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Quercetin supplementation
alters adipose tissue and hepatic
transcriptomes and ameliorates
adiposity, dyslipidemia, and
glucose intolerance in adult
male rats
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Quercetin, a flavonoid present in many fruits and vegetables, exhibits

beneficial effects toward abnormalities related to metabolic syndrome. In

this study, to further investigate metabolic and transcriptomic responses to

quercetin supplementation, we used a genetic model of metabolic syndrome.

Adult male rats of the PD/Cub strain were fed either a high-sucrose diet (HSD;

control PD rats) or HSD fortified with quercetin (10 g quercetin/kg diet; PD-

Q rats). Morphometric and metabolic parameters, along with transcriptomic

profiles of the liver and retroperitoneal fat, were assessed. The relative

weights of epididymal and retroperitoneal fat were significantly decreased in

quercetin-treated animals. Furthermore, a smaller area under the glycemic

curve along with a decreased level of fasting insulin were detected in PD-

Q rats. While no changes in total cholesterol levels were observed, the

overall level of triglycerides decreased in the serum and the liver of the

PD-Q rats. The transcriptomic profile of the liver and the adipose tissue

corroborated the metabolic and morphometric findings, revealing the pattern

consistent with insulin-sensitizing changes, with major regulator nodes being

Pparg, Adipoq, Nos2, and Mir378. In conclusion, quercetin supplementation

improves abnormalities related to metabolic syndrome, namely adiposity,

dyslipidemia and glucose intolerance.
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Introduction

Metabolic syndrome (MetS) represents a cluster of
metabolic abnormalities including central obesity, glucose
intolerance, hypertension, and atherogenic dyslipidemia,
which together greatly increase the risk for cardiovascular
disease or type 2 diabetes (1, 2). Although there have
been various attempts to identify mechanisms for the
underlying pathophysiology of MetS, the complex and
multifaceted origin of the syndrome is yet to be fully
understood (3). The most widely accepted hypothesis
suggests insulin resistance/hyperinsulinemia as the main
pathogenic mechanism (3, 4). However, other mechanisms,
such as central (visceral) adiposity, oxidative stress, and
low-grade chronic inflammation, have also been proposed
to be involved in the development and/or progression of the
syndrome (5–7).

In recent years, MetS has become one of the main
public health concerns associated with enormous social,
personal, and economic hardship (8). As the incidence of
the syndrome increases worldwide, effective intervention
strategies for treating MetS are needed (9). The management
of MetS is usually based on lifestyle changes, particularly in
one’s dietary habits, but must be frequently accompanied
by pharmacological treatment (10). However, current
medication rather aims at treating individual components
of MetS, (e.g., using hypolipidemic, antihypertensive or
antidiabetic drugs), not addressing the complex nature
of the disease (11). A multi-functional drug that would
ameliorate multiple features of the syndrome does not yet exist
to our knowledge.

One of the most widely distributed nutraceuticals in
the human diet is a flavonoid quercetin as it can be found
in various fruits, vegetables, nuts, seeds, and tea (12).
Numerous in vitro and in vivo studies have demonstrated
quercetin’s favorable impact on obesity, dyslipidemia, glucose
intolerance, and hypertension, as well as oxidative stress
and inflammation that both seem to be involved in the
development and progression of the MetS (13–15). This
ability to target numerous components of MetS makes
quercetin a highly potent agent offering a potentially
effective treatment alternative or an add-on to standard
pharmacotherapy (16–18).

In this study, we examined the effect of oral quercetin
administration on morphometric and metabolic parameters
associated with MetS as well as the transcriptomic profiles
of the liver and retroperitoneal fat tissue. For this purpose,
we used an inbred rodent model of MetS that carries
a variant in the Zbtb16 (Zinc finger and BTB Domain
Containing 16) gene that is known to modulate the
propensity for features of MetS including adipogenesis,
insulin sensitivity and dyslipidemia in both humans and rodent
models (19, 20).

Materials and methods

Ethical statement

All experiments were performed in agreement with the
Animal Protection Law of the Czechia and were approved
by the Ethics Committees of the First Faculty of Medicine of
the Charles University (Permit Number: MSMT-19427/2019-
8).

Rat strains

The polydactylous rat [PD/Cub, Rat Genome Database
ID 728161] is a highly inbred strain originated from a
polydactylous pair of random-bred Wistar rat strain. The
strain has not only been exploited as a genetic model of
limb malformation (21, 22) but was established as a model
for MetS as it carries a variant in one of the metabolic
syndrome-related genes, Zbtb16 (23, 24). In addition, the
PD/Cub strain was repeatedly shown to be particularly sensitive
to sucrose diet-induced dyslipidemia and insulin resistance (23,
25). Since 1969, the PD/Cub rat strain has been maintained
at the Institute of Biology and Medical Genetics by brother
x sister mating.

Experimental protocol

Adult male rats of the PD/Cub (PD hereafter) strain were
held under temperature- (23◦C) and humidity- (55%) controlled
conditions on 12-h light/12-h dark cycle and fed a laboratory
chow diet (STD, ssniff RZ, ssniff Spezialdiäten GmbH, Soest,
Germany). At all times, the animals were given free access to
food and water. At the age of 12 months, the animals were
randomly divided into two groups (n = 6/group). Over the
period of 2 weeks, the control group was fed a high-sucrose
diet (HSD, protein (19.6 cal%), fat (10.4 cal%), carbohydrates
(sucrose, 70 cal%) prepared by Institute for Clinical and
Experimental Medicine, Prague, Czechia; PD rats), (26) while
the experimental group was fed a HSD fortified with quercetin
(10 g quercetin/kg food) (Sigma-Aldrich; PD-Q rats). The dose
of quercetin used here was chosen to be similar to the doses used
in previous studies (16, 27). Bodyweight and food intake were
measured twice a week for each group.

Blood samples for metabolic and glycemic assessments
were drawn after overnight fasting from the tail vein.
For the oral glucose tolerance test, blood samples were
obtained at intervals of 0, 30, 60, 90, 120, and 180 min
after intragastric glucose administration to conscious
rats (3 g/kg body weight, 30% aqueous solution). Blood
glucose concentrations over the period of 180 min were
used to calculate the area under the curve. All rats were
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then sacrificed and the weight of heart, liver, kidneys,
adrenals, and brown, epididymal and retroperitoneal
adipose tissue were determined. Biochemical parameters
were determined as follows: serum total cholesterol and
triglycerides concentrations using kits from Erba Lachema
(Brno, Czechia); non-esterified fatty acids using kit from
Roche Diagnostic (Mannheim, Germany); insulin using a rat
insulin enzyme-linked immunosorbent assay kit (Mercodia,
Uppsala, Sweden) and high-molecular weight (HMW)
adiponectin using an ELISA kit (MyBioSource, San Diego,
CA, USA). To determine triglycerides and cholesterol in the
liver tissue, samples were extracted in chloroform/methanol.
The resulting pellet was dissolved in isopropyl alcohol with
the content of the triglycerides determined by enzymatic assay
(Erba-Lachema, Brno, Czechia).

Transcriptomic analysis

Total RNA was isolated from the liver and retroperitoneal
fat (RNeasy Mini Kit, Qiagen, Hilden, Germany). The quality
and integrity of the total RNA were evaluated on Agilent
2100 Bioanalyzer system (Agilent, Palo Alto, CA, USA), and
only samples with RNA Integrity Number (RIN) >8.0 were
utilized in further steps of the protocol. Microarray experiments
were performed using the Rat Gene 2.1 ST Array Strip
in triplicate for each group/tissue combination, i.e., total of
12 arrays were processed. The hybridization procedure was
performed using the Affymetrix GeneAtlas system according
to manufacturer’s instructions. The quality control of the chips
was performed using Affymetrix Expression Console software
(Affymetrix, Santa Clara, CA, USA). Partek Genomics Suite 7
(Partek, St. Louis, MO, USA) was used for subsequent data
analysis. After applying quality filters and data normalization
by Robust Multichip Average (RMA) algorithm, the set of
obtained differentially expressed probe sets was filtered by the
false discovery rate (FDR) method that is implemented in Partek
Genomics Suite 7 (Partek, St. Louis, MO, USA). Only probe
sets with FDR <0.1 and, at the same time, showing >1.2fold
or <−1.2fold difference in expression between the control and
experimental group were subjected to further analyses.

Transcriptomic data were then processed by a sequence
of analyses (hierarchical clustering and principal component
analysis, gene ontology, gene set enrichment, upstream
regulator analysis, mechanistic networks, causal network
analysis and downstream effects analysis) using Ingenuity
Pathway Analysis (Qiagen). The microarray data generated
and analyzed during the current study are available in the
ArrayExpress repository1 under accession number E-MTAB-
11061.

1 https://www.ebi.ac.uk/arrayexpress/

Quantitative real-time PCR

To validate the gene expression data obtained by microarray,
quantitative real-time PCR (RT-qPCR) was performed. The
amount of 1 µg of total RNA was used to synthesize cDNA
using oligo-dT primers and the SuperScript III reverse
transcriptase (Invitrogen, Carlsbad, CA, USA). For validation,
the following sets of TaqMan probes (Thermofisher; Waltham,
MA, USA) were used: ras homolog family member T1 (Rhot1):
Rn01751396_m1, tsukushi, small leucine rich proteoglycan
(Tsku): Rn01506888_g1, acetyl-CoA carboxylase alpha (Acaca):
Rn00573474_m1, ATP citrate lyase (Acly): Rn00566411_m1,
Stonin 1 (Ston1): Rn00788269_m1, regulated endocrine
specific protein 18 (Resp18): Rn00570625_m1, fatty acid
desaturase 1 (Fads1): Rn00584915_m1, 7-dehydrocholesterol
reductase (Dhcr7): Rn00574366_m1. RT-qPCR reaction was
performed in triplicate with TaqMan Gene Expression Master
Mix (Applied Biosystems) according to the manufacturer’s
protocol (Invitrogen, Carlsbad, CA, USA) using Applied
Biosystems 7900HT Real-Time PCR System. Cycle threshold
(Ct) values were normalized by using glyceraldehyde-3-
phosphate dehydrogenase (Gapdh) (TaqMan chemistry,
Applied Biosystems) as a standard. Relative quantification was
performed using the Livak method (28).

Statistical analysis

All statistical analyses were performed in Statistica (data
analysis software system), version 13.5 (TIBCO Software Inc.).
The Shapiro-Wilk and Levene’s tests were used to verify the
normal distribution and homogeneity of variances of the data,
respectively. Morphometric and metabolic variables of the two
groups were compared by unpaired Student t-test where p-value
<0.05 was considered significant.

Results

Morphometric and metabolic profiles

The effects of quercetin on morphometric and metabolic
parameters in PD and PD-Q rats are shown in Table 1. No
differences in rats’ food intake and total body weight during
the experimental period were observed between the two tested
groups. The relative weights of the liver and kidneys did
not differ between PD and PD-Q rats. However, we detected
increased heart and adrenal glands weights in rats after quercetin
treatment (Table 1). In addition, PD-Q rats showed significantly
lower relative weights of retroperitoneal and epididymal fat
(Figures 1A,B), while no change in the weight of brown fat mass
was detected between PD and PD-Q rats.
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The levels of fasting blood glucose did not differ between
PD and PD-Q rats. However, during the oral glucose tolerance
test, PD-Q rats showed lower blood glucose level at the 180th
min (Figure 2A). Furthermore, a smaller area under the
glycemic curve and decreased fasting insulin concentration were
detected in the PD-Q rats in comparison to the control group
(Figures 2B,C).

The levels of adiponectin and free fatty acids did not
differ between PD and PD-Q rats. Although no changes were
detected in the serum and the liver cholesterol (Figure 3B),
quercetin treatment significantly decreased the level of total
triglycerides in the serum as well as in the liver tissue in PD-Q
rats (Figure 3A).

Transcriptomic analysis

The list of all significantly differentially expressed transcripts
in between PD and PD-Q rats in liver and retroperitoneal fat

TABLE 1 Effect of quercetin supplementation on morphometric and
metabolic variables in male PD rats.

Variables PD PD-Q PD x PD-Q

Morphometric variables

Initial body weight (g) 504 ± 13 489 ± 7 0.2

Final body weight (g) 532 ± 12 514 ± 8 0.1

Heart (g/100 g b.wt.) 0.25 ± 0.004 0.28 ± 0.01 0.03

Liver (g/100 g b.wt.) 2.99 ± 0.07 3.15 ± 0.06 0.2

Kidneys (mg/100 g b.wt.) 529 ± 13 542 ± 19 0.6

Adrenals (mg/100 g b.wt.) 10 ± 0.2 12 ± 0.5 0.01

Brown fat (mg/100 g b.wt.) 182 ± 10 193 ± 6 0.4

Metabolic variables

Adiponectin (µg/ml) 2.63 ± 0.17 2.28 ± 0.15 0.3

Non-esterified fatty acids (mmol/L) 0.60 ± 0.04 0.54 ± 0.04 0.3

Variables are mean ± SEM, n = 6/group. PD, control rats; PD-Q, rats supplemented with
quercetin; b.wt., body weight.

tissue is shown in Supplementary Tables 1A,B, respectively.
There was no overlapping transcript between the sets of
differentially expressed genes between adipose tissue and
liver. In the adipose tissue, out of 32 transcripts showing
significantly higher expression in PD-Q compared to PD,
the most upregulated one was glycoprotein M6A (Gpm6a).
On the other hand, only 16 transcripts were downregulated
by quercetin, including microRNA-292, Stonin 1 (Ston1), or
regulated endocrine specific protein 18 (Resp18). The canonical
pathway analysis showed overrepresentation in four pathways,
three of them inhibited - Ferroptosis signaling pathway
(p = 0.011), LPS/IL-1 Mediated Inhibition of RXR Function
(p = 0.016), and mitochondrial dysfunction (p = 0.024);
the only activated canonical pathway was Thyroid hormone
(TR)/RXR pathway activation (p = 0.037). The Diseases and
Functions analysis pointed to the cellular processes in the
adipose tissue most impacted by quercetin administration,
mostly pertaining to the aspects of lipid metabolism, cell cycle,
and the conditions relevant to metabolic syndrome (overweight
disorder, insulin resistance) as shown in Figure 4. The upstream
regulator analysis revealed six potentially activated or inhibited
nodes (Supplementary Table 2A) affecting multiple of the
differentially expressed genes in the adipose tissue. In particular,
activated peroxisome proliferator-activated receptor gamma
(Pparg), adiponectin (Adipoq), and inhibited state of nuclear
receptor subfamily 4 group A member 1 (Nr4a1) formed a
network consistent with the observed gene expression changes
(Figure 4).

The comparison of hepatic transcriptomes of PD and PD-Q
rats revealed only 20 transcripts to be significantly differentially
expressed between the two groups after adjusting for multiple
comparisons. Among the nine downregulated transcripts, the
expression of zinc finger protein 354A (Zfp354a) and tsukushi,
small leucine rich proteoglycan (Tsku) were most reduced by
quercetin, while the genes most induced in livers of PD-Q
vs. PD were ras homolog family member T1 (Rhot1) and
amidohydrolase domain containing 1 (Amdhd1). The canonical

FIGURE 1

Effect of quercetin supplementation on retroperitoneal (A) and epididymal fat (B). Values are mean ± SEM, n = 6/group, * p < 0.05, ** p < 0.01.
PD, control rats; PD-Q, rats supplemented with quercetin; b.wt., body weight.
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FIGURE 2

Effect of quercetin supplementation on blood glucose levels
during oral glucose tolerance test (A), area under the curve
[AUC, (B)] and insulin levels (C). Values are mean ± SEM,
n = 6/group, * p < 0.05, ** p < 0.01, PD, control rats; PD-Q, rats
supplemented with quercetin.

pathway analysis did not reveal any overrepresented pathways
in the liver based on the differentially expressed genes, most
likely also due to their relatively low number. The Diseases and
Functions analysis showed that quercetin affected the processes
related to hepatocyte morphology, metabolic syndrome, cell
cycle, RNA post-transcriptional gene silencing, and fatty
acid metabolism (Figure 4). The upstream regulator analysis
predicted inhibition of a proto-oncogene Ets1 and of microRNA
Mir378 (Supplementary Table 2B). The expression of a selected
subset of genes was validated by qPCR; in all cases, the
differences in expression were corroborated (Supplementary
Figure 1).

Discussion

Metabolic syndrome (MetS) is a combination of
cardiometabolic abnormalities, such as central obesity,
hypertension, glucose intolerance and dyslipidemia, correlated
with an increased risk for type 2 diabetes, cardiovascular
disease, and all-cause mortality (2, 3). Quercetin, found
naturally in numerous fruits and vegetables, is one of
the most abundant flavonoids in the human diet (12).
Extensive evidence has demonstrated its favorable impact
on human health, including various features of MetS,
such as obesity, glucose intolerance and dyslipidemia
(17). In this study, we investigated the effects of quercetin
on morphometric and metabolic parameters, as well
as transcriptomic profiles in a highly inbred genetic
rat model of MetS.

Even though the exact etiopathogenetic factors leading
to the development of MetS remain to be elucidated, some
investigators believe that an excess of abdominal (visceral) fat,
being the most prevalent aspect of the syndrome, plays a major
role in the process (3, 29). Quercetin has been previously shown
to exert an anti-obesity effect due to its anti-inflammatory
and antioxidant properties, thus decreasing abdominal fat mass
and abdominal circumference (30–32). Likewise, in our study
rats supplemented with quercetin showed lower weights of
retroperitoneal and epididymal fat mass, both of which are
considered a visceral fat. However, no changes in total body
weight were detected between the two tested groups. Moreover,
we detected an increased weights of the heart and adrenal tissues
in quercetin treated rats compared to controls.

Individuals with increased visceral fat deposition also
typically evince insulin resistance and hyperinsulinemia,
resulting in impaired glucose tolerance (33, 34). In this
study, we detected a significant decrease in the fasting insulin
levels along with a lower postprandial blood glucose level
at 180th min of the oral glucose tolerance test and smaller
area under the glycemic curve in rats treated with quercetin.
All these findings were expected based on extensive evidence
demonstrating strong antidiabetic effect of quercetin in both
animals and humans (14, 35, 36). In addition, some studies
also described its possible beneficial effect in a prevention
and treatment of long-term complications of diabetes, such
as retinopathy, nephropathy, neuropathy, or atherosclerosis
(36–39). Antidiabetic mechanisms of action of quercetin are
pleiotropic and involve reducing insulin resistance, promoting
insulin secretion, as well as inhibiting glucose absorption in
the small intestine and/or improving glucose utilization in
peripheral tissues (14, 40). Furthermore, quercetin also protects
pancreatic β-cells against damage, preserves their mass and
function, and stimulates regeneration of β-cells (41, 42).

Atherogenic dyslipidemia, namely high triglycerides and
low HDL-cholesterol levels, is an integral component of MetS
and a major risk factor for developing cardiovascular diseases
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FIGURE 3

Effect of quercetin supplementation on the triglycerides (A) and cholesterol (B) levels in the serum and the liver tissue. Values are mean ± SEM,
n = 6/group, ** p < 0.01, ns, not significant. PD, control rats; PD-Q, rats supplemented with quercetin.

(43, 44). Although quercetin seems to have a favorable effect
toward normalizing blood lipid levels, the results are not
consistent. Many studies report very little or no improvement
in lipid levels after quercetin administration (45, 46). In this
study, we detected no significant changes in total cholesterol
and free fatty acid levels. However, the level of triglycerides
(TG) greatly decreased in the serum as well as in the liver of
rats treated with quercetin. Some other studies also support
these findings confirming the ability of quercetin to decrease
TG levels, while total cholesterol levels remained unchanged or
even increased at the end of the experimental period (46, 47).
Several mechanisms leading to a decrease in the TG levels were
described, such as increased TG-derived uptake of fatty acids
by white adipose tissue as a consequence of browning and/or
modulating gut microbiota (48, 49). Further studies are needed
to fully elucidate the effect of quercetin on blood lipids levels and
its clinical relevance.

One of the most quercetin-downregulated genes in liver was
tsukushi (Tsku). It was identified as an inducible hepatokine,
its deficiency protected mice from high-fat-diet-induced obesity
and metabolic disorders and was connected with reduced
adiposity (50), similarly to the effects observed in quercetin-
fed rats in this study. While the exact function of the most

downregulated hepatic gene, Zfp354a, is not clear, it was found
to have cis-expression quantitative trait locus (eQTL) and, at the
same time, a significant correlation between its expression in
liver or adipose tissue with hepatic TG levels in mouse model
of hepatic steatosis (51). Also, its hepatic expression increases
after ethanol bolus (52). Quercetin-fed rats had substantially
increased expression of a mitochondrial Rho-GTPase, Rhot1,
crucial for mitochondrial trafficking and peroxisomal fission
(53). The nodes identified in upstream regulator analysis of
the retroperitoneal adipose tissue transcriptome revealed the
potentially beneficial shifts in gene expression.

There is ample evidence for the involvement of microRNAs
in both pathogenesis of metabolic syndrome and the favorable
action of quercetin and other polyphenols (54). Here, the
most downregulated transcript by quercetin in the adipose
tissue is Mir292, and in the liver, Mir378 was identified as
an important inhibited upstream regulator. Mir292 belongs
to the microRNA cluster, which is specific to the pluripotent
stem cells and promotes rapid G1/S phase transition within
the cell cycle (55). The observed lower Mir292 expression
may thus reflect the deceleration of the cell cycle in adipose
tissue stem cells in the situation of quercetin-induced fat loss.
Mir378 is encoded within a master metabolic regulator, the
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FIGURE 4

Overrepresented diseases and biological functions based on the differentially expressed genes in retroperitoneal adipose tissue of
quercetin-treated vs. control PD rats in liver (top panel) and retroperitoneal adipose tissue (middle panel). The p-values (Fisher’s exact test)
reflect the overrepresentation of differentially expressed genes in the particular disease and biological functions sets. Bottom panel:
Mechanistic network of predicted upstream regulators (ADIPOQ, NR4A1, and PPARG) based on the dataset of differentially expressed genes in
retroperitoneal adipose tissue of control and quercetin-treated PD rats. The quercetin effect on the expression of genes significantly
differentially expressed is shown in shades of green (downregulation, blue for the predicted state of upstream regulators) or red (upregulation).
All above analyses were performed using Ingenuity Pathways Analysis.

peroxisome proliferator-activated receptor γ coactivator 1β

(PGC-1β), and mice lacking Mir378 were resistant to high-
fat diet-induced obesity and exhibited enhanced mitochondrial
fatty acid metabolism and elevated oxidative capacity of insulin-
target tissues (56). Together with the predicted upregulation
of Adipoq, Pparg and Ppargc1a and downregulation of Nos2
nodes, the overall transcriptome shift corresponds to a gene

expression profile repeatedly associated with amelioration of
insulin resistance (57–60). This could represent the potential
underlying mechanism of the observed insulin-sensitizing
action in quercetin-treated rats.

The limitations of our study include the use of only
adult male rats of a single inbred strain as sex-specific
genetic architecture of MetS and its components (61). The
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experimental design aimed to address the subtle effects of
short-term quercetin administration, therefore, we opted to
perform the experiment while maximizing the homogeneity of
the experimental and control groups. In addition, a single dose
and regimen of quercetin administered to the model animals did
not allow us to assess dosage-dependent effects.

Conclusion

Individual features of MetS, such as adiposity, glucose
intolerance and blood triglycerides levels in rats can
be ameliorated by quercetin. Here, we present crucial
transcriptomic nodes and networks, through which the
quercetin may effectuate its metabolic actions on liver and
adipose tissue. As the prevalence of MetS is still increasing,
dietary supplementation with either purified quercetin or
food rich in quercetin could potentially be an effective
intervention strategy.
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