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In vitro discovery of promising 
anti-cancer drug combinations 
using iterative maximisation of a 
therapeutic index
M. Kashif1, C. Andersson1, S. Hassan1, H. Karlsson1, W. Senkowski1, M. Fryknäs1, 
P. Nygren2, R. Larsson1 & M.G. Gustafsson1

In vitro-based search for promising anti-cancer drug combinations may provide important leads to 
improved cancer therapies. Currently there are no integrated computational-experimental methods 
specifically designed to search for combinations, maximizing a predefined therapeutic index (TI) 
defined in terms of appropriate model systems. Here, such a pipeline is presented allowing the 
search for optimal combinations among an arbitrary number of drugs while also taking experimental 
variability into account. The TI optimized is the cytotoxicity difference (in vitro) between a target 
model and an adverse side effect model. Focusing on colorectal carcinoma (CRC), the pipeline 
provided several combinations that are effective in six different CRC models with limited cytotoxicity 
in normal cell models. Herein we describe the identification of the combination (Trichostatin A, 
Afungin, 17-AAG) and present results from subsequent characterisations, including efficacy in primary 
cultures of tumour cells from CRC patients. We hypothesize that its effect derives from potentiation 
of the proteotoxic action of 17-AAG by Trichostatin A and Afungin. The discovered drug combinations 
against CRC are significant findings themselves and also indicate that the proposed strategy has 
great potential for suggesting drug combination treatments suitable for other cancer types as well as 
for other complex diseases.

The development of a malignant tumour is generally associated with great complexity at the molecular 
level including the rewiring of different signal transduction pathways and biochemical feedback loops. 
This fact has made it widely accepted that in many cases a single drug treatment cannot produce the 
desired therapeutic effect1,2. Drug combinations are attractive owing to their lower propensity to trigger 
drug resistance (due to non-overlapping mechanisms of action) and side effects including adverse actions 
(due to lower dosage levels)3,4. Moreover, the use of combinations includes prospects of replacing some 
of the current, most expensive anti-cancer therapies by much cheaper drug cocktails. However, the huge 
space of possible compound mixtures is still largely unexplored and there is currently very slow progress 
in discovering novel, successful combination therapies for cancer.

A few combinations are indeed frequently used in the treatment of cancer, but such regimens are 
mostly based on empirical observations with agents already known to be effective in the disease rather 
than on well-defined and valid design criteria. The quite limited combination testing performed so far 
has covered a tiny fraction of all possible combinations and is therefore unlikely to result in selection 
of the optimal combinations among the huge number of possibilities5–7. Even in the current era of high 
throughput screening (HTS), the greatest challenge to achieve a successful, cost-effective search is the 
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exponential growth in the possible number of drug and concentration combinations. Therefore, a proce-
dure for successful discovery of multi-component therapies requires an semi-automated pipeline of the 
kind illustrated in Fig.  1A that involves integrated large-scale automated procedures and experimental 
readouts.

Figure 1.  (A) Iterative search for drug combinations of arbitrary sizes. The procedure starts by generating 
an initial generation (population) of drug combinations randomly or guided by biological prior knowledge 
and assumptions. In each iteration the aim is to propose a new generation of drug combinations based on 
the results obtained so far. The procedure iterates through a number of generations until a stop criterion for 
a predefined fitness function is satisfied. (B) Overview of the TACS (Therapeutic Algorithmic Combinatorial 
Screen) algorithm designed and used in this work for iterative search towards promising drug combinations 
that offer a large TI value. The procedure iterates through a number of generations until a stop criterion is 
satisfied, taking experimental variability into account. (C) An example run of the TACS algorithm discussed 
in the main text. Generation 0 is initialised by a random selection of combinations. The drug combinations 
are assayed for cytotoxicity in three cell line models to determine a proxy for therapeutic benefit. The top 
two scoring combinations are selected to form the basis of the next generation. Red/blue lines indicate 
whether the combination was based on the first/second hit in the previous generation. The algorithm finds a 
set of improved combinations and terminates in two iterations. Notably, the top hit is actually derived from 
an ancestor that scored second best. One should also note that the two winners from generation 0 (blue and 
red) are present in all the three generations. Error bars indicate 95% confidence intervals.
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A few iterative computational-experimental procedures have recently been proposed that allow search 
in arbitrarily large combination spaces8,9,10. The general approach is illustrated in Fig. 1A. However, these 
seminal efforts do not provide any method designed explicitly to maximize a predefined therapeutic 
index (TI) that quantifies the desired effect versus the adverse side effects. In addition, the reported 
efforts are based on manual iterations rather than a semi-automated approach suitable for large scale 
experimentation.

In cancer pharmacology research, in vitro cancer cell line models are typically used with cytotoxicity 
or inhibition of proliferation as the primary read-out. For evaluation of drug combination effects, the 
current state-of-the-art uses a measure of synergy as endpoint because total cell kill is always trivially 
increased by adding another drug with cytotoxic action to a combination. Synergy as per classical defi-
nition is the improvement in efficacy over a theoretical model of expected joint action11. In the context 
of cancer, this stands in stark contrast to combination therapies used in clinical practice. Although there 
are some exceptions based on modern targeted drugs, still many anti-cancer combination therapies in 
use are not designed based on a synergistic interaction but from observed clinical utility in terms of 
increased survival. By using drugs with different side-effect spectrums, total dose can be increased while 
having limited side-effects. As already mentioned, the combination therapies are also attractive because 
they reduce the risk of emergent drug resistance. Neither of these two underpinnings of anti-cancer 
combination therapies are addressed by the use of classic measures of synergy. Thus a new principle for 
preclinical development of clinically relevant combination therapies could prove useful.

Here we report results from developing and employing a novel, semi-automatic, iterative search 
method that aims at finding optimal drug combinations for oncological targets that are maximising a 
clinically motivated TI. The TI serves as a proxy for the therapeutic benefit of a combination; an opti-
mal combination should inhibit the cancer cells while least affecting healthy cells. The TI used is the 
differential cytotoxic action (in terms of cell viability) of a combination between cancer cell and nor-
mal/reference cell models11. We search for locally optimal drug combinations using an algorithm called 
MACS (Medicinal Algorithmic Combinatorial Screen)9, significantly improved in this work by taking 
experimental variability into account. We describe our pipeline in the context of applying it to CRC  
in vitro models.

Characterisation of five among the most promising drug combinations found by the pipeline sug-
gests that all of them are suitable candidates for the treatment of CRC. One of these combinations, 
(Trichostatin A, Afungin, 17-AAG), was found to eradicate 6 different CRC model systems with limited 
side-activity against the normal/reference cells. It is also effective in primary cultures of tumour cells 
from CRC patients. Taken together, besides the discovery of a promising set of drug combinations for 
treatment of CRCs, this work provides one of the first successful semi-automated pipelines for discovery 
of anti-cancer drug combinations of arbitrary size with pronounced activity in vitro. As this method is 
fully generic, it enables and could inspire large-scale systematic explorations of the space of drug com-
binations for cancer in general, as well as for other complex diseases.

Materials and Methods
All methods were performed in accordance with relevant guidelines and regulations.

Liquid handling robot and programming environment.  For liquid handling we used a Beckman 
Coulter Biomek 2000 liquid handling robot. We employed the integrated programming language BioScript 
Pro, a scripting language that is an extension of Tool Command Language (TCL)12. Using BioScript Pro, 
a “cherry picking” program was developed that takes an Excel file containing a list of desired combina-
tions and their positions on the plate as input and performs the required combinatorial liquid handling. 
The program used and the associated parameter settings are available in the Supplementary Methods II 
(section on Beckman Coulter Biomek 2000 cherry picking program).

Compounds.  Thirteen drugs were used for the experiment using the MACS algorithm (first experi-
ment, for details see Supplementary Table S1). These were selected on the basis of their diverse target of 
action in cancer cells and some of them (5FU, Oxaliplatin) are also clinically relevant. IC20 values (the 
concentration required to kill and/or inhibit growth of cells by 20% as compared to untreated control 
wells) of these drugs were estimated from concentration-response curves by using either curve fitting 
(in cases where the model could be properly fitted), or by manual inspection. Matlab code for estima-
tion of IC20 values is provided in Supplementary Methods II (section on Matlab code for prediction of 
IC10 and IC20 values from concentration response data). In the main experiment, the following six drugs 
were used: Mitomycin, Sunitinib, Rapamycin, Trichostatin A, 17-AAG and Afungin. An IC20 value for 
each drug was calculated from concentration response curves in cell line HCT116 as above except for 
Afungin where the IC20 values were selected based on concentration-response data from the National 
Cancer Institute NCI-60 DTP Human Tumour Cell Line Screen (downloaded, Dec 2010: http://dtp.nci.
nih.gov/docs/cancer/cancer_data.html). All drugs and their concentrations are shown in Table  1. The 
stock solution for each drug was prepared at a concentration 40 times higher than the IC20 values, so that 
desired IC20 concentration was restored in final volume inside wells of destination plates. Stock solutions 
were prepared in phosphate-buffered saline (PBS) and stored in 1 ml Eppendorf tubes (Eppendorf AG, 
Hamburg, Germany) at − 70 °C until further use.

http://dtp.nci.nih.gov/docs/cancer/cancer_data.html
http://dtp.nci.nih.gov/docs/cancer/cancer_data.html
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Human cell lines.  In the search using the MACS algorithm (first experiment), two human colorec-
tal adenocarcinoma epithelial cell lines (DLD-1 and DLD-1KRAS/-) were used. These cell lines were 
obtained from Horizon Discovery Ltd, United Kingdom and cultured in McCoy’s 5A medium. In the 
main experiment using the TACS algorithm, the CRC cell lines HCT116 and HCT29 were obtained from 
American Type Culture Collection (ATCC, Rockville, MD) and were cultured in McCoy’s 5A medium. 
The leukemia cell line CCRF-CEM was a kind gift from WT Beck (Department of Pharmacology, college 
of Medicine, University of Tennessee, Memphis, TN). The cell line was grown in culture medium RPMI-
1640 (HyClone, Northumbria, UK). SW620 was also obtained from ATCC and cultured in RPMI-1640 
medium. RKO and HCT116KRAS/- cells were obtained from Horizon Discovery Ltd, United Kingdom 
and cultured in McCoy’s 5A medium. Normal (non-cancerous) colorectal cell line CCD 841 CoN was 
obtained from ATCC and cultured in EMEM medium. HCT116 cells labelled with GFP (green fluores-
cent protein) were obtained from Anticancer Inc (San Diego, CA, USA) and cultured in McCoy’s 5A 
medium.

Tumour cell samples from patients.  Tumour sampling of patients with solid tumours was per-
formed intraoperatively during cancer surgery, whereas leukemia sampling was performed by vein 
puncture at routine blood sampling. All sampling was approved by the regional (Uppsala University) 
ethical committee (Dnr 2007/237) and after patient informed consent. Tumour cells from solid tumour 
tissue were prepared by collagenase digestion as previously described13. Leukemia cells were collected 
by Ficoll-Hypaque (Pharmacia, Uppsala, Sweden) gradient centrifugation as previously described14. The 
cells obtained from the leukemic samples were single cells or, for solid tumours, small cell clusters with 
≥ 90% viability and with less than 30% non-malignant cells, as judged by morphological examinations 
of May-Grunwald-Giemsa-stained cytocentrifugate preparations.

Spheroid-based experiments.  Spheroids were formed using HCT116GFP cell line, as described 
previously15. Briefly, 10000 cells per well were seeded in 50 ml of fresh medium into 384-well F-bottom 
Corning Ultra-Low Attachment plates. Spheroids were cultured for 7 days without medium change prior 
to drug treatment. After treatment, cell viability was assessed by mean spheroid GFP fluorescence meas-
urements, using ArrayScan VTI Reader (Cellomics Inc, Pittsburgh, PA, USA). The assay has been shown 
suitable for such measurements previously15,16.

Calculation of SI values.  The SI (Survival Index) values were calculated using the fluorometric 
microculture cytotoxic assay (FMCA)17,18 readout. FMCA measures the cell survival by measuring flu-
orescence. Fluorescence is produced by living cells with intact membranes by hydrolysis of fluorescein 
diacetate to fluorescein. Denoting the FMCA readout value by the letter R, the SI value is determined 
as the ratio (Rtreated −  Rblank)/(Rctrl −  Rblank) where Rtreated denotes the readout for the well containing the 
treatment used, Rblank is the readout from a well without cells and Rctrl is the readout from a well con-
taining cells but no drugs.

Statistical analyses.  The 95% confidence intervals (CIs) for the mean were determined using the 
t-distribution. Assuming that the experimental variability is normally distributed, the difference between 
a pair of TI estimates has a t-distribution with the number of degrees of freedom being dependent on 
the number of replicates used to obtain the estimates, for details see Supplementary Methods Part III.

mRNA gene expression analysis.  Induced gene expression changes in the cell line HCT116 were 
analyzed using microarrays from Affymetrix ® after standard normalisation and pre-processing of data, 
for details see Supplementary Data, Gene Expression Data.

Drug Suggested Activity Obtained from Stock Conc. Final Conc.

Sunitinib Tyrosine kinase inhibitor39 Lc Laboratories USA 126.5 μ M 3.16 μ M

Rapamycin mTOR (mammalian target of rapamycin) 
inhibitor40 Sigma-Aldrich Sweden AB 86.4 μ M 2.16 μ M

Trichostatin A Histone deacetylase inhibitor41 Sigma-Aldrich Sweden AB 3.2 μ M 0.08 μ M

17-AAG Heat shock protein (HSP) inhibitor42 Lc Laboratories USA 40 μ M 1 μ M

Mitomycin Antitumour antibiotics43 Sigma-Aldrich Sweden AB 14.9 μ M 0.37 μ M

Afungin Antifungal substance Sigma-Aldrich Sweden AB 0.4 μ M 0.01 μ M

Table 1.   Drugs used in the iterative search using the TACS algorithm. Stock solution for all drugs were 
prepared 40 times higher than the final concentrations that were restored when diluted with cell suspension 
in the wells of the experimental plate.
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Results
Initially, we applied the original MACS algorithm9 to find a drug combination that specifically targets 
cells that carry the clinically prevalent KRAS mutation in CRC. We used the difference in TI between 
CRC cell lines DLD-1 and DLD-1KRAS/- as a criterion to maximize. DLD-1 carries the clinically preva-
lent KRAS mutation whereas DLD-1KRAS/- has had the KRAS allele knocked out. The base set consisted 
of 13 compounds from different mechanistic classes (for details, see Supplementary Table S1) added at 
their IC20 concentrations. Generation 0 was initialised with a set of 14 randomly generated combina-
tions (see Supplementary Tables S2). Cytotoxicity was measured by FMCA in both DLD-1 and DLD-
1KRAS/- cell lines, and the TI of each combination was calculated as the difference TI =  SKRAS −  SWT. 
Here SKRAS and SWT denote the SI values for DLD-1KRAS/- and DLD-1 (Wild type), respectively. A high 
value of TI corresponds to high cell kill in the KRAS mutation carrying cell line but low cell kill in the 
DLD-1KRAS/- cell line. The single best combination was then used to seed the next generation, using 
all one-compound perturbations around it. This was iterated until no gain in fitness could be made 
by such a local move. However, although the algorithm terminated with an optimal combination (see 
Supplementary Figure S1 and Supplementary Tables S2-S5), after examining this pilot run, it was consid-
ered necessary to take experimental variability into account as the TI gain observed between subsequent 
generations may simply be due to noise (experimental variability).

Thus, we designed a less noise-sensitive procedure called Therapeutic Algorithmic Combinatorial 
Screen (TACS), see Fig.  1B, where we: (i) Take experimental variability into account in selecting seed 
combinations in each iteration (ii) Keep not only the best, but also the second best hit in each iteration 
as seeds to generate the next generation of drug combinations. (iii) Reduce experimental variability by 
performing the experiment twice for every generation and then determine mean TI values based on 
the pair of results obtained for each drug combination. (iv) Use a termination criterion that takes the 
experimental variability into account. (v) Encourage the selection of small combinations consisting of 
as few drugs as possible.

Instead of applying TACS to the same problem as in the pilot study, we decided to study perhaps 
an even more clinically interesting problem. Although identification of combinations that have activity 
exclusively in KRAS mutated cells (as aimed for in the pilot study) would be of outstanding interest, we 
think it would be even more interesting to find a combination which is designed to eradicate multiple 
types of CRC while, at the same time, inducing limited side-effects. Therefore, as described next, our 
main experiment was designed to find combinations with ability to eradicate two different CRC in vitro 
models while at the same time inducing limited side-effects in a reference/toxicity in vitro model.

Implementation of novel TACS algorihtm.  For our main experiment, now using our novel TACS 
algorithm (see Fig.  1B and Methods), we used two CRC cell lines, HCT116 and HT29 and modeled 
side-effects by the leukemia cell line CCRF-CEM. Using the same kind of notation as above, the TI used 
was

= −
+

. ( )−TI S
S S

2 1CCRF CEM
HCT HT116 29

where SX denotes the survival index of cell line X.
We hypothesize that the use of multiple (two) disease models in the fitness criterion increases the 

chance that the optimal drug combinations found will be widely applicable. More tentatively, the use of 
multiple cancer cell lines can also be regarded as a crude model of clone heterogeneity (although the 
different cell lines originate from different patients/genotypes). The six compounds used were 17-AAG, 
Afungin, Mitomycin, Sunitinib, Rapamycin and Trichostatin A, each having a different mechanism of 
activity (see Table 1, Methods). We initialised the search with 13 randomly selected combinations of the 
drugs at their IC20 concentrations and then iterated until the TI improvement was less than 1 standard 
deviation (SD). This search was biased towards small combinations by selecting the smallest combi-
nations among those top-ranked but equal within experimental variability (again, using 1 SD as the 
criterion). The algorithm converged in two iterations, see Fig.  1C. Note that the optimal combination 
(Sunitinib, 17-AAG, Afungin, Trichostatin A) was produced by perturbing around the second best com-
bination of generation 0 and would have been left out if only one combination would have been selected 
from generation 0, see Supplementary Tables S6-S8.

The resulting best combinations, (Sunitinib, 17-AAG, Afungin, Trichostatin A), yielded the fitness 
value 85 ± 6.6 in generation 1, which is greater than the value 67 ±  4.9 obtained for the top hit of gener-
ation 0. This clearly suggests that the algorithm has succeeded in improving the TI criterion also when 
taking experimental variability into account. Furthermore, 5 combinations characterised in more detail 
were the two top winners from each generation (only five because one combination was the best in two 
consecutive generations), see Table 2.

Generalisation of results to other concentrations and cell line models.  One of the main chal-
lenges in anti-cancer drug discovery and cancer therapy is the heterogeneity between and within cancer 
tumours19. In order to determine to what extent the combinations discovered also are promising accord-
ing to other CRC models, we performed a full factorial concentration-response study of the selected 
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drug combinations using an extended cell line panel consisting of five CRC cell lines: HCT116, HT29, 
HCT116KRAS/-, SW620 and RKO. Using the combination (17-AAG, Afungin, Trichostatin A) as one 
illustrative example (for the other four combinations characterised, see Panels A, B & C of Supplementary 
Figures S2, S4, S6 & S8), each drug was tested at four different concentrations yielding in total 64 (43) dif-
ferent concentration combinations as shown in Fig. 2B. The tested concentrations were 1/25, 1/5, 1 and 5 
times the IC20 concentration used in the iterative search shown in Fig. 1C. The concentrations have been 
ordered by the fitness (TI) criterion in Eq (1) used by TACS. The heatmap in Fig. 2A shows SI values 
across the five CRC cell lines and the reference/toxicity model CCRF-CEM (rows) where each column 
corresponds to one concentration combination. It is evident that the combination effect generalises from 
the pair HCT116 and HT29 to the new three CRC cell lines HCT116KRAS/-, SW620 and RKO. In par-
ticular, it is clear that the drug combination has a stronger effect in the new cell lines HCT116KRAS/-, 
SW620 and RKO than in the original HCT116 and HT29 used in the iterative search. As the combina-
tions are sorted according to TI, one also finds that the concentration combination used in the iterative 
search (indicated by the black arrow in panel A) is quite a good choice as only 3 other concentration 
combinations offered a (marginally) larger TI. However, increasing the concentration further decreased 
the TI by killing off the CCRF-CEM cells.

We also performed the corresponding full factorial concentration-response study using the normal 
(non-cancerous) colon cell line CCD 841 CoN and the leukaemia cell line CCRF-CEM. Figure 2C shows 
the average concentration-response across the five cancer cell lines panel together with SI values for these 
two cell lines. Clearly, many different concentrations for CCD 841 CoN and CCRF-CEM yielded positive 
TI values thus offering a promising therapeutic window (TW). It can be noted that TW provided by CCD 
841 CoN overlaps with TW provided by CCRF-CEM.

Therapeutic Synergy.  An important indicator of the clinical utility of a drug combination is in vitro 
therapeutic synergy (TS). As already defined11, a drug combination offers TS if the largest TI it can 
achieve is larger than what can be obtained using any of its constituent drugs alone. For the drug combi-
nation (17-AAG, Afungin, Trichostatin A) we made all 10 possible pairwise comparisons of the effect of 
the combination in one of the five CRC cell lines with the corresponding effect in one of the two normal/
reference/toxicity cell lines. For each of these 10 pairwise drug comparisons the number of concentration 
combinations found to yield a TI significantly larger than the largest TI produced by any of single drugs 
was determined (using t-test and a Bonferroni corrected p-value threshold), see Panels D and E of Fig. 2. 
Each bar indicates the total number of concentration combinations that yielded a significantly higher TI 
for the drug combination than for any single constituent drug within the concentration range studied. 
The largest possible number of such local TSs achievable is 48 which would have occurred if every pair 
tested resulted in a significant local TS. For each bar (pairwise comparison), a p-value was calculated 
and found to be less than or equal to 10−4. These p-values are associated with a previously developed 
omnibus test11 specifically designed to avoid the multiple-testing problem via the null hypothesis that 
there is no TS (thus assuming there is no drug concentration combination that obtains a higher TI than 

Sr No Combination TI Comments TS CCD 841 CoN TS CCRF-CEM

1 Sunitinib, 17-AAG, Afungin, 
Trichostatin A 85± 6.6 Generation 1&2, 

best combination 5 3

2 Rapamycin, 17-AAG, Trichostatin A 83± 4.9 Generation 1, 2nd 
best combination – 2

3 17-AAG, Afungin, Trichostatin A 75± 5.4 Generation 2, 2nd 
best combination 5 5

4 Rapamycin, 17-AAG 67± 4.9 Generation 0, best 
combination – 2

5 Sunitinib, 17-AAG, Afungin 65± 8.8 Generation 0, 2nd 
best combination 5 0

Table 2.   Characterisation of the two top combinations obtained in each of the three generations. 
Only five different combinations were characterised since the combination Sunitinib, 17-AAG , 
Afungin, Trichostatin A was the best in two consecutive generations. These five combinations with their 
corresponding TIs obtained in the respective generations (where they were among the top two winners) are 
shown as 95% confidence intervals. In the last two columns results of subsequent follow-up experiments 
using five CRC cell lines and two different normal/reference cell lines are summarised. Each column shows 
the number of times there is TS (therapeutic synergy) when comparing pairs of one CRC cell line and the 
corresponding normal/reference cell line which is either CCD 841 CoN (normal colon) or CCRF-CEM 
(leukemia). Since 5 different CRC cell lines were used during the follow-up experiments, no more than 
5 comparisons can exist that have significant TS. When there is no data available the missing result is 
indicated as –. For example, one may find that the third combination is producing the maximum number of 
significant TS.
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any of the constituent drugs alone). For the other four combinations characterised for TS, see Panels D 
& E of Supplementary Figures S2 & S8 and Panel D of Supplementary Figures S4 & S6.

Efficacy in primary cultures of tumour cells from CRC patients and in a spheroid microtumour 
in vitro model.  The efficacy of the combination (17-AAG, Afungin, Trichostatin A) was investigated 
in primary cultures of tumour cells from metastases of n =  11 patients with CRC. For comparison, these 
data were compared with those of tumour cells from patients with ovarian (n =  9) or kidney (n =  6) 
cancer as well as in one patient with lymphoma. Cytotoxicity induced by the combination in 2 of the 
CRC samples is shown in Fig.  3, for results regarding the other four combinations see Supplementary 

Figure 2.  Factorial concentration-response study of combination (17-AAG, Afungin, Trichostatin A) 
and TS (therapeutic synergy). Each of 64 different concentration combinations was tested across five CRC 
cell line models and two normal/reference/toxicity cell line models. The concentrations are color coded in 
panel B and were selected to be 1/25, 1/5, 1 and 5 times the IC20 concentration used in the combination 
search. (A) Heatmap of SI values (%) for tested CRC cell lines, and the reference/toxicity model CCRF-CEM 
used in the iterative search, at the concentrations color coded in panel B. The arrow indicates location of 
the set of concentrations (1, 1, 1, 1) used in the search procedure using the TACS algorithm. (B) Heatmap 
of the 64 different concentrations tested, sorted by the fitness criterion in Eq (1) used by TACS. (C) Graph 
of average SI values (concentrations are shown in B) across the five cancer cell lines as well as SI values for 
the a normal (non-cancerous) colon cell line CCD 841 CoN and normal/reference/toxicity cell line model 
CCRF-CEM. Error bars indicate 95% confidence intervals. (D) Bar graph showing the number of significant 
local TSs detected when each CRC cell line is compared with CCRF-CEM. The largest possible number is 
48 which would mean that there is a local TS for every concentration combination used. (E) Same kind 
of results as presented in Panel D but this time with the five CRC cell lines compared with normal (non-
cancerous) colon cell line CCD 841 CoN.
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Figures S3, S5, S7 & S9. Due to the limited number of cells available for analysis, for these two samples 
only three different concentrations were used corresponding to 1/10, 1 and 10 times the concentrations 
used in the iterative search. A summary of the cytotoxicity induced by the combination in all the samples 
(ovarian, kidney and CRC) is shown in Supplementary Figure S10. Overall, the CRC samples were more 
resistant than ovarian and lymphoma samples and essentially as resistant as the kidney cancer samples. 
This pattern of sensitivity ex vivo in tumour cell samples from patients corresponds well to that of stand-
ard cytotoxic drugs used in the clinic20. The activity of the combination differed considerably between 
the individual CRC samples. This is also in line with the varying sensitivity to standard drugs in patient 
samples, reflecting the biological heterogeneity between tumour samples from the same tumour types. 
The difference in sensitivity among the CRC samples was not obviously associated with patient treatment 
status. Thus, there were both sensitive and resistant samples from treatment naïve and previously treated 
patients (not shown).

Interestingly, the combination was active at relatively low concentrations of the drug components 
compared to the concentrations of standard cytotoxic drugs needed to induce significant cytotoxicity 
in patient tumour cells during identical assay conditions. In the combinations all the three constituent 
drugs were used at concentrations that correspond to levels below IC20 when used in HCT116 cells. Since 
primary patient cells generally are more resistant than cell lines, this means that the constituent drugs 
would have a very limited effect on the patient cells (killing far less than 20% of the cells) if they were to 
be used individually. Two examples illustrating that patient cells are more resistant can, for example, be 
found in our previous work11,20. In Fig. 3 of the work by Kashif et al.11, one finds that the IC20 values of 
the standard drugs 5-FU and Oxaliplatin in HCT116 cells are approximately 30 and 16 μ M, respectively, 
whereas in Fig.  1 of the article by Cashin et al.20 one finds that the corresponding concentrations in 
primary patient cells are approximately 500 and 30 μ M.

Finally, we also performed a concentration-response characterisation of the combination in a 
GFP-labelled HCT116 spheroidal model (Fig.  4A). Three-dimensional spheroids of cells from the cell 
line HCT116GFP were created in-house and shown to be generally more resistant to standard cyto-
toxic drugs than monolayer (2D) cultures15. The spheroids were treated according to a full factorial 
concentration-response experiment at concentrations 5 times higher than for the 2D models and the 
resulting SI values were quantified every 24h using measurement of mean spheroid GFP fluorescence. 
In Fig. 4A, the temporal (3 & 7 days) evolution of the SI values for the combination (17-AAG, Afungin, 
Trichostatin A) are displayed, showing that it also has effect in spheroidal models in the concentration 
range studied.

Systemic mRNA gene expression analysis.  We performed systemic micoarray mRNA gene 
expression analysis of the changes induced by the combination (17-AAG, Afungin, Trichostatin A) in 

Figure 3.  Factorial concentration-response study of combination (17-AAG, Afungin, Trichostatin A) 
in patient cells. This study was performed at three different concentrations corresponding to 1/10, 1 and 
10 times the concentration used in the iterative search. (A) SI values for CRC patient cells as obtained in 
two experiments per patient sample. The black arrow shows the concentration combination discovered 
during the original iterative search. (B) Concentrations corresponding to A expressed as fractions of the 
concentrations used the iterative search. The concentration combinations were sorted according to the first 
run performed for patient 165.
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HCT116 cells to gain more insights about its mechanism of action. Induced changes in mRNA signatures 
for the combination as well as its constituent drugs were derived from the fold change in expression rela-
tive to vehicle control in HCT116 cells while following the Connectivity Map (CMap) protocol21. Table 3 
shows the top ten most similar compounds in terms of mRNA expression signature produced by a search 
against the publicly available CMap database. The pattern clearly suggests the mode of action is proteo-
toxic, specifically inhibition of HSP90, with all top 5 hits having been described as HSP90 inhibitors22–26. 
Since 17-AAG (denoted as Tanespimycin in CMap) is part of the combination and known to be a HSP90 
inhibitor and since HSP90 inhibitors are enriched in analysis, we propose that the main mechanism of 
actions is protetoxicity mediated through HSP90-inhibition. In this context one should also note that 
Trichostatin A is an indirect HSP90 inhibitor because its inhibition of HDAC627 leads to HSP90 deacti-
vation28. Inhibition of HDAC6 also means that cells fail to clear misfolded protein aggregates from the 

Figure 4.  Factorial concentration-response study of combination (17-AAG, Afungin, Trichostatin A) in a 
HCT116 spheroidal model. (A) Profiles of SI values (%) for the spheroid model at multiple time points. The SI 
values are sorted in the same order as in Fig. 2 (although all concentrations here are 5 times higher). The black 
arrow indicates the concentration combination discovered during the original iterative search. (B) Concentrations 
corresponding to A expressed as fractions of the concentrations used in the iterative search.

Rank Compound name and no of instances mean score p-value

1 Withaferin A (n =  4) + 0.70 < 10−5

2 Geldanamycin (n =  15) + 0.58 < 10−5

3 Alvespimycin (n =  12) + 0.56 < 10−5

4 Tanespimycin (n =  62) + 0.49 < 10−5

5 Monorden (n =  22) + 0.43 < 10−5

6 Alcuronium chloride (n =  2) − 0.82 6·10−4

7 Emetine (n =  4) − 0.62 8·10−4

8 Flunixin (n =  5) − 0.59 8·10−4

9 Disulfiram (n =  5) + 0.62 10−3

10 Diethylstilbestrol (n =  6) + 0.54 10−3

Table 3.   Best matching compounds in Connectivity Map (CMap) when using the mRNA gene 
expression signature of the combination (17-AAG, Afungin, Trichostatin A) as a query. The mean 
connection score shown is produced by the publicly available CMap signature matching algorithm. The 
ranking is first based on p-values provided and then on the mean score value which is based on n instances 
of the compound in the database.
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cytoplasm, cannot form aggresomes properly, and are hypersensitive to the accumulation of misfolded 
proteins28,29.

For more details regarding the gene expression analysis, see Supplementary Methods Part I. Using the 
mRNA gene expression signatures obtained, additional bioinformatics searches were performed using 
commercial tools like MetaCoreTM (www.thomsonreuters.com) and Nextbio (www.nextbio.com) as well 
as open access alternatives like Gene set enrichment analysis (www.broadinstitute.org), gene ontology 
(www.geneontology.org), and g:Profiler30,31. However, no additional outstanding conclusions were made.

The closest match is Withaferin A (WA) which recently was reported by Koduru et al. to inhibit cell 
viability in three CRC cell lines (HCT116, SW480, and SW620) in a dose-dependent manner while at 
the same time not having any significant effect on normal colon epithelial cells (FHC)32. Thus WA and 
the combination (17-AAG, Afungin, Trichostatin A) show strikingly similar phenotypic effects in the 
context of CRC cell lines and normal colon cell lines. However, instead of HSP90-inhibition, Koduru 
et al. suggest and offer experimental results supporting that WA inhibits Notch-mediated prosurvival 
signaling that facilitates c-Jun-NH2-kinase mediated apoptosis in colon cancer cell lines.

As discussed in the review by Vanden Berghe et al. the heat shock regulating activity of WA is still 
very unclear as WA has been reported to inhibit heat shock protein activity and also found to be a highly 
potent heat shock response inducer in screen covering 80000 natural and synthetic compounds. The 
authors suggest that this might be a consequence of concentration of WA applied as well as the cellular 
context. For example, the induction of heat shock response by WA might be secondary to WA-mediated 
HSP90-inhibition. WA is an unusually difficult compound to grasp as it has been reported to exert 
anti-inflammatory, pro-apoptotic, pro-autophagic as well as anti-invasive and anti-angiogenic effects. It 
has also been shown to have a remarkably wide range of molecular/cellular targets including vimentin, 
Bcl-2, the proteasome, NFκB, Akt, Stat3, kinase activity, notch signalling, endoplasmic recticulum stress, 
reactive oxygen species (ROS) production and heat shock response activity33,34. Of particular interest in 
this context is the reported HSP90 inhibitor activity of WA in pancreatic carcinoma cells22 and breast 
cancer cells35 and improved mechanistic understanding regarding this effect33,36.

Discussion
As indicated in the introduction, the space of drug combinations beyond pairs of drugs has outstanding 
potential but is almost completely unexplored using systematic approaches. Since the wet laboratory 
work grows exponentially when exploring this space systematically, semi-automation seems to be the 
only feasible way forward. There are many multi-disciplinary challenges and pitfalls towards obtaining 
successful use of semi-automated procedures that are able to speed up the search for clinically promising 
drug combinations of arbitrary size. Taken together, the contributions presented here not only demon-
strate the potential of this semi-automated approach but also provide a set of promising combinations 
that deserve further characterisation as candidates for cancer treatment, notably CRC. More specifi-
cally, the main contributions may be briefly summarised as follows: (1) Development and deployment 
of a novel semi-automated and successful computational-experimental pipeline for combination studies.  
(2) An independent validation of one of the first among very few search methods reported for drug 
combinations of arbitrary size (MACS) and clinically and practically important improvements of this 
approach. (3) The proposed use of two innovative in vitro model systems suitable for drug as well as drug 
combination screening for positive TI (pairs of cell lines having the same genetic background and mul-
tiple cell line models of cancer and normal/reference/healthy patient samples). (4) Discovery and char-
acterisation of several drug combinations for CRC treatment showing promising activity in an extended 
panel of cell line models, in a 3D spheroidal model and in primary cultures of patient CRC cells.

There are multiple reasons for combination therapies. As also mentioned in the introduction, combi-
nation therapies are receiving increased attention and there are multiple reasons for this. Often the goal 
is to find a combination that displays synergy in the sense that the combination shows greater effect 
than expected from the effects of the constituent drugs. Economically, combinations are promising in 
the context of drug repurposing as a combination of approved drugs may target diseases for which the 
constituent drugs are not registered or may offer a much cheaper alternative than those currently used 
in the clinic. The time for a combination consisting of already FDA (Food and Drug Administration) 
approved drugs to reach the market is much shorter than for a novel drug candidate, since the constitu-
ent drugs have already passed clinical trials. Another commonly cited motivation for combinations is the 
complexity of the interacting network causing many diseases, prominently cancer. That is, combinations 
seem or are claimed to be needed to achieve therapeutic effects, since a single targeted drug is insufficient 
to target diseases driven by complex networks.

This work presents a generic framework for discovering anti-cancer drug combinations. Except for 
clear cut examples such as when an individually inactive drug increases the effect of the combination, 
synergy is a non-trivial concept to define. In addition, classical definitions of drug synergy do not cor-
respond to clinical reality as clinically used combination therapies often display limited or no synergistic 
effects when investigated using in vitro models. We postulate that the clinical value of combination ther-
apies for cancer may derive from being able to increase the total drug exposure and/or from the potency 
to rewire complex networks while maintaining side-effects at an acceptable level. Systematic search for 
promising combination therapies has conventionally been limited to consider combinations of only two 
drugs, where typically a potential synergistic partner for an investigational drug is evaluated. Here we 

http://www.thomsonreuters.com
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have presented a framework that allows searching for combinations of a potentially arbitrary number 
of drugs.

In connection to the results presented, there are some algorithmic issues to consider. The TACS algo-
rithm as presented is limited by the number of one-off (one drug away) neighbouring combinations to 
evaluate in each generation. However, we do not think the exact details of the optimisation algorithm 
are crucial. Also, we used fixed concentrations when searching for combinations. What we do think is 
crucial though is to take experimental variability into account as to avoid jumping around randomly 
among a set of combinations equally potent according to the estimated performance. Moreover, although 
the search space in our main example consisted of just 57 =  26 −  7 possible combinations of 2 or more 
drugs, our semi-automatic pipeline allows for much larger search spaces. The main limitation on the 
size of the library used is the ability to exhaustively evaluate all nearest (one modification away) com-
bination neighbours in the iteration. Therefore, in practice the TACS algorithm seems most suitable for 
finding combination therapies from relatively small (< 50) sets of compounds. For larger sets, alternative, 
less-exhaustive search strategies are required, which is a topic for future work.

The selection of a drug set for the TACS algorithm can be made in a variety of ways. For exploratory 
(de novo) studies and when there is no obvious prior knowledge to exploit, drugs can be selected more 
or less randomly without any prior hypothesis about their mechanism of action. However, the selection 
can also be based on a hypothetical model of the pathology in combination with detailed knowledge 
about the targets/mechanisms of particular drugs. For example one may select a set of drugs for specific 
targeting of one particular signal transduction pathway or biological process. In summary, since TACS 
is a generic combination search algorithm, the drug set used can be tailored to the particular needs of 
the study of interest.

The current implementation of TACS uses fixed doses of the selected set of drugs. However, it is 
possible to use the same drug at multiple concentrations using TACS simply by interpreting each con-
centration as a different drug in the TACS implementation. Additionally, if a combination is producing 
a large value of TI at a fixed concentration this does not directly ensure the presence of a TW as well. 
Therefore, one should perform validation studies to find out the existence of large TWs.

A few aspects of the clinical relevance of the presented approach and results are interesting to note. 
When characterizing the concentration-response surface of the combinations discovered, we find positive 
TI values for a range of concentrations making administration promising. Clinical use would be nearly 
impossible if the constituent drugs all have narrow TWs. Of course, the choice of normal (or reference/
toxicity) cell models used in the iterative search to a large extent determines the possibilities to find clin-
ically relevant combinations. The use of CCRF-CEM, a T-cell lymphoblast cell line established from an 
acute lymphocytic leukemia as a normal/reference/toxicity cell model is a potential weakness. However 
it does show generally higher chemosensitivity compared to cell lines derived from solid tumours like 
CRC. Sensitivity of the CCRF-CEM can also be verified from the National Cancer Institute NCI-60 DTP 
human tumour cell line screen database. More generally, hematologic toxicity is well known to be one 
of the main dose-limiting factors in clinical practice. Therefore, it may be viewed as a general marker of 
non-specific cytoxicity that should be avoided. We believe this interpretation and use of CCRF-CEM is 
strengthened by us subsequently finding limited therapeutic effects also in the normal (non-cancerous) 
cell line CCD 841 CoN. Lastly, it is encouraging to conclude that the combinations offer therapeutic 
synergy, i.e., the therapeutic benefit cannot be achieved using any of the constituent drugs on their own. 
Applicability of the overall iterative search strategy is further strengthened by finding a combination to 
have activity in CRC patient primary cell cultures within the range of, comparatively very low, concen-
trations explored.

The combination was also tested in tumour cell samples from patients with ovarian cancer (n =  9), 
kidney cancer (n =  6) and lymphoma (n =  1). From the clinic these tumour types are expected to show 
considerable differences in drug sensitivity, with lymphoma being sensitive, ovarian cancer intermediate 
and renal cancer very resistant. Interestingly, the activity of the combination was essentially equal in these 
diagnoses, indicating it is targeting a general mechanism in cancer cells (data not shown). Furthermore, 
the combination was active at relatively low concentrations of each component compared with standard 
drugs, and without much concentration dependence within the combination. This indicates high potency 
of the combination with early saturation of the target mechanism. However, it is not possible on the basis 
of our relatively few observations to draw any strong conclusions regarding the activity of the combina-
tion in tumour samples from patients. Finally, the clinical potential of the combination is also supported 
by preliminary results suggesting that the combination induces cytotoxicity in a spheroid model.

One of the potential weaknesses of the current study is that in vitro measurements have limited 
clinical relevance37,38. Therefore, how combinations will behave in patients (clinical trials) is a question 
for further studies. Obviously the current study would also benefit from the use of additional in vitro 
non-cancer and cancer models both during the search phase and the follow up characterisation of the 
most promising combinations found (where results from in vivo models also would be of great interest). 
However this is beyond the scope of the present paper being focused on demonstrating the general 
potential of the approach suggested (i.e. to take experimental variability into account when employing 
the semi-automated search pipeline developed). Moreover, regarding the suggested hill climbing algo-
rithm introduced (TACS) there are obvious possibilities for further algorithmic improvements that may 
result in even more robust and/or faster search. For example, in future studies it would be interesting 
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to compare this type of local search methods with global optimisation methods including genetic algo-
rithms. Moreover, it could prove beneficial to explore the possibilities to enhance the search performance 
by integrating prior knowledge about the drug combination search space as well as about the experimen-
tal variability associated with the experiments performed. Furthermore, in this context we would also like 
to make a reminder that the whole idea of searching for promising drug combinations beyond pairs of 
drugs often is considered as a weakness (for various reasons including potential difficulties reaching the 
clinic). However, as already discussed above, the potential of drug combinations beyond pairs of drugs is 
largely unexplored and deserves further preclinical evaluation. In this effort, new algorithms of the kind 
suggested and explored here will be required.

The mechanism of action of our example combination (17-AAG, Afungin, Trichostatin A) is clearly 
suggested to be HSP90-inhibition. It seems as if Trichostatin A and Afungin potentiate the effect, but espe-
cially the role of Afungin is unclear. We performed additional analyses of the combination induced mRNA 
expression changes, sifting out the set of probes perturbed uniquely by the combination. However, using 
various bioinformatics tools for pathway analysis (see above) no outstanding pathway or function could 
be discerned among the annotations. One should also note that the closest compound matching when 
performing a CMap based systemic mRNA analysis was Withaferin A (WA) which recently was reported 
by Koduru et al. to inhibit cell viability in three CRC cell lines (HCT116, SW480, and SW620) while at the 
same time not having any significant effect on normal colon epithelial cells (FHC)32. The same report also 
suggests that WA achieves its effect via inhibition of Notch-mediated prosurvival signaling, thus not via 
HSP90-inhibition. Further investigations into the mechanism of the combination are ongoing.
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