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Abstract: Nitrogen (N) is an important nutrient for the growth and development of rice. The
application of N fertilizer has become one of the inevitable ways to increase rice yield due to
insufficient soil N content. However, in order to achieve stable and high yield, farmers usually
increase N fertilizer input without hesitation, resulting in a series of problems such as environmental
pollution, energy waste and low production efficiency. For sustainable agriculture, improving the
nitrogen use efficiency (NUE) to decrease N fertilizer input is imperative. In the present review, we
firstly demonstrate the role of N in mediating root architecture, photosynthesis, metabolic balance,
and yield components in rice. Furthermore, we further summarize the current agronomic practices
for enhancing rice NUE, including balanced fertilization, the use of nitrification inhibitors and slow-
release N fertilizers, the split application of N fertilizer, root zone fertilization, and so on. Finally,
we discuss the recent advances of N efficiency-related genes with potential breeding value. These
genes will contribute to improving the N uptake, maintain the N metabolism balance, and enhance
the NUE, thereby breeding new varieties against low N tolerance to improve the rice yield and
quality. Moreover, N-efficient varieties also need combine with precise N fertilizer management and
advanced cultivation techniques to realize the maximum exploitation of their biological potential.

Keywords: rice; nitrogen; nitrogen use efficiency; agronomic practices; N efficiency-related genes

1. Introduction

Rice, a grain crop, is the principal food source for more than half of the world’s
population [1,2]. Due to expansion of cultivation areas, the introduction of new cultivars,
and the use of chemical fertilizers, rice yield has been increased during the past 50 years,
keeping pace with the world’s population growth (Figure 1) [3]. Nitrogen is one of the
main nutrient elements required by rice. However, soil N content in farmland cannot
maintain the requirements of rice growth and development. Therefore, the application
of N fertilizer has become one of the inevitable ways to increase rice yield. During the
past half century (1961–2010), the total grain production of China increased more than
three-fold to achieve 480 million tons per year. At the same time, the application rate of
chemical N fertilizer increased nearly 37-fold to reach 30 million tons of pure nitrogen per
year, accounting for about one-third of the N applied globally [4]. In China, the average
application rate of N fertilizer has reached 180 kg/hm2, which is 75% higher than the world
average. However, the NUE is only 28%~35%, which is 15%~20% lower than that of the
global average NUE [5,6]. Therefore, low NUE has gradually been becoming a prominent
problem limiting rice production.

Nitrogen (N) is a crucial component for the synthesis of nucleotides, amino acids,
and chlorophyll [7]. The introduction of semi-dwarf and high-yielding rice cultivars
that respond to fertilizer inputs has highlighted the importance of N fertilization for rice
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cultivation since the Green Revolution. Nitrogen deficiency is one of the most common
problems limiting rice growth, development, and production owing to poor N availability.
The most basic physiological processes connected to biomass production and grain yield are
affected by N availability, absorption, and utilization. The development of photosynthetic
capacity and activity, the maintenance of photosynthetic activity, the establishment and
maintenance of sink capacity (number and size of seeds), and agricultural product quality
are the four key functions of N in biomass and the grain production of cereals [8]. As
a result, N is an essential nutrient for agriculture and the security of global food supply,
and N fertilizers are required to produce sufficient food to feed the increasing human
population [9].
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Figure 1. Temporal patterns of global rice production, human population growth, and nitrogen
(N) fertilizer consumption, 1961–2019. Rice production and world population data were obtained
from the Food and Agriculture Organization of the United Nations (FAOSTAT; http://www.fao.org/
faostat/en/#data/OA accessed on 12 June 2022). Global N fertilizer consumption data were obtained
from the International Fertilizer Association (IFA statistics, 13 July 2022; https://www.ifastat.org/
databases/graph/1_1 accessed on 12 June 2022).

The efficient employment of N in agricultural production is crucial for yield and qual-
ity, environmental safety, and economic concerns [10]. The use of N fertilizers is a critical
factor in maximizing yield potential in agricultural production, but has serious impacts
on the environment, including high energy consumption, greenhouse gas emissions, and
eutrophication of the water supply [9]. The NUE of rice is extremely low, particularly
in irrigated ecologies, due to ammonia volatilization, denitrification, surface runoff, and
leaching [11,12]. To increase plant NUE and decrease N fertilizer input in agricultural
practice, it is crucial to understand the mechanisms of rice growth and development in di-
verse N-availability environments [13]. Therefore, increasing NUE is important to increase
agricultural yields, to reduce production costs, and maintain environmental quality [14,15].

2. Nitrogen Functions and Nitrogen Deficiency Symptoms

Rice plants undergo a shift from vegetative to reproductive growth to produce a har-
vestable crop. Nitrogen is the primary component responsible for overall crop growth
and development because it increases the number of leaves, individual leaf area, leaf area
index (LAI), number of internodes, and internode length. N deficiency symptoms are first
found in old leaves, and eventually become chlorotic and die [1]. N deficiency will further
limit crop growth and development, resulting in premature senescence and decreased
yields [2]. Nitrogen nutrition and its remobilization affect the number of grains per culm
in cereals [16,17]. The nitrogen absorbed by roots is delivered from the roots to the upper
leaves for plant development. The reallocation of N from older, senescing leaves to younger
leaves and reproductive organs occurs in vegetative development advances [18].

http://www.fao.org/faostat/en/#data/OA
http://www.fao.org/faostat/en/#data/OA
https://www.ifastat.org/databases/graph/1_1
https://www.ifastat.org/databases/graph/1_1
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2.1. Role of Nitrogen in Rice Photosynthesis

Photosynthesis is vital for plant growth and crop yield [19,20]. Increasing the efficiency
of photosynthesis is of importance for enhancing agricultural productivity and yield [21].
The photosynthetic NUE of rice is the highest among C3 species, indicating that rice
assimilates a high amount of N per plant at the leaf level [1]. In photosynthesis, the
‘physical energy’ of photons is transformed into the ‘chemical energy’ of ATP and reduced
metabolic intermediates (chiefly NADPH), which are utilized in the synthesis of carbon (C)
and N assimilates, as well as carbohydrates and amino acids [22]. These fuels are used for
the synthesis of biochemical components and ultimately supplied to plant organs. Because
photosynthesis accounts for more than half of the N consumption in the leaf and most of
the remainder is indirectly associated with its photosynthetic function (Figure 2), thus, N
availability has a considerable impact on photosynthesis [23].
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Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), an essential but rate-
limiting component of photosynthesis, is central to the photosynthetic process [24–26].
Rubisco has long been considered an important storage protein [26]. It can be mobilized
from senescing leaves for the accumulation of protein content in young leaves and the
biosynthesis of storage proteins in cereals grains when N supply is limited [18]. The in-
volvement of Rubisco in the rice–N economy is complex, as evidenced by the fluctuating
equilibrium between the maintenance of CO2-assimilating ability and Rubisco remobi-
lization in old leaves. Nitrogen deficiency will shorten the leaf life span and decrease the
accumulation of the assimilation product, and the rates of senescence and loss of photosyn-
thetic capacity are more rapid than those under abundant N. Conversely, the contents of
Rubisco and soluble protein (per unit of chlorophyll) increase with the increase in plant N
content. Therefore, extending the effective life span of leaves via N application or breeding
is a tried-and-true method for increasing rice yield. The ratio of Rubisco to chlorophyll in
rice is relatively stable across a certain range of N application, but is increased with the
further increase in leaf N content. Furthermore, increased N supply has a more profound
effect on the increase in the ratio of Rubisco to chlorophyll than on the ratio of ATP synthase
to chlorophyll [24,27].

2.2. Role of Nitrogen in Rice Root

Nitrogen is taken up by the roots, and assimilates are transported from the overground
tissues to the roots to support regular growth and development [28]. The root structure
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and functions influence the nutrient and water uptake of plants [29,30]. Root architecture
and crop yield are strongly affected by N concentrations in the soil. Mild N deficiency
leads to the elongation of the lateral roots and primary root, while severe or prolonged N
deficiency will inhibit the primary root growth and total root length [9]. Available N can
diffuse along a high-to-low concentration gradient from the soil solution to the root surface.
Nitrogen uptake from the soil solution and particles can be enhanced by increasing the root
surface area [31]. Soil N deficiency will facilitate the allocation of more nutrients to boost
root development, which has a negative effect on shoot biomass and production. The NUE
cannot be improved by only increasing the root biomass or root surface area alone.

2.3. Role of Nitrogen in Rice Metabolism

The signals from ammonium, nitrate, and nitrogen-containing metabolites including
aspartate, glutamate, and glutamine, as well as the signals from C metabolism, constitute
a complicated regulatory network involved in the C–N interaction [32]. Additionally, these
metabolic signals will interact with hormones such as cytokinin, which respond to N supply
and regulate metabolism and development. Nitrogen availability significantly affects the
distribution of assimilated C, such as organic acids, starch, and sucrose, as well as the
underlying mechanisms that are regulated by N, including both transcriptional and post-
translational controls [33]. Metabolite profile analysis indicated that low N treatment caused
decreased concentrations of total sugars and organic acids in the leaves, and increased
concentrations of total sugars, organic acids and free amino acids in the roots [28].

2.4. Role of Nitrogen in Rice Yield and Yield Components

The number of panicles or heads, the number of spikelets per panicle or head, the
weight of 1000 spikelets, and the sterility or number of filled spikelets per panicle or head
are the yield components that determine grain yield in cereal crops [21]. The number of
panicles or heads is determined in the vegetative developmental phase. In the reproductive
growth stage, the number of spikelets per panicle or head is determined, while in the
spikelet-filling or reproductive growth stages, the weight of spikelet and spikelet sterility
are determined. Therefore, a crucial strategy to boost grain output is to provide sufficient
N for rice plants or cereal crops under different growth periods. By considering the yield
components, the yield of a crop may be stated in the form of the following equation [34]:

Grain yield (Mg ha−1) = number of panicles m−2 × spikelets per panicle × percentage filled spikelets × 1000
spikelets weight (g) × 10−5 (1)

The timing of N availability is crucial for rice growth and development because it
influences all yield components, including number of tillers, number of productive tillers,
grain number per ear, 1000-grain weight, and grain N content. The uptake of N after
anthesis accounts for approximately 50% of the final grain N content in rice [35]. The
rice productivity is mainly affected by the number of effective tillers rather than the total
number of tillers. The number of productive tillers is influenced by environmental factors,
particularly soil N concentrations during the early phases of tiller bud formation [36].
Adequate N supply is crucial for the grain development of rice and the increase in filled
grains per panicle [37].

3. Definitions and Estimation of Nitrogen Use Efficiency in Plants

The measurement of NUE is important for assessing the fates of applied chemical
fertilizers and their contribution to increasing crop yields [1,38]. Numerous definitions
of NUE have been published in some studies (summarized in Table 1) [10,31,39–41]. In
these definitions, plant productivity is considered in terms of ultimate yield, biomass,
protein content, or a combination of these indicators. The formula of NUE calculation, i.e.,
NUE = NUpE × NUtE, includes N uptake efficiency (NUpE) and N utilization efficiency
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(NUtE). NUpE is defined as the plant N uptake divided by the N application rate. The
NUtE is calculated as the ratio of the total grain yield to the total N contents of the plant.

Table 1. Formulae and definitions of nitrogen use efficiency proposed for plants.

Number Terminology Formulae Definition Comments Ref

1 Nitrogen use
efficiency (yield) NUE = NUpE × NUtE Grain weight/N Supply (g

per plant).

Consider yield only.
High NUE crops will
have a high yield but
potentially a low N

content in the biomass
and in the grain.

[10,31,39]

2 Nitrogen uptake
efficiency NUpE UpE = Nt ÷ Ns

Nt = total nitrogen in
plant,

Ns = nitrogen
supply (g per plant).

Measure efficiency of
extracting N from soil. [31,39]

3
Nitrogen

utilization
efficiency, NUtE

UtE = Gw ÷ Nt
Gw = grain weight,
Nt = total nitrogen

in plant.

Fraction of N
converted to grain. [31,39]

4 Agronomic
efficiency AE = (GwF − GwC) ÷ NF

NF = nitrogen fertilizer
applied,

GwF =grain weight with
fertilizer,

GwC =grain weight of
unfertilized control.

Measures the
efficiency of

converting applied
nitrogen to grain yield.

[31,39]

5 Apparent
nitrogen recovery

AR = (NF uptake − NC
uptake) ÷ NF × 100

NF uptake = plant
nitrogen (fertilizer),
NC uptake = plant

nitrogen (no fertilizer),
NF = Nitrogen

fertilizer applie.

Measures the
efficiency of capture of

nitrogen from soil
[10,39,40]

6 Physiological
efficiency

PE = (GwF − GwC) ÷ (NF
uptake − NC uptake)

GwF = grain weight
(fertilizer),

GwC = grain weight
(no fertilizer).

Measures the
efficiency of capture of

plant nitrogen in
grain yield.

[39–41]

7 Fertilizer
recovery efficiency FRE = (GN − EN)/FN

GN = N removed in grain,
EN = N from soil + rain,

FN = fertilizer N applied.

Grain N from fertilizer
as a fraction of that
applied as fertilizer.

[39]

8 Fertilizer
use efficiency FUE = GY ÷ AF GY = Grain Yield,

AF = Applied Fertilizer.

Reflects the recovery
of N in the crop as

a fraction of
fertilizer applied.

[39]

4. Approaches to Improve Nitrogen Use Efficiency in Rice

Sustainable agricultural development requires taking advantage of advanced agro-
nomic practices to ensure the more efficient use of N fertilizers, and thus reducing environ-
mental pollution risks. Three main factors that influence the use efficiency of fertilizer N
are crop demand, supply ability of plant-available N from the soil and fertilizer, and N loss
from soil–plant systems [12,31]. In the last few decades, a large number of N management
techniques have been used to increase crop production and NUE, including balanced fertil-
ization, the use of nitrification inhibitors and slow-release nitrogenous fertilizers, the split
application of N fertilizer, root zone fertilization, and so on. These N management practices
will better accord with the N fertilizer requirement of the crop during the growth period,
which can contribute to the improvement of NUE. Furthermore, due to high-efficiency
selection and the pyramiding of genes, molecular breeding technology has been widely
used to conduct the genetic improvement of rice varieties with high NUE genes [42,43].
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4.1. Improvement of Nitrogen Use Efficiency: Physiological Perspective

Rice NUE is closely related to N uptake, N accumulation, and transport [38]. The mor-
phological traits and activities of rice roots significantly affect the uptake and utilization of
N fertilizer. The roots’ characteristics, such as larger root biomass, deeper root distribution,
longer root length, greater root length density, and root oxidation activity contribute to
higher NUE and crop yield [44]. Therefore, identifying the main root characteristics of high
NUE in rice can provide references for the implementation of N application technology.
Photosynthesis is the main source of assimilation products in rice. Stronger photosynthetic
capacity, and the more efficient synthesis of photosynthetic products can lead to the accu-
mulation of dry matter. The N content in leaves affects photosynthetic pigment content
and the content and activity of Rubisco, which further affects the leaves’ photosynthetic
capacity and efficiency. During the past few decades, rice breeding for high yield and ratio-
nal water and fertilizer management have contributed to a substantial increase in rice yield
per unit area [45]. Furthermore, the densities and methods of crop planting have reached
optimization. Therefore, improving the utilization rate of light energy will be the main way
to increase crop yields in the future because there is a good correlation between plant NUE
and photosynthetic NUE [46]. Therefore, increasing the photosynthetic NUE of leaves will
contribute to the increase in NUE and the yield of crops. Future research directions should
focus on investigating the key factors of limiting photosynthesis and photosynthetic NUE,
and explore effective ways to enhance photosynthesis and photosynthetic NUE.

4.2. Improvement of Nitrogen Use Efficiency: Agronomic Perspective

An appropriate N management strategy is essential to increase NUE and crop yields [8,47].
Scientific fertilization mainly includes the selection of suitable N fertilizer type (right
source), an adequate application rate of N fertilizer (right rate), the appropriate timing of
N application (right time), and the optimal position of N application (right place). The
4R nutrient management principles can be regarded as guidelines to improve traditional
agronomic practices [8]. Types of N fertilizer have been updated rapidly for the past few
years. Large granular fertilizers, slow-released fertilizers, compound fertilizers, formulated
fertilizers, and fertilizers with various inhibitors have been gradually applied in rice pro-
duction to effectively increase NUE through controlling the rates of dissolution and the
release of fertilizers. The appropriate dosages of N fertilizer are mainly confirmed by the
soil-testing formula fertilizer method, which can not only greatly enhance NUE and crop
yield, but reduce the loss of reactive N [48]. The appropriate timing of N application can
effectively increase NUE and crop yield, mainly by reducing the application rate of basal
fertilizer and increasing the times of N applications in the later stages of crop growth [48].
Suitable fertilizer placement has indicated that the N fertilizer is applied in the locations
where it can be easily absorbed and utilized by the crop root system. The deep application
of N fertilizer is one of the simple and effective ways to improve NUE.

New N fertilizer species can significantly reduce N fertilizer loss, but higher production
costs and sales prices seriously restrict their popularization and application. In the future,
soil-testing formula for fertilization with N, phosphorus and potassium must be used to
improve crop yield and fertilizer utilization. Cultivated land is dominated by small fields
for rice planting. Therefore, it is essential to develop economically feasible mechanical tools
and promote the popularization and application of deep fertilization, which will greatly
improve NUE and crop yields.

4.3. Improvement of Nitrogen Use Efficiency: Genetic Perspective

Using N fertilizer excessively will not only make it difficult to continue to increase crop
yield, but also reduce fertilizer use efficiency, resulting in the deterioration of the ecological
environment. There are a large number of transporters involved in N uptake and utilization
which play an important role in determining rice yield and quality. It is of great significance
to investigate the mechanisms of N uptake, transport, and assimilation processes in rice,
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and to explore the genes of highly efficient N utilization for reducing both N fertilizer input
and the cost of rice production, and increasing sustainable agricultural development.

Therefore, we provide a thorough summary of the currently reported genes on NUE,
paying particular attention to N uptake, assimilation, and transport, as well as transcrip-
tional control of N signaling in rice (Table 2). Thus far, N efficiency-related genes have
been successively isolated or cloned at the molecular level, and their expression level,
characteristic analysis, and functional identification have made great progress in the field
of molecular biology. These genes related to N uptake, transport, or utilization efficiency
include NRT/PTR (nitrate transport, peptide transport) genes, AMT (ammonium transport)
genes, NPL family genes, and other types of genes.

Table 2. Manipulation of genes to improve nitrogen use efficiency in rice.

Category Functions Gene Technology References

Nitrogen-uptake genes

Nitrate
transporters

NRT2.1 Overexpression [15,42,43]
NAR2.1 RNA interference [42]

PTR9 Overexpression RNAi [42,43]
PTR6 Overexpression [42,43]

NRT1.1B Overexpression [42,43]
NRT2.3a or NRT2.3b Overexpression [15,42,43]
NRT1.1a or NRT1.1b Overexpression [42]

NPF7.3 (PTR6) Overexpression RNAi [15,42,43]
NPF7.7-1 or NPF7.7-2 Overexpression RNAi [42,43]

NPF6.1 Overexpression CRISPR/Cas9 [42]
NPF4.5 Overexpression CRISPR/Cas9 [42,43]

Ammonium
transporters

AMT1.1 Overexpression [15,42]
AMT1-1 Overexpression [42]
AMT1;1 Overexpression [42,43]
AMT1-3 Overexpression [15,42,43]

Nitrogen
assimilation genes

Nitrate and nitrite
reductases NR2 Overexpression RNAi [42]

Glutamine synthetase GS1;1
GS1;2 Overexpression [15,42,43]

Glutamate synthase

NADH-
GOGAT Overexpression [15,42]

AMT1;2
GOGAT1 T-DNA tagging+ crossing [42]

Glutamate
dehydrogenase GDH Overexpression [42]

Nitrogen
remobilization and

translocation

Asparagine synthetase ASN1 Overexpression [42,43]

Alanine
aminotransferase

AlaAT Overexpression [15,42,43]
AAT1, AAT2,

AAT3 Overexpression [42]

Amino acid
transporters

AAP6a Overexpression RNAi [42]
AAP3 Overexpression RNAi editing [42,43]
AAP5 Overexpression RNAi editing [42,43]
LHT1 Editing [42]

AAP4a or 4b AAP4 Overexpression RNAi editing [42]

Transcription factors

–

CPK12 Overexpression [42]
ESL4 Overexpression [42]
GRF4 Overexpression RNAi editing [42,43,49]
NLP1 Overexpression editing [2,42]
myb61

grf4 Editing [42]

NLP4 Overexpression editing [2,42]
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Table 2. Cont.

Category Functions Gene Technology References

MADS25
MADS27 MADS57 Overexpressing [39,50]

MYB305 Overexpressing [39,50]
RDD1 Overexpressing [15,50]

BT Repression expressing [50,51]
IDD10 Overexpressing [50,51]
NAP Overexpressing [39,50]

4.3.1. NRT Genes Involved in Rice NUE

Nitrate is not only the main inorganic N source in plants, but also acts as signal
molecules to activate the expressions of a series of genes, thus improving NUE. Nitrate
transporter 1 (NRT1)/peptide transporter (PTR) exist widely in plants. They are generally
known as the NPF family due to high homologous sequences. Several studies have reported
that the proteins encoded by NPF family genes have some functional commonalities, such
as OsNPF2.2, OsNPF2.4, OsNPF4.5, OsNPF7.2, and OsNRT1, belonging to low-affinity
nitrate transporters. The knockdown or overexpression of NPF genes affects nitrate uptake,
distribution, and long-distance transport from root to stem in rice [52–55]. OsNRT1.1B is
a NRT1 family gene localized at the plasma membrane which is induced by high nitrate
concentration. There is a variation between threonine and methionine at position 327
of OsNRT1.1B which is specific to indica and japonica, thus resulting in the different
absorption capacity for nitrate in them. The NIL family with indica OsNRT1.1B showed
higher yield and N use efficiency. The variation in OsNRT1.1B greatly explains the difference
in nitrate utilization between indica and japonica, and has potential utility value for
improving NUE in japonica [56].

In addition to NRT1, NRT2 mainly participates in nitrate uptake and transport, and
is an important nitrate transporter. OsNRT2.3A and OsNRT2.3B, as two members of the
high-affinity nitrate transporter family, are two transcripts produced by OsNRT2.3 during
alternative splicing and are mainly expressed in the phloem of the plant. OsNRT2.3a
encodes a phloem protein at the amino-acid position 516, responsible for long-distance
nitrate transport from root to stem [57,58]. OsNRT2.3B encodes a phloem plasma membrane
protein at amino-acid position 486, which maintains intracellular pH buffering capacity to
increase nitrate uptake [59]. OsNRT2.4 is a plasma membrane-localized dual-affinity nitrate
transporter required for lateral root formation and NO3

--N distribution in the shoots [60].
The nitrate transport ability of OsNRT2.1, OsNRT2.2 and OsNRT2.3a depends on their
cooperation with OsNAR2.1 [61].

4.3.2. The AMT Genes Involved in Rice NUE

The main N sources of plant uptake are ammonium and nitrate. Plants prefer to
absorb NH4

+-N than NO3
--N because the absorption and assimilation of NH4

+-N require
less energy. However, excessive NH4

+-N uptake will cause ammonium toxicity to plants,
so ammonium uptake and metabolism are strictly regulated by ammonium transporter
(AMT). In recent years, a total of 10 OsAMT genes have been identified in rice by genetic
engineering and forward genetics methods. According to their homology, they are divided
into five classes: OsAMT1 (OsAMT1.1, OsAMT1.2, OsAMT1.3), OsAMT2 (OsAMT2.1, Os-
AMT2.2, OsAMT2.3), OsAMT3 (OsAMT3.1, OsAMT3.2, OsAMT3.3), OsAMT4 and OsAMT5
(OsAMT5.1, OsAMT5.2).

Thus far, studies mainly focus on the three genes of the rice OsAMT1 family, which
shows a high homology of amino acid sequences and high affinity for NH4

+-N up-
take [62,63]. OsAMT1.2 and OsAMT1.3 are specifically expressed in the roots and are
induced by ammonium [62]. OsAMTl.1 is expressed in both root and shoot, and en-
dogenous glutamine has a feedback regulation effect on it [64]. Furthermore, OsAMT1;1,
OsAMT1;2 and OsAMT1;3 regulate the synergistic uptake of NH4

+-N by rice under low-
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N conditions. The growth and N accumulation of single gene mutants exposed to low
NH4

+-N were not affected. The stem growth and N content of the amt1;1/1;2 double-mutant
decreased by 30%, while the growth of the amt1;2/1;3 double-mutant was not affected. The
amt1;1/1;2/1;3 triple-mutant had the most significant phenotype, with a 59% inhibition of
shoot growth and a 72% reduction in N accumulation [65].

4.3.3. The NLP Family Genes Involved in Rice NUE

At present, several genes related to NUE have been identified in the NLP (nodule
inception-like protein) family. Six NLP genes, named OsNLP1-OsNLP6, were identified
in rice based on genomic data analysis [66]. Recent studies have shown that OsNLP1,
OsNLP3 and OsNLP4 could directly bind to the promoter regions of many N-uptake and
assimilation genes, then coordinate the expression of these genes, and thus promote N
uptake and utilization. The expression of OsNLP3 and OsNLP4 were induced by low
NO3

--N, but most of the proteins were localized in the cytoplasm and few were localized
in the nucleus; thus, the expression of some N uptake and metabolism genes was weakly
up-regulated [67,68]. The expression of OsNLP1 was also induced by N starvation, but
it was specifically localized in the nucleus and constitutively regulated N uptake and
metabolism [69]. Under high NO3

--N conditions, nitrate facilitated the transport of OsNLP3
and OsNLP4 from the cytoplasm to the nucleus, and strongly upregulated the expression of
N uptake and metabolism genes, so promotes N uptake and utilization [67,68]. However,
when NH4

+-N was used as the sole N source, a small amount of OsNLP4 proteins was
localized to the nucleus in a much slower manner, and regulated N utilization together
with OsNLP1 [68].

OsNLP3 is a key transcription factor in nitrate signaling transduction and is regulated
by phosphate signaling repressor SPX4. Under low NO3

--N conditions, SPX4 formed
a complex with NLP3 which prevented NLP3 from entering the nucleus, and then inhibited
the expression of N-responsive genes and N utilization. For high NO3

--N conditions,
nitrate can promote the formation of an NRT1.1B–SPX4–NBIP1 complex. The ubiquitin
ligase NBIP1 accelerated the ubiquitination and protein degradation of SPX4, and then
released NLP3 into the nucleus, which activated the expression of N-responsive genes and
the efficient utilization of N fertilizer [70].

4.3.4. Other NUE-Related Rice Genes

In addition to those genes mentioned above, there are other genes involved in N
uptake and transport in rice. The MADS-box family transcription factor plays an important
role in the regulation of plant growth and development. ANR1 is a key functional gene that
has been verified to regulate lateral root development in Arabidopsis through the nitrate
signaling pathway. Rice has five homologue genes of ANR1: OsMADS23, OsMADS25,
OsMADS27, OsMADS57, and OsMADS61. Among these genes, OsMADS25, OsMADS27
and OsMADS57 are closely associated with N-signaling, which are mainly located at
nucleus. They affected root architecture and NO3

--N accumulation by regulating the
nitrate transporters [71–73].

During the growth and development of rice, three homologous genes encoding cy-
toplasmic glutamine synthetase are required, including OsGS1;1, OsGS1;2 and OsGS1;3.
OsGS1;1 is mainly responsible for rice growth and grain filling [74]. OsGS1;2 mainly affects
plant height and the number of tillers and spikes [75]. In developing endosperm, NF-YC12
can directly bind with FLO6 and the OsGS1;3 promoter, thereby regulating starch and protein
synthesis, respectively, and thus regulating the accumulation of seed storage materials [76].

Growth-regulating factor 4 (OsGRF4) is a key component of the GA signaling pathway
and interacts with DELLA proteins. GRF4 is a positive regulator of the plant carbon–
nitrogen metabolism, which can promote N uptake, assimilation, and transport, as well as
photosynthesis, carbohydrate metabolism, and transport, but DELLA limits these processes.
GA can promote the degradation of the DELLA protein, and then enhances the transcrip-
tional activity of GRF4, so as to achieve the synergistic regulation of photosynthetic carbon
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fixation capacity in the leaves and N-uptake capacity in the roots, thus maintaining the
balance of the C–N metabolism in plants [49]. OsMYB61 regulates cellulose biosynthesis
and NUE, and the introduction of indica OsMYB61 into japonica varieties shows an effect
of increasing yield, especially under N deficiency; its expression is controlled by GRF4 [77].

Recently, more and more N-efficient genes have been reported, such as OsGOGAT1,
OsTCP19, OsDREB1C, and so on [78–80]. The significant value of these genes will contribute
to improving N-uptake capacity, maintaining the N metabolism balance, and enhancing
the NUE, thereby obtaining new varieties with low N tolerance to improve the rice yield
and quality.

5. Conclusions

Nitrogen is an important element in plant growth, development, and yield forma-
tion. Improving plant NUE can efficiently reduce the application rate of N fertilizer and
agricultural costs, thereby mitigating environmental pollution and ensuring food security.
The agronomic strategies to improve NUE include screening rice varieties with high NUE,
developing and applying new N fertilizers, optimizing the period and method of fertiliza-
tion, scientifically using nitrification inhibitors and urease inhibitors, and popularizing and
applying new technologies of fertilizer saving. These scientific and rational management
measures of N fertilizer will contribute to realize food security and sustainable development
in agriculture.

Improving the NUE of rice includes not only N uptake, but also N transport and the
allocation between sink and source. At present, some progresses have been obtained for
exploring the physiological and molecular mechanisms of highly efficient N utilization
in rice. Recently, many NH4

+- and NO3
--related transporters have been continuously

identified in rice. Currently, the breeding of high NUE cultivars mainly relies on traditional
breeding methods. Although many N-efficient genes have been identified, the successful
application to crop production is still rare. Therefore, in the future, the breeding of N-
efficient varieties with real practical value by using molecular marker-assisted breeding
technology is still an important research topic.

In recent decades, with the development of multi-omics technologies, N uptake and
utilization by rice have been systematically studied through transcriptomics, proteomics,
and metabonomics, so as to improve the NUE of rice. In addition, it is necessary to
further combine these results with precise field management and cultivation techniques to
maximize the exploitation of the biological potential of new varieties.
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