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Abstract: In this work, trying to avoid difficulty of application due to the irregular filler shapes
in experiments, self-consistent and differential self-consistent methods were combined to obtain a
decoupled equation. The combined method suggests a tenor γ independent of filler-contents being an
important connection between high and low filler-contents. On one hand, the constant parameter can
be calculated by Eshelby’s inclusion theory or the Mori–Tanaka method to predict effective properties
of composites coinciding with its hypothesis. On the other hand, the parameter can be calculated
with several experimental results to estimate the effective properties of prepared composites of other
different contents. In addition, an evaluation index σ′f of the interactional strength between matrix
and fillers is proposed based on experiments. In experiments, a hyper-dispersant was synthesized to
prepare polypropylene/calcium carbonate (PP/CaCO3) composites up to 70 wt % of filler-content
with dispersion, whose dosage was only 5 wt % of the CaCO3 contents. Based on several verifications,
it is hoped that the combined self-consistent method is valid for other two-phase composites in
experiments with the same application progress as in this work.
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1. Introduction

As a consequence of component coordination, composites have come to have wider applications.
It is significant that a composite can be designed with a satisfied coordination according to the special
situation [1–3]. To realize the relation between structure and properties, composite mechanics has been
extensively investigated, not only in terms of preparation and characterization in engineering, but also
modeling and simulation in theory.

In material engineering, there are many experiments that are executed regularly to find the best
composite with the optimized dosage and processing conditions. The dispersion and compatibility of
fillers in a matrix are the most important factors impacting effective properties of composites. Therefore,
the dispersant, coupling agent and surface modifier are used for improving the dispersion and strength
of interphase among different components [4–10]. Different agents need to be designed in special
situations. The toughening and debonding mechanisms [11–13] between the structures and properties
are investigated with the conjecture of strong ligaments [13,14] and micro-cracks [15,16], respectively.
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Regardless of the optimized processing conditions or improved dispersion and compatibility that are
used, efforts should try to obtain a specific microstructure. Meanwhile, there are many methods
of microstructure analysis by measurement techniques to check dispersion or morphology of
fillers [17–19]. Therefore, how the microstructure influences the properties of composites is the
key to designing an excellent composite of given components as well as to increase efficiency of
experiments to save resources.

In theory of micromechanics, the influence of microstructures is characterized by methods
of homogenization [20,21] based on a strong interfacial interaction hypothesis, such as the
self-consistent [20,22], differential self-consistent [23], Mori–Tanaka method [24–27] and generalized
self-consistent [28,29] methods. The microstructure information [30–33], such as shape, orientation
and distribution, of components are reflected by different localized coefficients. Owing to the fact
that microstructure information is difficult to know overall, specially in complicated situations,
the restrictions of effective properties of composites are revealed by the principle of minimum
potential and complementary energy; for instance [34,35], Reuss lower-bound and Voigt upper-bound.
The general estimation method of the effective stiffness of composites is Hashin–Shtrikman calculus of
variations [20,36,37]. In a simple way, most of the properties of composites are estimated by the rule
of mixtures [20,38] and revised by the hybrid effect [39,40] for special conditions. However, several
perfect assumptions of the filler shapes and strength of interphase are far away from engineering
conditions and the numerical iteration of self-consistent methods increases the difficulty to analyze the
properties of materials.

Although the influence of microstructures on the effective properties of composites has been
uncovered in theory, situations such as irregular filler shapes or poor strength of interphase in
engineering are so complicated that the effective properties of composites are hard to predict.
In this paper, the strain localization relations of both self-consistent and differential self-consistent
methods were regarded as identity in the same two-phase material as shown in Section 2. Hence,
two self-consistent methods can be combined to estimate the effective properties of a composite more
conveniently even for the experimental conditions. The solutions of the combined self-consistent
methods were discussed in cases of both anisotropy and isotropy as shown in Section 3. Especially,
a simplified isotropic mixture model of the combined method is applied in experiments as shown in
Section 4, which is the Voigt model when γv = 1 or the Reuss model when γv = Em/Ef. In addition,
an evaluation index σ′f is proposed for evaluating the interactional strength between matrix and fillers.
In experiments, a new hyper-dispersant was synthesized to prepare PP/CaCO3 composites up to
70 wt % of filler-content that is well-dispersed. Verified by comparing with the Mori–Tanaka method,
the FEA confirmed SP model and experiments, it is hoped that the combined self-consistent method is
valid for other two-phase composites in experiments, especially for other particle reinforced composites.
For a valid application of the combined method, the strict processing and careful characterization of a
composite are necessary.

2. Combined Self-Consistent Method

The different dispositions of strain localization relation result in different estimation methods.
The strain localization relation in the representative volume element (RVE) is written as

〈ε〉 f = B f : ε,

where ε is external strain on boundary of composites; 〈ε〉 f is average strain in a filler. The self-consistent
method proposes that fillers put into a matrix which is regarded as a composite with a pending
property as shown in Figure 1. Thus, tensor B f depends on the pending property of a composite and
also the shape or orientation of fillers. Meanwhile, the effective stiffness of a two-phase composite
is characterized by the self-consistent method with C = Cm + v f

(
C f − Cm

)
: B f [20,22]. Hence,

the pending tensor B f is written as
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B f = v−1
f

(
C f − Cm

)−1
:
(
C− Cm

)
, (1)

where the superscript −1 denotes the inverse operation of a tensor; Cm, C f and C are the stiffness
tensor of matrix, filler and composite, respectively; v f is volume fraction of fillers in the composite.
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On the other hand, there is a method of differential self-consistent [23], which the matrix is
replaced gradually by fillers to construct the final composite. The incremental removal-replacement
shows the homogenization relation at stage of content v f as

C
(

v f + dv f

)
= C

(
v f

)
+

dv f

1− v f

[
C f − C

(
v f

)]
: B f , (2)

where the B f depends exactly on the pending property of composite at stage of content v f . Therefore,
substituting Equation (1) into Equation (2), the combined self-consistent equation for two-phase
composite is obtained (

1− v f

)
v f

dC f−v

dv f
= C f−v : C−1

f−m : C f−v − C f−v, (3)

where C f−v = C f − C and C−1
f−m =

(
C f −Cm

)−1
. The boundary condition C f−v

∣∣∣
v f =0

= C f − Cm or

C f−v

∣∣∣
v f =1

= 0 is inherent in Equation (3). The effective stiffness tensor of a composite C is determined by

Equation (3). Especially, this method is good at calculating the situation that B f can be regarded as a state
function of filler-content owing to the identical strain localization relation of both self-consistent methods.

3. Discussion of the Combined Self-Consistent Method

3.1. Solutions of the Combined Equation

3.1.1. The Anisotropic Case

For a general discussion to the combined approach, Equation (3) is solved directly in this section,
which can be linearized by the inverse tensor C−1

f−v at both sides of equation simultaneously. Noting

that C−1
f−v : dC f−v = −

(
dC−1

f−v

)
: C f−v, Equation (3) is transformed as

(
1− v f

)
v f

dC−1
f−v

dv f
= C−1

f−v − C−1
f−m.
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Therefore, the equation becomes a decoupled first-order linear tensor equation. The general
solution is

C−1
f−v = C−1

f−m +
v f

1− v f
α, (4)

where α is a constant tensor where each element is greater than zero. Owing to the flexibility or
stiffness tensor is Voigt symmetric, there is the same symmetry for α, i.e., αijkl = αjikl = αijlk = αklij,
which are just 21 independent constants in the three-dimensional case. Alternatively, Equation (4) is
converted into

C = C f −
(

C f − Cm

)
:

(
I +

v f

1− v f
γ

)−1

, (5)

where the dimensionless parameter γ = α :
(

C f − Cm

)
and I is the unit fourth-order tensor, Iijkl =(

δikδjl + δilδjk

)
/2. The constant tensor γ is more significant than B f because γ does not associate

with filler-contents anymore but still retain the information of different microstructures. This is an
important connection between high and low filler-contents, while low filler-contents case is well-known
by Eshelby's equivalent inclusion theory or the Mori–Tanaka method. For anisotropic two-phase
composites, the tensor B f can be calculated by the constant tensor γ with different filler-content v f

B f =
1
v f

I−
(

I +
v f

1− v f
γ

)−1
, (6)

which is the combination of Equations (1) and (5). The explicit function avoids the numerical iteration
of self-consistent methods. Hereto, the only assumption is the identical strain localization tensor of
both self-consistent methods in the same materials for the above discussion.

For some special cases, when γ = I, Equation (5) can be simplified into

C =
(

1− v f

)
Cm + v f C f ,

and when γ = C−1
f : Cm, Equation (5) can be simplified into

C−1
=
(

1− v f

)
C−1

m + v f C−1
f .

3.1.2. The Isotropic Case

When a two-phase composite can be treated as a macroscopic isotropic material whose fillers are
regarded as different spheres distribution or short-fibers without orientation in statistics, the stiffness
tensors of composite and components are isotropic, i.e., Cijkl = λδijδkl + µ

(
δikδjl + δilδjk

)
as well as

γijkl = γ1δijδkl + γ2

(
δikδjl + δilδjk

)
. Hence, the general solution about λ, µ can be obtained from

Equation (5)  λ =
[(3γ1+2γ2)λ f−λm]v f +λm+

2γ1(1−v f )v f
(2γ2−1)v f +1 (µ f−µm)

(3γ1+2γ2−1)v f +1

µ =
(2γ2µ f−µm)v f +µm

(2γ2−1)v f +1

, (7)

where λ, µ are Lame constants; the labels m, f and bar denote matrix, filler and composite,
respectively. If the definitions of effective modulus E and effective Poisson’s ratio η are allowed,
we can further discuss

E =
λµ

λ + µ
+ 2µ, η =

λ

2
(
λ + µ

) .
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To an excellent approximation, if the difference of Poisson’s ratios of components and composite
is small enough, a simple solution of E can be obtained

E/Em =

(
γvE f /Em − 1

)
v f + 1

(γv − 1)v f + 1
=

(
γwE f /Em − 1

)
w f + 1

(γw − 1)w f + 1
, (8)

where Em, E f and E are the modulus of matrix, filler and composite, respectively. Dimensionless
parameter γv is a constant constrained by γv > 0. Combining with the relation between mass fraction
w f and volume fraction v f , v−1

f − 1 =
(

ρ f /ρm

)
(w−1

f − 1), we can also obtain a relation of composites’
modulus associated with the fillers mass fraction as shown in Equation (8), where γw = γvρm/ρ f .
ρm and ρ f are the density of matrix and filler, respectively. Especially, the isotropic mixture model
Equation (8) can be simplified into E =

(
1− v f

)
Em + v f E f when γv = 1

E−1
=
(

1− v f

)
E−1

m + v f E−1
f when γv = Em/E f

.

Thus, the isotropic mixture model is the Voigt model (in-parallel model) when γv = 1 or the Reuss
model (in-series model) when γv = Em/E f . Meanwhile, the Voigt model and Reuss model are the
upper-bound and lower-bound of the effective modulus of a composite, respectively [34,35]. Hence,
the value of γv is restricted in Em/E f ≤ γv ≤ 1.

3.2. Verifications of These Solutions

3.2.1. Comparison with the Mori-Tanaka Method

The Mori-Tanaka method considers the interaction among fillers. The strain localization tensor of

a two-phase composite is written as BMT = γ0 :
[(

1− v f

)
I + v f γ0

]−1
[27,31] with

γ0 =
[
I + Es : C−1

m :
(

C f − Cm

)]−1
, (9)

where Es is the Eshelby’s tensor associated with filler shapes, which has the explicit formula only
for the regular filler shape [41]. γ0 is determined by the properties of components and the way of
combination. Moreover, this strain localization tensor can be presented as

I =
[(

1− v f

)
I + v f γ0

]
:
[(

1− v f

)
I + v f γ0

]−1

=
(

1− v f

)[(
1− v f

)
I + v f γ0

]−1
+ v f BMT

=
(

I +
v f

1−v f
γ0

)−1
+ v f BMT .

Hence the strain localization tensor of Mori-Tanaka method of two-phase composites is

BMT =
1
v f

I−
(

I +
v f

1− v f
γ0

)−1
.

The form of this formula is similar to Equation (6). It implies a nice connection between the
combined approach and Mori–Tanaka method. But the set of γ0 is only a subset of γ. The parameter
γ comes from the process of combined equation without any restriction but just a constant tensor
related to the properties of raw materials. Therefore, the combined approach suggests that γ0 can be
shifted to another constant tensor γ even if there is not Equation (9) anymore. These indicate more
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widely applications of the combined method. More accurate estimation depends on how to evaluate
the parameter γ.

For discussing the connection between the combined self-consistent method and Mori–Tanaka
method, the brackets of Equation (6) are expanded and we get a simple relation γ = lim

v f→0
B f . In a

significant special case that single ellipsoidal filler embeds in an infinite matrix, the Eshelby equivalent
inclusion theory shows

γ = lim
v f→0

B f = γ0.

It should be noticed that the physical meaning of the limit process is ambiguous. For instance,
if B f is continuous at v f = 0, thus γ = lim

v f→0
B f = B f (0) = I. This is the Voigt upper-bound as shown

in special case of Section 3.1.1. If there is a single ellipsoidal filler in the infinite matrix, the conclusion
is Equation (9). If there are several fillers close enough in a large matrix that the interaction of fillers is
appreciable, or say aggregation, the meaning of γ is not obvious, but it also coincides with the limit
process. Hence, the relation, γ = lim

v f→0
B f , is just a kind of special situation, which is convenient but

unnecessary for a theoretic discussion. Ultimately, no matter how many filler-contents are, γ should
be determined by Equation (6) if B f is known first.

3.2.2. Comparison with the SP Model

J.F. Tan et al. [38] establish a series-parallel mixture model (SP model) for particle reinforced
composites. For the spherical fillers, the relation of γv related to the properties of components can be
simplified from Equation (9) with the spherical hypothesis in Es

γv =
15(1− η)

(8− 10η)E f /Em + (7− 5η)
, (10)

where η ≡
(

η ≈ ηm ≈ η f

)
is Poisson’s ratio restricted in −1 < η < 0.5 only for isotropic materials.

Similar to the fitted SP model, Equation (10) is regarded as a fitting relation with fitted parameter
η = 0.01, which is allowed when γv is constant for volume fraction v f as discussed in Section 3.2.1.
Comparing the isotropic mixture model Equation (8) and its parameter Equation (10) with the SP
model that is confirmed by the finite element analysis (FEA), the results are shown in Figure 2a,b.
It indicates the adaptability of the isotropic mixture model Equation (8) to the particle reinforced
composites. If Poisson’s ratios of the matrix and filler are considerably different, the more accurate
discussion should rely on Equation (7).
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4. Applications in Experiments

In theory, there is often a hypothesis of strong interfacial interaction for the convenience of the
FEA calculation or establishment of homogenization methods. The strong interfacial interaction of
given components insures the best practical level of prepared composites. Thus, our experiments are
facing two main big problems, a better dispersion and compatibility of filler in matrix to close the
theoretical hypothesis. Therefore, a hyper-dispersant was designed for the PP/CaCO3 composite. And
we checked the dispersion of CaCO3 with scanning electron microscopy (SEM).

4.1. Experiments

4.1.1. Synthesis of Polyethylene Polyamine Hyper-Dispersant: Polyethylene Polyamine Grafted
Poly(12-Hydroxy Stearate) (PEPA-g-PHS)

(i) 12-hydroxy stearic acid (300 g) and p-toluene sulfonic acid (3.75 g) were added into a 500 mL
three-neck round bottomed flask with a stirrer and thermometer. Heated to 130 ◦C under continuous
vacuuming and stirring after reactants melt completely, the reaction was held for 5 h. Products were
dried in an oven at 60 ◦C until constant weight after finishing the reaction. (ii) the products (200 g) of (i),
polyethylene polyamine (9.4 g) and triphenylphosphine (2.6 g) were added into a 500 mL three-necked
round bottomed flask with a stirrer and thermometer. Heated to 130 ◦C, the reactants were stirred
under an atmosphere of N2 for 6 h. Finally, products were preserved. The typical procedure of
preparing PEPA-g-PHS was described in Figure 3. All reagents and chemicals were used without
further purification. The characterization of FT-IR, Optical photographs and the Tu-4 cup viscosity of
PEPA-g-PHS are shown in Appendix A.
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4.1.2. Preparation of the PP/CaCO3 Composites

PP (PPH-T03, Standard: Q/SHPRD253-2009, with a melt flow rate (MFR) of 1.31 g·(10 min)−1

(at 200 ◦C, 10 kg) and a density of 0.88 g·cm−3) and CaCO3 (Light calcium carbonate of edible
grade, Standard: GB1898-2007, with 1500 mesh and a density of 2.47 g·cm−3) used in this work were
commercially available. Before preparation of composites, all the raw materials were dried in an oven
at 60 ◦C. In this work, the addition of PEPA-g-PHS was 5 wt % of the CaCO3 contents to modify CaCO3

particles. The contents of modified CaCO3 were w f varied from 0 to 70 wt % in PP/CaCO3 composites,
i.e., contents of PP were 1− w f . The modified CaCO3 and PP were processed through a co-rotating
twin-screw extruder (TLE16-4). The melt temperature was set to 200 ◦C, and the screw speed was
maintained at 65 rpm. The mixture was pelleted and dried. Then the pellets were shaped by the
injection molding machine (TW-25V-1S) with 200 ◦C to obtain the standard specimen, which the mold
temperature was maintained at room temperature.
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4.1.3. Test Procedure and Characterization of PP/CaCO3 Composites

Mechanical properties of the composites were measured by uniaxial tension and three-point
bending with an electronic universal testing machine (SUNS UTM14483) according to the tensile test
standard GB/T 1040.2-2006 and the bending test standard GB/T 9341-2008, respectively. The tensile
speed was 20 mm·min−1 and the bending speed was 2 mm·min−1. All tests of specimens were
carried out at room temperature and all experimental data were processed in Origin 9.0.0 (OriginLab,
Northampton, MA, USA) and MTLAB R2012b (MathWorks, Natick, MA, USA) in this paper.

Field emission scanning electron microscopy (FE-SEM, JSM-6701F, JEOL, Tokyo, Japan) was used
to characterize the impact-fractured surface morphologies of specimens with an accelerating voltage
of 3.0 kV. The impact fracture surfaces were coated with a thin layer of gold to avoid the accumulation
of charge. As shown in Figure 4, there is more rough fracture surface with higher filler-contents and
more particles that can be seen. The micron-level particles separate from each other, which shows
dispersion of CaCO3 particles even for higher filler-contents except a few aggregations shown in the
box of Figure 4f.
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4.2. Applications of the Combined Self-Consistent Method

4.2.1. The Variation Tendency of Moduli

Although the influences of microstructures on the effective properties of composites have been
uncovered in a lot of simple conditions, the effective properties of composites in engineering are still
hard to predict. In experiments, the hypothesis is often violated even if the simplest particles are
irregular as shown in Figure 4. If there are complex shapes, Equation (10) is incorrect and not a simple
formula anymore but γv is still a constant based on the combined self-consistent method. Therefore,
the certain expression of γ (γv) with many hypotheses may not be relevant in experiments; but we
know that γ (γv) is only related to the properties of both matrix and filler including parameters of the
shape. Thus, the γ (γv) is regarded as a whole determined by several experimental data. And then we
estimate the effective properties of composites of other v f based on the determined parameter γ (γv).
This progress is applied to both tensile and bending moduli because they are no essential differences
in theory. For instance, both moduli are equal to each other in theoretical conditions but affected by
the different test conditions in experiments [42].

For instance of an application, we use the simplest Equation (8) for an isotropic material. If we
selected the filler and matrix according to the basic condition of the formula, the two values of E f
and Em were certain. These two materials were strictly processed into a composite with the volume
fraction v f = v0. Testing the composite based on the testing standard, we obtained an experimental
value of its modulus, E = E0. Hence, the value of γv was obtained by a single valid experiment

γv =

(
1− v0

v0

)(
E0 − Em

E f − E0

)
,

then substituted back into Equation (8). Hence the effective properties of different volume fraction
composites were evaluated. More accurately, we can carry out more valid experiments whether the
volume fraction is the same or not, or utilize more accurate model such as Equation (7). To fit these
experimental data, the parameters of the model are determined. It is recommended by executing
different volume fraction experiments with uniform distribution. For a discussion of anisotropy,
Equation (5) should be employed. The γ can be determined as long as there is at least one experimental
datum of

(
v f , C

)
to calculate. The fourth-order tensor is often converted into a square matrix

according to a certain procedure (Voigt notation) for exhibiting the anisotropic material constants in
engineering [43]. It is worthwhile to note that all of these discussions are based on the dispersion and
compatibility of filler in matrix, which is the guarantee of valid application of the combined method.
Hence, the strict processing and careful characterization of a composite are necessary in experiments.

The presence of CaCO3 enhances the modulus of PP in terms of both tension and bending as is
shown in Figure 5a. It presents obvious relations, that the moduli of both tension and bending increase
with contents of modified CaCO3 in experiment. As shown in SEM images in Figure 4e,f, the CaCO3

particles are irregular and distributed. For convenience, the PP/CaCO3 composites were treated as
isotropic materials, where the shape of CaCO3 particles is random without orientation in statistics.
Hence, according to the discussion of Section 3.1.2, Equation (8) is employed as being an approximate
model when the differences of Poisson’s ratios of both components and composite are ignored. For a
more accurate model in Equation (7), the differences of Poisson’s ratios of components are considered
and the common values, ηm = 0.41, η f = 0.30, are used.

As shown in Figure 5a, experiments conform well with both isotropic models. The fitting
results of both isotropic models are shown in Table 1. According to Figure 5a,b, the difference of
estimated effective modulus of the PP/CaCO3 composites is small (~3.83%) between the accurate and
approximate models. The approximate model is much simpler but the accurate model can discuss the
change tendency of effective Poisson’s ratios whose difference is ignored by the approximate model.
Experiments conform well to the theory, which is an indirect demonstration about a well-dispersion of
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CaCO3 benefited by the PEPA-g-PHS; it is also demonstrated by the elongation at break and typical
stress-strain curves of different contents PP/CaCO3 composites as shown in Appendix B.

Polymers 2018, 10, 101 9 of 16 

 

For instance of an application, we use the simplest Equation (8) for an isotropic material. If we 
selected the filler and matrix according to the basic condition of the formula, the two values of 𝐸𝐸𝑓𝑓 
and 𝐸𝐸𝑚𝑚 were certain. These two materials were strictly processed into a composite with the volume 
fraction 𝑣𝑣𝑓𝑓 = 𝑣𝑣0. Testing the composite based on the testing standard, we obtained an experimental 
value of its modulus, 𝐸𝐸� = 𝐸𝐸�0. Hence, the value of 𝛾𝛾𝑣𝑣 was obtained by a single valid experiment  

𝛾𝛾𝑣𝑣 = �
1 − 𝑣𝑣0
𝑣𝑣0

� �
𝐸𝐸�0 − 𝐸𝐸𝑚𝑚
𝐸𝐸𝑓𝑓 − 𝐸𝐸�0

�,  

then substituted back into Equation (8). Hence the effective properties of different volume fraction 
composites were evaluated. More accurately, we can carry out more valid experiments whether the 
volume fraction is the same or not, or utilize more accurate model such as Equation (7). To fit these 
experimental data, the parameters of the model are determined. It is recommended by executing 
different volume fraction experiments with uniform distribution. For a discussion of anisotropy, 
Equation (5) should be employed. The 𝜸𝜸  can be determined as long as there is at least one 
experimental datum of �𝑣𝑣𝑓𝑓,𝑪𝑪�� to calculate. The fourth-order tensor is often converted into a square 
matrix according to a certain procedure (Voigt notation) for exhibiting the anisotropic material 
constants in engineering [43]. It is worthwhile to note that all of these discussions are based on the 
dispersion and compatibility of filler in matrix, which is the guarantee of valid application of the 
combined method. Hence, the strict processing and careful characterization of a composite are 
necessary in experiments. 

The presence of CaCO3 enhances the modulus of PP in terms of both tension and bending as is 
shown in Figure 5a. It presents obvious relations, that the moduli of both tension and bending 
increase with contents of modified CaCO3 in experiment. As shown in SEM images in Figure 4e,f, the 
CaCO3 particles are irregular and distributed. For convenience, the PP/CaCO3 composites were 
treated as isotropic materials, where the shape of CaCO3 particles is random without orientation in 
statistics. Hence, according to the discussion of Section 3.1.2, Equation (8) is employed as being an 
approximate model when the differences of Poisson's ratios of both components and composite are 
ignored. For a more accurate model in Equation (7), the differences of Poisson's ratios of components 
are considered and the common values, 𝜂𝜂𝑚𝑚 = 0.41, 𝜂𝜂𝑓𝑓 = 0.30, are used.  

 
Figure 5. (a) Variation tendencies of moduli; (b) comparison of two isotropic models and the 
variation tendency of effective Poisson's ratio. 

As shown in Figure 5a, experiments conform well with both isotropic models. The fitting results 
of both isotropic models are shown in Table 1. According to Figure 5a,b, the difference of estimated 
effective modulus of the PP/CaCO3 composites is small (~3.83%) between the accurate and 
approximate models. The approximate model is much simpler but the accurate model can discuss 
the change tendency of effective Poisson's ratios whose difference is ignored by the approximate 
model. Experiments conform well to the theory, which is an indirect demonstration about a 
well-dispersion of CaCO3 benefited by the PEPA-g-PHS; it is also demonstrated by the elongation at 

Figure 5. (a) Variation tendencies of moduli; (b) comparison of two isotropic models and the variation
tendency of effective Poisson’s ratio.

Table 1. The values of fitting parameters of two isotropic models.

Parameters
Approximate Model Accurate Model

γv Adj. R2 γ1 γ2 Adj. R2

Tension 0.0057 0.9768 0.0069 0.0073 0.9886
Bending 0.0149 0.9815 0.1408 0.0170 0.9748

4.2.2. The Variation Tendency of Yield Strength

The spherical filler suffers most of stresses according to Figure 6a of FEA with a considerably
fine mash when there is a strong interfacial interaction [38]. It should have a well-reinforced effect
benefited by the higher yield strength σf of CaCO3. However, the yield strengths of both tension and
bending decrease with contents of modified CaCO3 in experiments as shown in Figure 7.
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It is distinct from the modulus of a material that the strength is displayed at yield point where
the composite structure has been changed. Because there is often a poor interphase strength in
our experiments, the PEPA-g-PHS is just adsorbed on the surface of CaCO3 particles and relied
on the intermolecular forces. The adsorption is not strong enough to sustain tension stress. Thus,
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the micro-crack is generated at a two-phase interface by the external stress imagining in Figure 6b.
As shown in Figure 4d,e (with arrows), lots of voids and cracks can be clearly observed. It is
hypothesized that the micro-cracks were generated during the impact test and then expanded
completely so that the micro-particles are exposed out of the PP matrix.
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Therefore, the yield strength is reflected by the strength of interphase σg instead of σf (g denotes the
interphase). The CaCO3 fillers replaced the space of PP in the composites and suffered the stress which
only reached up to σg then the micro-crack was generated. Hence, according to the Voigt model (the rule
of mixtures) and considering the hybrid effect h, the yield strength of the composite σ is described by

σ =
(

1− v f

)
σm + v f σg + h

(
v f

)
, (11)

where σm is the yield strength of PP matrix. The yield strength of the composite is a nice linear
relation whose slope is a constant K according to the experimental results as shown in Figure 7b. Thus,
dh/dv f = K − σg + σm = σh, which is constant for CaCO3 contents. Combining with Equation (11)
and σ|v f =0 = σm, the yield strength is characterized by

σ = σm + (σ′f − σm)v f , (12)

where σ′f = σg + σh is termed by modified yield strength of CaCO3. The fitting results of Equation (12)
are shown in Table 2. It indicates that the enhancement of a composite should make sure σ′f > σm,
which is benefited by a well-dispersed effect and strong interfacial strength. σ′f is an evaluation index
of the interactional strength between matrix and filler. In addition, if there is a negligible hybrid effect
with different contents, the modified yield strength is the same as the yield strength of interphase
σ′f = σg. Of course, the σ′f may be changed with different contents of fillers in other cases reflected
in σh, where the yield strength of composites σ is not a linear relation with contents v f anymore.
Furthermore, in case of multifold fillers, regarding σ as σm when a new filler was joined, Equation (12)
can be extended as (Proven in Appendix C)

σ = σm +
n

∑
i=1

(σ′f i − σm)v f i,

where n is the kinds of fillers and vm +
n
∑

i=1
v f i = 1. v f i and σ′f i are the volume fraction and modified

yield strength of each kind of filler, respectively. σ′f i is the evaluation index of the interactional strength
between matrix and ith filler in condition of uniaxial tension or three-point bending.
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Table 2. The value of fitting parameter of model.

Parameters σ′f (MPa) Adj. R2

Tension 24.7957 0.9881
Bending 31.4176 0.9787

5. Conclusions

In this work, the strain localization coefficient B f is formulated by a tensor γ independent of
filler-contents based on the only hypothesis that self-consistent and differential self-consistent methods
have an identical strain localization relation in the same materials. Hence, a combined self-consistent
method was introduced to estimate the effective properties of two-phase composites. Both anisotropic
solution Equation (5) and isotropic solution Equation (8) of the combined method are given and
discussed in detail, which are verified by comparing with the Mori–Tanaka method and with the
FEA confirmed SP model, respectively. Isotropic solution Equation (8) with just one parameter γv

conforms well to the experimental data of polypropylene/calcium carbonate composites, which
indicates an effective application of the combined self-consistent method to describe the modulus of a
composite even for the irregular filler shapes or poor strength of interphase. Moreover, an evaluation
index σ′f of the interactional strength between matrix and fillers is proposed based on experiments,
which provides a quantitative method to select different surface modifiers (σ′f > σm). In experiments,
a hyper-dispersant (PEPA-g-PHS) was synthesized successfully to prepare PP/CaCO3 composites up
to 70 wt % of filler-content with dispersion confirmed by SEM, where the dosage of PEPA-g-PHS was
only 5 wt % of the CaCO3 contents.
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Appendix A

Fourier-transform infrared spectra (FT-IR) were record on a Nicolet 470 spectrophotometer using
KBr pellets at room temperature over the range of FT-IR 4000–500 cm−1. The viscosity of PEPA-g-PHS
was measured using a Tu-4 cup (LND-1). Leveling the Tu-4 cup and keeping in thermostat with 25 ◦C,
it was filled up with the PEPA-g-PHS without bubbles. The time measurement was started at the
moment of turning on valve and ended at the moment of filament line broken.

The FT-IR spectra of 12-HSA, PHS, PEPA, and PEPA-g-PHS were shown in Figure A1a. There
are the characteristic absorption bands of the 12-HSA at 1700 cm−1 (C=O stretching), 1125 cm−1

(C–O stretching), and 3457 cm−1 (O–H stretching) in spectrum. In addition, the in-plane and
out-plane bending vibration of hydroxyl group (–OH) at the peaks of 1435 and 923 cm−1 are presented,
respectively. The relevant peaks of the hydroxyl groups of 12-HSA at about 3457, 1435, and 923 cm−1

disappear in the spectrum of PHS. As well as the peaks of C=O stretching and C–O stretching of
ester group at 1732 and 1175 cm−1 appear in the spectrum of PHS, respectively. It indicated that
the esterification reaction among 12-HSA itself was sufficient and ester group was generated. PEPA
is characterized by the absorption bands at 1577 cm−1 (–NH– stretching) and 1309 cm−1 (–NH2

stretching). In the spectrum of PEPA-g-PHS, the relevant peaks of the amino group of PEPA at
1577 and 1309 cm−1 disappear while the peak of C=O stretching of acylamino at 1649 cm−1 and
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N–H stretching of acylamino at 1557 cm−1 are presented. It indicated that the primary amine and
secondary amine were reacted and acylamino group was generated. Hence, the results indicated
that PEPA-g-PHS was synthesized successfully. Meanwhile, the optical photographs of 12-HSA, PHS,
PEPA, and PEPA-g-PHS are shown in the Figure A1b. And results of Tu-4 cup viscosities of ingredients
are shown in Table A1. The viscosities of ingredients should be converted according to the outflow
time that is constrained within 150 s. The time of outflow of PEPA-g-PHS is far beyond 150 s. Thus,
there is just a qualitative realization about the viscosity of PEPA-g-PHS according to the outflow time
of PEPA, PHS and PEPA-g-PHS, which is obviously reflected in its order of magnitude.
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Table A1. The Tu-4 cup viscosities of PEPA, PHS and PEPA-g-PHS.

Ingredients PEPA PHS PEPA-g-PHS

Time (s) 75.3 628.7 4471.5

Appendix B

Figure A2 shows the typical tensile and bending stress-strain curves of different content
PP/CaCO3 composites. Figure A3 exhibits the influence of CaCO3 contents to the maximum strength
and the elongation at break of composites. Maximum strength was obtained from the maximum value
of yield strength and breaking strength.
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Appendix C

The Vf i and σ′f i denote the volume fraction and modified strength of a new joined filler,
respectively. As well as σi is the strength of the generated composite (the new composite) while
σi−1 is of the old one. According to Equation (12), we obtain

σi = σi−1 + (σ′f i − σi−1)Vf i.

This is a recursion formula started with σ1 = σm + (σ′f 1 − σm)Vf 1. Therefore

σn = σm

n

∏
i=1

(1−Vf i) +
n

∑
j=2

σ′f (j−1)Vf (j−1)

n

∏
i=j

(1−Vf i) + σ′f nVf n,

and mark

v f (j−1) = Vf (j−1)

n

∏
i=j

(1−Vf i), v f n = Vf n,

where v f j (j = 1, 2, . . . , n) is exactly right at the volume fraction of the jth filler in the final composite
that contains n kinds of fillers. Meanwhile

v f (j−1) =
n

∏
i=j

(
1−Vf i

)
−

n

∏
i=j−1

(
1−Vf i

)
.

Thus
n

∑
j=2

v f (j−1) =
(

1−Vf n

)
−

n

∏
i=1

(
1−Vf i

)
,

σn = σm +
n

∑
j=2

[
σ′f (j−1) − σm

]
v f (j−1) + (σ′f n − σm)v f n.

Thereby

σ = σm +
n

∑
i=1

(
σ′f i − σm

)
v f i, vm +

n

∑
i=1

v f i = 1.
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