þ ð1�aÞS1=2N1=2PBE�1PTN1=2S1=2:

The matrix BS is diagonal, while S1=2N1=2PBE�1PTN1=2S1=2 is symmetric. Therefore F is similar to a symmetric matrix and,
consequently, it is symmetric. Consequently, the eigenvalues of F are real and so are the eigenvalues of FV�1. ,
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Appendix C. Complementary simulations, tables and figures

In this section, we present additional results that are less central to the overall work but may be of interest to the audience.

Appendix C.1. Epidemic values for different structures of the transition matrix

In the context of multiple cities, we consider a scenario of K¼ 5 cities. We first examine five distinct mobility scenarios: (I)
metropolitan area where 10% of the residents of each city work in the capital; (II) metropolitan area where 40% of each city
works in the capital; (III) all cities are interconnected, where 60% of the residents work in their city, while the remaining are
distributed evenly across the other four cities; (IV) a variant of a metropolitan area where 30% of each city's residents work in
the capital and 10% of the capital's workforce is employed in the other cities; (V) no commuting between cities. Our findings
are summarized in Table C2.

Table C.2
Simulation results for different structures of the transitionmatrix: presents the comparison of Peak Size (maximumproportion of infectious individuals),
Peak Day (day of the peak size), Duration (time from epidemic onset to the day when the proportion of infectious individuals achieves 10�5), and Attack Rate
(proportion of individuals who contract the disease during 350 days of the epidemic) across different mobility scenarios. The aggregated column represents
themetrics considering all cities together. For this experiment we b¼ (0.4, 0.25, 0.2, 0.15, 0.1), a¼ 0.64 and population sizes 105 , (50, 10, 10, 1, 1). Lastly, the
initial conditions are I1(0) ¼ I2(0) ¼ I3(0) ¼ 10�4 and no recovered individuals.
Metrics
 Scenarios
 Cities
1221
Aggregated
1
 2
 3
 4
 5
Peak size (%)
 (I)
 27.0
 14.1
 9.3
 5.7
 3.7
 20.5

(II)
 26.3
 18.4
 15.3
 12.5
 10.2
 22.5

(III)
 24.2
 17.3
 14.7
 12.5
 10.2
 21.0

(IV)
 25.5
 17.7
 14.3
 12.7
 9.8
 21.7

(V)
 27.5
 10.9
 4.5
 0.0
 0.0
 19.2
Peak day
 (I)
 39
 53
 55
 52
 49
 40

(II)
 40
 46
 47
 47
 47
 41

(III)
 44
 49
 50
 50
 50
 45

(IV)
 41
 47
 49
 50
 50
 45

(V)
 38
 81
 134
 e
 e
 38
Duration (days)
 (I)
 146
 188
 218
 234
 191
 191

(II)
 145
 164
 170
 172
 166
 157

(III)
 151
 168
 172
 171
 168
 161

(IV)
 147
 167
 175
 167
 164
 160

(V)
 137
 228
 350
 e
 e
 306
Attack rate (%)
 (I)
 91.4
 72.9
 58.1
 37.4
 20.4
 82.5

(II)
 91.2
 77.6
 69.0
 58.3
 47.0
 85.2

(III)
 89.8
 75.5
 67.4
 58.3
 47.9
 83.7

(IV)
 90.7
 76.6
 66.9
 57.5
 44.9
 84.3

(V)
 91.5
 70.6
 50.8
 0.0
 0.0
 80.4
Appendix C.2. Evaluating the impact of the nighttime proportion a

The parameter a, representing the average proportion of the time spent in their home city, was previously shown to not
have a significant impact on R0 in a two-city model. However, in the multi-city framework, its effect on R0 is more pro-
nounced, as depicted in Figure C.21. Interestingly, an increase in a generates higher values forR0 but does not lead to a higher
peak size or attack rate. Another conclusion we draw is that the intensity of the epidemic increases with a higher amount of
time spent in the capital, which occurs when a is closer to 0.

Fig. C.21. Impact of a on the epidemic: We analyze four different epidemiological quantities considering the aggregated population, the peak size (the highest
value in the infectious curve), the peak day (the day when the peak size occurs), the attack rate (the number of individuals who contract the disease after T ¼ 200
days), andR0, as functions of a. The parameters used are based on the setting in Table C2, except for matrix P, where we assume that 20% of each city's population
goes to the capital while the remaining population stays in their home city.
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