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FedWeight: mitigating covariate shift of
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records data through patients re-
weighting
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Federated learning (FL) enables collaborative analysis of decentralized medical data while preserving
patient privacy. However, the covariate shift from demographic and clinical differences can reduce
model generalizability. We propose FedWeight, a novel FL framework that mitigates covariate shift by
reweighting patient data from the source sites using density estimators, allowing the trained model to
better align with the distribution of the target site. To support unsupervised applications, we introduce
FedWeight ETM, a federated embedded topicmodel. We evaluated FedWeight in cross-site FL on the
eICU dataset and cross-dataset FL between eICU andMIMIC III. FedWeight consistently outperforms
standard FL baselines in predicting ICUmortality, ventilator use, sepsis diagnosis, and length of stay.
SHAP-based interpretation and ETM-based topic modeling reveal improved identification of clinically
relevant characteristics and disease topics associated with ICU readmission.

Training machine learning (ML) models on large-scale electronic health
record (EHR) data is promising for advancing medical research and
improving patient outcomes1. However, EHR data are from different
healthcare institutions are not easily pooled, because it is difficult to move
these data out of institutions due to laws and regulations about data privacy
and data governance, and transmission costs2. To enable machine learning
in the context of these challenges, Federated Learning (FL) trains themodel
on local datasets that remain in each healthcare institution and shares only
the model parameters with the central server for model averaging3.
Although FL has been widely used in the clinical settings4–6, traditional FL
assumes the same data distributions for each silo7–12. This is an unrealistic
assumption because of covariate shifts due to differences in patient demo-
graphics, clinical practices, and data collection methods between
institutions13,14. Such disparities may lead to poor performance on out-of-
distribution (OOD) clinical data, resulting in inaccurate predictions and
uninterpretable clinical outcomes. For instance, a federated model trained
on data from specialized hospitals may be unable to accurately predict
patient outcomes at a community hospital. Beyond common supervised
tasks in FL affected by covariate shifts, unsupervised tasks, such as topic
modeling techniques, like Embedded Topic Models (ETM)15 for extracting

latent representations fromhigh-dimensional EHRdata, are also vulnerable
as ETM’s topic distributions can vary significantly across institutions.
Therefore, given the significance ofAI safety and quality16–19, it is essential to
develop a framework to mitigate the effect of covariate shifts on FL, thus
providing more robust inference to enhance disease prevention strategies
and promote fairness in healthcare decisions and outcomes20–22. In this
study, we aim to develop an FL-powered medical modeling framework for
EHR data that mitigates covariate shifts by re-weighting patients from
source clinical sites to align with the target site’s data distribution, thereby
improving model generalization and clinical outcome predictions.

Recently, Shimodaira et al. introduce the weighted log-likelihood
method to address covariate shift using importance sampling, assigning
weights to the training loss based on the ratio of test to training input
densities13. Building upon their work, methods have been proposed to
estimate the reweighting ratios using Kernel Mean Matching23,24, as well as
Kullback-Leibler Importance Estimation Procedure (KLIEP)25, which have
been extensively employed to alleviate covariate shifts in centralized
learning environments. However, all these methods rely on access to both
training and test samples of all patients to estimate the reweighting ratios,
which is impractical in FL settings due to privacy constraints. To mitigate
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this challenge, FedCL and FedDNA employ a model-level reweighting
approach by sharing statisticalmodel parameters across clients26,27, but their
improvements are limited as the reweighting is estimated solely at themodel
level. In contrast, several existing methods estimate the sample-level
reweights by sharing unlabeled data across clients28,29, which may increase
communication costs and compromise data privacy, thus violating FL
principles. To address this issue, FedDisk trains a global density estimator
alongwithmultiple local density estimators to compute reweighting ratios30,
but their experiments demonstrate onlyminor improvements on real-world
image data. Moreover, other enhanced FL methods such as FedProx31,
SCAFFOLD32,MOON33, and FedNova34 address general data heterogeneity
by introducing regularization, control variates, or normalization-based
aggregation. For instance, FedProx adds a proximal term to the local
objective to constrain divergence from the global model. While these
methods improve training stability under data heterogeneity, they primarily
mitigate optimization variance and do not explicitly address covariate shift
—a critical issue in clinical settings where input distributions vary across
institutions (e.g., due to demographic differences). Furthermore, their lack
of sample-level importance weighting limits their ability to correct dis-
tribution mismatches between training and deployment environments. In
summary, existing methods either provide limited performance improve-
ments or compromise privacy, making them unsuitable for healthcare,
where patient confidentiality is paramount. Given that FL in healthcare is
still nascent,with limited algorithms addressing covariate shifts35,36, there is a
pressing need to develop a privacy-preserving solution with improved
performance in clinical settings.

In this study, we first describe covariate shifts in twowidely used public
EHR datasets, namely the eICU Collaborative Research Database (eICU)37

and theMedical InformationMart for IntensiveCare III (MIMIC-III)38.We
then present a novel FL framework— Federated Weighted Log-likelihood
(FedWeight). Specifically, FedWeight incorporates the weighted log-
likelihood method within the federated framework13, which probabil-
istically re-weights the patients from the source clinical sites, aligning the
trainedmodel with the data distribution of the target site. FedWeight can be
applied to both supervised and unsupervised tasks. We evaluate our fra-
mework using eICUandMIMIC-III datasets.Within the eICU,we perform
cross-hospital FL. We then conduct federated training between eICU and
MIMIC-III, while addressing their distribution differences. The experi-
ments demonstrate that comparedwith the existingmethods, our approach
can provide more accurate predictions of patient mortality, ventilator use,
sepsis diagnosis, and ICU length of stay.

Results
Identifying covariate shifts in clinical data
ML-based data harmonization. Different hospitals may adopt distinct
administration practices, leading to variations in naming the same drug
across clinical sites. Specifically, in the eICU dataset, different hospitals
may use distinct encoding of drug administration. Some may use the
generic name (e.g. “acetylsalicylic acid”), while others use the trade name
(e.g. “aspirin”), although both refer to the same drug. Moreover, the
dosage information is included in some drug names (e.g. “aspirin 10mg”)
but not all. As a result, we observed distinct clusters of patients by hos-
pitals (Fig. 1a). Furthermore, over 40% of drug names are not recorded
(Fig. 1d), although some of them have Hierarchical Ingredient Code List
(HICL) codes. However, the HICL codes are not widely used in other
hospitals, such as the one inMIMIC-III, which impedes the training of FL
models across hospitals and datasets. In addition, there is almost no
overlap in drug encodings across hospitals (Fig. 1f). To address this, we
developed a method to impute missing drug names. We also developed a
drug harmonization framework to combine drugs with similar identities
and exclude dosage information (see “Data preprocessing” in “Meth-
ods”). This preprocessing step successfully decreased the unrecorded
drug proportions to approximately 20% (Fig. 1e) and increased the
number of common drugs to over 90%. The clustering of patients from
different hospitals shows better mixing, although some hospitals still

exhibit distinct clusters (Fig. 1b). To prepare for model training across
datasets, we also harmonized data between two data domains namely
eICU and MIMIC-III (Fig. 1c). Interestingly, we observed two distinct
clusters from the MIMIC-III drug data (Supplementary Fig. 1a).
Enrichment analysis revealed that one cluster is significantly associated
with planned hospital admissions (elective ICU admission) and cardio-
vascular surgery patients (Supplementary Fig. 1b, c). These covariate
shifts due to the heterogeneous distributions between hospitals and
between datasets motivate us to develop FedWeight as experi-
mented next.

Heterogeneous patient demographics across eICU hospitals. In
addition to the drug data, we also observed demographic differences
among the hospitals in the eICU dataset. Specifically, we analyzed the
distribution of patients by age, sex, BMI, and ethnicity within each
hospital (Fig. 2a–d). Although most patients were between 50 and 89
years old,Hospital 148 had a higher proportion of younger patients (< 30)
(Fig. 2a). In addition, Hospital 458 had a higher proportion of ethnically
African patients, whereas Hospitals 167 and 165 had more Native
American patients (Fig. 2b). Despite the overall low proportion of
underweight patients across all hospitals, Hospital 199 manifested a
slightly lower proportion of underweight patients and a higher propor-
tion of obese patients (Fig. 2c). Furthermore, while most hospitals had
more male patients than female patients, Hospital 283 had an almost
equal proportion of male and female patients (Fig. 2d). These dis-
crepancies in the demographics of patients in hospitals can hinder the
effective generalization of models in FL settings.

Quantifying data likelihood by ML-based density estimators. To
address the problem of covariate shift, we first measured data distribu-
tions using model-based approach. To this end, we experimented with 3
deep learning density estimators, namely Masked Autoencoder for
Density Estimation (MADE)39, Variational Autoencoder (VAE)40, and
Vector Quantized Variational Autoencoder (VQ-VAE)41. Through each
model, we can compare the data likelihoods between the training data
from one hospital and test data from another hospital. In most hospitals,
the in-hospital likelihood is significantly larger than the out-hospital
likelihood (Fig. 2e–g), indicating that each hospital’s model aligns more
closely with its own data than other hospitals’ data. The results also show
that the 3 density estimators possess the sensitivity to detect covariate
shifts.

Addressing covariate shifts by sample re-weighting
Putting the above together, we developed FedWeight, a novel model-
agnostic ML method to re-weight the patients from source hospitals,
aligning the trained models from each source with the data distribution
observed in the target hospital (Fig. 3a–d). Specifically, the target hos-
pital shares its density estimator with all source hospitals, which use it to
calculate the reweighting ratio to train their local models. Intuitively, we
assign larger weights to the patients from the source hospitals whose
data distributions similar to the target population and smaller weights
to those with dissimilar data distributions. Consequently, the trained
model is better aligned with the target hospital data distribution,
thereby effectively addressing the covariate shift problem in the FL
settings. During training, only model parameters are shared between
the target hospital and the source hospitals, thus effectively safe-
guarding patient privacy.

This method facilitates adapting source hospital data to the target.
Additionally, we could also allow hospitals to mutually benefit from each
other. To achieve this, we developed Symmetric FedWeight (Fig. 3e–h). For
simplicity,we assumeda federatednetworkwith twohospitals,which canbe
easily extended tomultiple hospitals. These hospitals will treat each other as
the target and themselves as the source to calculate the reweighting ratio
(Fig. 3g). The symmetric strategy enables both hospitals to adapt to each
other’s data distributions.
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Simulation study
To evaluate the effectiveness of our method, we first undertook simu-
lation experiments on patients’ data. We trained the FedWeight model
on the simulation dataset by employing density estimators, namely
MADE, VAE, and VQ-VAE. Our simulation mimics the label imbal-
ance in the real-world data (e.g., more disease cases than healthy con-
trols). To prioritize precision over recall, we used the Area Under the
Precision-Recall Curve (AUPRC) as the evaluation metric for model
prediction. To assess the statistical significance of AUPRC values
between FedWeight methods and the baseline FedAvg, we performed
Wilcoxon rank-sum test (also known as the Mann-Whitney U test)42, a
non-parametric test that is suitable for the limited number of AUPRC
values in our federated model scenario43. We observed that all

FedWeight models achieve an average AUPRC of 0.923, which sig-
nificantly surpassed that of FedAvg, which had an average AUPRC of
0.917 (Wilcoxon rank-sum test p value < 0.05) (Supplementary Fig. 2a).
This result demonstrates that our proposed model has enhanced pre-
dictive capability over this baseline with the datasets examined.

We also examined FedWeight’s capability in identifying influential
features. Specifically, we evaluated the trained model by comparing its
weights to a sparse reference model that simulates true influential features,
using AUPRC as the evaluation metric. FedWeight models, when trained
with density estimators such as VAE, VQ-VAE, and MADE, achieve
comparable AUPRC results for detecting influential features (Supplemen-
tary Fig. 2b). All FedWeight models significantly outperform the baseline
FedAvg, demonstrating their potentials to pinpoint important biomarkers
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Fig. 1 | Effect of drug imputation and drug harmonization in the eICU dataset.
a, b UMAP projection of drug data across hospitals on eICU before and after drug
harmonization. The UMAP-reduced drug data is visualized in a scatter plot, with
each data point colored by its respective hospital. The Silhouette Score96 measures
the degree of mixing, where a lower score indicates better mixing of drug data across
hospitals. c UMAP projection of harmonized medication data from eICU and

MIMIC-III. d, e The drug rates before and after imputation of the eICU data. Since
some drugs may lack recorded names, drug rates indicate the proportion of admi-
nistered drugs with recorded names over all unique drugs. f, g Percentage of over-
lapped drugs before and after harmonization across the eICU hospitals. The
percentage was computed as the proportion of drugs with recorded names present in
both Hospital A and B relative to all drugs in Hospital B.
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for real-world applications (see “Detecting clinical features by FedWeight
+SHAP analysis”).

Additionally, we computed the Pearson correlation between the
weights of the reference model and the trained model. We observed that
FedWeight exhibits a higher correlation with the reference model’s weights
(Supplementary Fig. 2c). Therefore, FedWeight is more effective in cap-
turing influential features, thus providing better model interpretability.

Predicting critical outcomes from eICU data
Accurately predicting critical clinical events can drastically improve patient
outcomes, especially in the ICU. Inspired by prior studies5,6,44,45, we con-
ducted experiments to predict four outcomes, namely mortality, ventilator
use, sepsis, and ICU length of stay, using the first 48 hours of data from the
eICU dataset (see “Data preprocessing” in “Methods”). These outcomes
were selected based on their clinical importance, task diversity, and pre-
valence in existing FL research. Each plays a key role in ICU care: mortality
prediction supports early risk stratification; ventilator use and sepsis pre-
diction enable timely intervention and resource planning; and ICU length of
stay aids in discharge management and capacity planning. Moreover, the
four outcomes cover both classification (mortality, ventilator use, sepsis)
and regression (length of stay) tasks, as well as both fixed-point (mortality,
length of stay) and sequential (ventilator use, sepsis) prediction settings.
This diversity enables a comprehensive evaluation of model performance
across varying clinical and algorithmic scenarios.

To demonstrate the benefits of FL, we first compared the perfor-
mance of non-FL (i.e., training on one hospital and tested on another)
and FL methods. Our results show that all FL methods outperformed

the non-FL method (Supplementary Table 1). Then, we compared the
performance of FedWeight with both FedAvg and FedProx. Overall,
FedWeight consistantly outperformed FedAvg across most hospitals
and demonstrated competitive or superior performance compared to
FedProx (Fig. 4a–d; Supplementary Table 2). Additionally, FedWeight
variants also demonstrated performance close to that of the centralized
model, which was trained on pooled of data from all hospitals using
hospital IDs as one of the covariates to account for hospital-specific
batch effects.

For mortality prediction, Hospital 458 and 420 had the best results for
all methods (Fig. 4a). FedWeight with the VQ-VAE density estimator
provided superior results in all target hospitals (Wilcoxon test p value
<0.05). Compared to FedProx, FedWeight performed better in Hospitals
167, 252 and458,while FedProxhad an advantage inHospitals 199 and420.
Moreover, all FedWeight variants surpassed FedAvg in performance. They
also show comparable performance to the centralized model.

For ventilator prediction, Hospital 167 and 458 demonstrate the
highest AUPRC for all methods (Fig. 4b), as they had themost patients and
fewer imbalanced labels. Moreover, FedWeight achieved higher AUPRC
scores than FedAvg, notably in Hospitals 252, 420, and 458. It also out-
performed FedProx, particularly in Hospitals 167, 199, 252, and 458. Fur-
thermore, the overall performancewas close to that of the centralizedmodel.
FedWeight with the VAE density estimator demonstrated the best perfor-
mance in all target hospitals.

For sepsis prediction, Hospital 420, with fewer imbalanced labels,
yielded the most favorable outcomes for all methods (Fig. 4c). Again, the
FedWeight strategies also significantly outperformed both FedAvg and

Patient Age Distribution across Hospitals on eICU Patient Ethnic Distribution across Hospitals on eICU

Patient BMI Distribution across Hospitals on eICU Patient Sex Distribution across Hospitals on eICU

In-hospital and Out-hospital Distribution by ML-based Density Estimators

MADE VAE VQVAE

a. b.

c. d.

e. f. g.

In-hospital
Out-hospital

Hospital idHospital idHospital id

Fig. 2 | Visualization of covariate shift in the eICU and MIMIC-III dataset. a–d
Distribution differences in patient demographics, calculated as the proportion of
patients in each demographic group within each hospital. Note: The Caucasian
group was excluded from panel b to enhance the visibility of minority group dis-
tributions, as its majority presence would otherwise dominate the color scale and

mask smaller variations. e–g In-hospital and out-hospital distribution byML-based
density estimators. For each hospital, the in-hospital estimate was calculated by
applying its own density estimator to its patient data. The out-hospital estimate was
computed by applying the same density estimator to patient data from a different
hospital.
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Fig. 3 | FedWeight training process. a The target and source hospitals indepen-
dently train their density estimators. b The target hospital shares its density esti-
mator with all source hospitals. c Each source hospital calculates a patient-specific
re-weight, which is used to train its local model. d The target hospital aggregates the
parameters from the source hospitals using the FL algorithm, which better

generalizes the target hospital’s data. Symmetric FedWeight training process.
eHospital A and B independently train their density estimators. fHospital A and B
share their density estimators to each other. gHospital A and B regard each other as
targets, estimating the re-weight, which is used to train its local model. h Aggregate
the local models from Hospital A and B using FL algorithm.
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Fig. 4 | Performance comparison of federated models across clinical outcome
predictions, including mortality, ventilator, sepsis, and ICU length of stay pre-
diction. FedWeight methods were compared with FedAvg, FedProx, and a cen-
tralized model (i.e., model trained on the pooled eICU data and corrected by the
covariate indicator variable for each hospital). a–d Performance of clinical outcome
predictions on eICU, which was evaluated on a bootstrap-sampled dataset from five
target hospitals (167, 199, 252, 420, and 458), with mean and standard deviation

computed from the bootstrap samples. e Performance of cross-dataset federated
model trained on eICU and evaluated on a bootstrapped test set ofMIMIC-III. One-
sided Wilcoxon test p values were calculated to compare FedWeight with FedAvg
and FedProx. * and ** denote p values <0.05 and <0.01, respectively, for compar-
isons with FedAvg. * and ** indicate p values <0.05 and <0.01, respectively, for
comparisons with FedProx.
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FedProx, with FedWeight using MADE and VAE providing the most
accurate results in all target hospitals.

In the task of ICU length of stay prediction, most FedWeight variants
yielded lower loss compared to FedAvg, demonstrated performance on par
with FedProx, and closely matched the benchmark centralized model,
especially in Hospital 199 (Fig. 4d).

In addition, we investigated the impact of different density estimators
on the final performance of FedWeight. We first observed that the sample
reweights generatedby the three FedWeight density estimators (MAD,VAE
andVQ-VAE) exhibited high similarity, as evidenced by strong correlations
among the estimated reweights across all samples (Supplementary Fig. 3).
Furthermore, the convergence quality of the density estimators had a
noticeable effect on the performance of downstream FedWeight task
models. In particular, both underfitting (due to insufficient training) and
overfitting (due to excessive training) consistently led to performance
degradation across various FedWeight tasks (Supplementary Fig. 4).

Together, these results demonstrate that FedWeight consistently
improves upon FedAvg and offers competitive or superior performance to
FedProx across diverse hospitals and prediction tasks, particularly in
mortality and sepsis prediction. These findings highlight the robustness and
adaptability of FedWeight for real-world clinical outcome prediction in
federated settings.

Cross-dataset federated learning
In practice, each EHR dataset often requires separate access approval,
making it difficult to share or centralize the data. In this scenario, models
trained on each dataset can be pooled via the FL framework. To this end, we
performedcross-dataset analysis by training ourmodel on all hospitals from
the eICU dataset and making predictions on MIMIC-III (Fig. 4e). As
expected, the models trained on eICU hospitals demonstrate worse per-
formance on MIMIC-III (Fig. 4e), compared to the performance on the
held-out patients from eICU (Fig. 4a–d). Even so, FedWeight outperforms
FedAvg, especially in ventilator use and ICU length of stay predictions, with
all FedWeight variants significantly surpassing FedAvg (Wilcoxon test
p value <0.01) and achieving results comparable to the centralized model
(i.e., model trained on the pooled eICU data and corrected by the covariate
indicator variable for each hospital). Compared to FedProx, while Fed-
Weight exhibited slightly lower average scores inmortality, sepsis, and ICU
length of stay predictions, it delivered more stable performance with
reduced variance. For mortality prediction, FedWeight employing MADE
and VAE as density estimators achieve significantly higher AUPRC than
FedAvg (Wilcoxon rank-sum test p value <0.05) (Fig. 4e). In the case of
sepsis prediction, FedWeight models with VAE and VQ-VAE demonstrate
significantly superior performance compared to FedAvg (Wilcoxon rank-
sum test p value <0.05). In addition, all FedWeight variants show statistical
significance in ventilator and ICU length of stay prediction (Wilcoxon rank-
sum test p value <0.01), compared to FedAvg. These findings suggest that
FedWeight deliversmore robust and adaptable performance, particularly in
the presence of cross-dataset distribution shifts. This enhanced stability
positions FedWeight as a more reliable solution for real-world federated
clinical applications, where data distributions commonly vary across
institutions.

Detecting clinical features by FedWeight+SHAP analysis
We sought to assess whether FedWeight improves detecting relevant fea-
tures for the clinical outcome predictions using Shapley Additive Expla-
nations (SHAP)46. As a reference, we computed the SHAP values of the
centralized model. We used the Pearson correlation of the SHAP values
between the federated model and the centralized models as the evaluation
metric.We first performed the experiments using hospitals within the eICU
dataset. FedWeight demonstrated a superior correlation of SHAP values
compared to FedAvg across almost all hospitals, especially in predicting
ventilator use. Specifically, for mortality prediction, all the FedWeight
methods significantly outperform the baseline method (Wilcoxon test p
value <0.01), except for Hospital 458 (Fig. 5a). Moreover, the FedWeight

model usingMADE andVAE density estimator demonstrated significantly
higher correlation of SHAP values in all hospitals (Wilcoxon test p value
<0.01). For ventilator prediction, FedWeight using VAE and VQ-VAE
density estimator significantly outperformed FedAvg in all target hospitals
(Wilcoxon test p value <0.01) (Fig. 5b). Regarding sepsis prediction, Fed-
WeightVAE demonstrated themost significant results in all target hospitals
(Wilcoxon test p value <0.05) (Fig. 5c). For the length of stay prediction,
FedWeightMADE demonstrated significantly stronger correlations with
the benchmark across all target hospitals, whilst FedWeightVAE showed
significantly higher correlations in Hospital 167, 252, 420, 458 (Wilcoxon
test p value <0.01) (Fig. 4d). To conclude, our experiments on the eICU
dataset demonstrated that FedWeight SHAP values are more consistent
with the benchmark SHAP values. As SHAP values quantify feature
importance, this suggests that FedWeight is more effective in capturing
influential features.

We further performed a cross-dataset analysis, using eICUhospitals as
the source and MIMIC-III as the target. FedWeight demonstrated sig-
nificantly higher correlations in predictingmortality, sepsis, and ICU length
of stay (Wilcoxon test p value <0.01) (Fig. 5e). Notably, FedWeight utilizing
the VAE as the density estimator exhibited the best performance in mor-
tality and sepsis prediction, underscoring its capacity to capture features
highly associated with a patients’ length of stay in the ICU.

Top drugs and lab tests attributed to the clinical outcomes
Given the strong quantitative results for the feature attributions, we turn to
individual drugs and lab tests that exhibit high SHAP values based on the
best FedWeight model, namely FedWeightVAE.

Mortality.We leveraged drug administration and lab tests from the initial
48 h of ICU admission to predict patient mortality beyond this period.
The drugs of the highest correlation with patient mortality are pre-
dominantly vasopressors or anesthetics (Fig. 6a). Specifically, glyco-
pyrrolate is the foremost drug in mortality prediction, which reflects its
role as an anticholinergic agent to manage respiratory secretions and
mitigate vagal reflexes in critically ill patients during surgery47. Its asso-
ciation with mortality may serve as a proxy marker for high-acuity
clinical scenarios, highlighting its relevance as a potential marker of
severe physiological compromise in ICU settings. Following glyco-
pyrrolate, vasopressors like vasopressin epinephrine, and phenylephrine
emerge as critical prior to patients mortality, highlighting their role as
primary stress hormones typically administered in the context of life-
threatening conditions such as septic shock, cardiogenic shock, or pro-
found hypotension48–51. Therefore, this correlation suggests that the
necessity for vasopressor support often signals an advanced stage of
critical illness, marked by high acuity and poor prognostic outcomes.
After vasopressors, we also observed the administration of morphine
prior to patientmortality in the ICU, which is likely attributable to its role
in palliative care and the management of refractory pain and dyspnea in
critically ill patients52.

We identified a significant correlation between elevated blood urea
nitrogen (BUN) levels and subsequent patient mortality, highlighting its
utility as a pivotal biomarker for mortality risk in critical care (Fig. 6b).
Elevated BUN reflects underlying pathophysiological processes, including
renal insufficiency, systemic hypoperfusion, and heightened protein cata-
bolism, which are key indicators of severe illness53–57. Therefore, this asso-
ciationunderscores the prognostic significance of BUN in stratifyingpatient
risk and guiding therapeutic interventions. Additionally, increased lactate
levels are another profound indicators ofmortality. This verifies the existing
medical knowledge, as elevated lactate is a key clinical criterion for tissue
hypoxia in critically ill patients, which is strongly associated with ICU
mortality58–61.

Ventilator use. Sincemost patients initiate ventilationwithin 72 h of ICU
admission, we established a 72-hour observation window, further seg-
mented into six 12-h intervals.We aim to utilise drug administration and

https://doi.org/10.1038/s41746-025-01661-8 Article

npj Digital Medicine |           (2025) 8:286 7

www.nature.com/npjdigitalmed


Mortality Ventilator Sepsis ICU Length of Stay

SHAP Correlation of FL v.s. Centralized�
for eICU Mortality Prediction

a. b.

c. d.

e.

Wilcoxon test:
� � �: p-value < 0.05
� � �: p-value < 0.01
*
**

SHAP Correlation of FL v.s. Centralized�
for eICU Sepsis Prediction

SHAP Correlation of FL v.s. Centralized�for Cross-dataset FL Tested on MIMIC

Hospitals
167 199 252 420 458

Hospitals
167 199 252 420 458

Hospitals
167 199 252 420 458

Hospitals
167 199 252 420 458

P
ea

rs
on

 C
or

r.

P
ea

rs
on

 C
or

r.
P

ea
rs

on
 C

or
r.

P
ea

rs
on

 C
or

r.
P

ea
rs

on
 C

or
r.

SHAP Correlation of FL v.s. Centralized�
for eICU Ventilator Prediction

SHAP Correlation of FL v.s. Centralized�
for eICU Length of Stay Prediction

Fig. 5 | Comparison of FedWeight and FedAvg in capturing influential features.
SHAP values were leveraged to identify feature importance, calculated from test data
fed into the trained model. For mortality and ICU length of stay prediction, SHAP
values were summed across all samples. For ventilator and sepsis prediction, SHAP
values were aggregated across all time windows and samples, resulting in a one-
dimensional vector of feature importance. We then calculated the Pearson corre-
lation of feature importance between the federated and centralized model.

a–d Pearson correlation of SHAP-based feature importance for clinical outcome
predictions in eICU. The models were validated on the bootstrapped test sets of five
target hospitals (167, 199, 252, 420, 458). e Pearson correlation of SHAP-based
feature importance for cross-dataset federated learning, where models were trained
on eICU, and the correlation was computed on the bootstrapped test set of MIMIC-
III. One-sidedWilcoxon test p values were calculated against the baseline. * denotes
the p values <0.05, and ** represents the p values <0.01.
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a.

b. c.

d. e.

Important Drugs Identified by FedWeight+SHAP

Important Lab Tests Identified by FedWeight+SHAP
Mortality Prediction

Sepsis Prediction

Ventilator Prediction

ICU Length of Stay Prediction

Fig. 6 | Feature importance of drug and lab tests for clinical outcome predictions
identified by FedWeight+SHAP. a SHAP values of the top 5most important drugs
identified by FedWeight for each clinical outcome. We computed SHAP values for
each drugs present on target hospital. For mortality and ICU length of stay pre-
diction, SHAPvalueswere summed across all patients, while for ventilator and sepsis
prediction, they were summed across both time windows and samples, resulting in a

one-dimensional feature importance vector. For each clinical outcome, the top 5
most important drugs were selected, visualized with color intensities indicating their
feature importance. b–e SHAP values of the top 12most important lab tests for each
clinical outcome, identified by FedWeightVAE. Each dot represents a sample from
the target hospital. Features are ordered by their mean absolute SHAP value.
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lab test results from each interval to predict ventilator use in the next.
Additionally, we observed that 65.5% of patients in the eICU dataset
experience multiple episodes of mechanical ventilation during their ICU
stay. As a result, ventilator treatmentmay appear inmultiple intervals for
a single patient. Among all the drugs, propofol stands out for ventilator
prediction, which is commonly administered in critical care to facilitate
patient-ventilator synchrony, minimize agitation, and ensure tolerance
of invasive respiratory support62,63. However, since propofol is commonly
administered during intubation, its association with subsequent venti-
lator use likely stems from multiple ventilation episodes throughout the
ICU stay. Following propofol, our model identified chlorhexidine as a
drug administered to ICU patients who subsequently require mechanical
ventilation, which facilitates the identification of patients at high risk for
ventilation, while enabling medical practitioners to proactively prepare
for ventilatory support. This identification verifies the established clinical
knowledge. As a broad-spectrum antiseptic with bactericidal properties,
chlorhexidine is widely utilized in oral care protocols within the ICU to
mitigate themicrobial colonization of the oropharynx and trachea, which
are primary precursors to ventilator-associated pneumonia (VAP)64–66.
Our model also identified that etomidate is the third most commonly
administered drug prior to ventilator use. Specifically, etomidate is a
rapid-onset, short-acting intravenous anesthetic commonly employed
before endotracheal intubation. Although its administration might be
associated with adrenal suppression, etomidate is particularly suitable for
hemodynamically unstable patients due to its minimal impact on blood
pressure67,68.

For ventilator prediction, elevated arterial blood gas (ABG) para-
meters, including oxygen saturation (O2sat), demonstrate a strong
correlation with the subsequent initiation of ventilatory support
(Fig. 6c). While this may appear counterintuitive, as oxygen saturation
measurements are recorded before the initiation of ventilation, one
would anticipate these parameters to be elevated only after ventilator
treatment begins. Multiple episodes of mechanical ventilation could
explain this phenomenon. This pattern could also arise from the initial
use of high-flow oxygen or non-invasive ventilation (e.g., CPAP or
BiPAP) as a preparatory measure before transitioning to invasive
mechanical ventilation. Therefore, it is conceivable that patients
undergo an initial period of ventilatory support, exhibit elevated oxygen
saturation values, and subsequently require re-initiation of mechanical
ventilation.Moreover, we also observed the elevated blood urea nitrogen
(BUN) levels are highly correlated with the subsequent ventilatory
support. Such elevations often stem from renal insufficiency, hypovo-
lemia, or heightened protein catabolism associated with conditions like
sepsis or multiorgan dysfunction. These pathophysiological states fre-
quently precede respiratory failure, necessitating the commencement of
mechanical ventilation. Therefore, markedly elevated BUN levels may
serve as an ICU risk marker which often guides decisions on fluid
management, dialysis, and ventilation timing.

Sepsis. Similar to ventilation use, we designed a 72-hour observation
window comprising six 12-hour intervals. We aim to employ drug
administration and lab tests from each interval to predict sepsis diagnosis
in the subsequent interval. Confirming the existing medical knowledge
and literature, antibiotics such as vancomycin, exhibit the highest overall
feature attribution69,70, followed by piperacillin71, cefepime72, and
metronidazole73. Notably, our model make prediction based on drugs
administered prior to the sepsis diagnosis. Given that approximately 90%
of sepsis cases are community-onset74, with most patients presenting
infection symptoms prior to sepsis diagnosis, it is routine for patients to
receive these antibiotics before a formal diagnosis of sepsis.

For sepsis prediction, the white blood cell (WBC) count holds the
highest SHAP value (Fig. 6d), underscoring its strong association with
septicemia and septic shock. Leukocytosis generally reflects the immune
system’s activation in response to bacterial infection, driven by pro-
inflammatory cytokines75. Therefore, clinicians may leverage WBC with

other laboratory markers, including creatinine, platelet count, and lactate,
for early diagnosis and monitoring of the condition.

ICU length of stay. Using drug administration and lab tests from the first
48 hours of ICU admission, we aim to predict the remaining ICU stay
duration. Patients receiving cardiovascular drugs, including midodrine,
alteplase, and nicardipine, tend to have prolonged ICU stays (Fig. 6a).
This indicates that patients with cardiac surgery often require prolonged
monitoring and extended care, as supported by existing research76.

We observed an elevated platelet count as a strong indicator of pro-
longed ICU length of stay (Fig. 6e). Specifically, thrombocytosis serves as a
surrogate marker of heightened inflammatory activity and immune system
activation. This hyperactive platelet responsemay signify the severity of the
underlyingpathology, such as infection,malignancy, or surgical recovery, all
of which demand intensive and sustained care. Additionally, elevated pla-
telet levels are indicative of a hypercoagulable state, predisposing patients to
thrombotic complications, such as deep vein thrombosis or pulmonary
embolism, which necessitates prolonged ICU stay for vigilant monitoring
and therapeutic intervention77. Therefore, the association of thrombocytosis
withprolonged ICUdurationunderscores its role as a biomarker of systemic
stress and disease severity, providing insights into patient prognosis and
resource allocation in the ICU.

Together, our combined FedWeight+SHAP analysis detected known
drugs and lab tests associated with the clinical outcome predictions. This
identificationof influential variableswarrants future investigation to explore
causal mechanisms for the nuanced clinical associations identified in this
analysis.

Mortality-associated latent topics captured by FedWeight-ETM
In the aforementioned experiments, FedWeight demonstrated exceptional
performance in supervised prediction tasks. To identify sets of correlated
clinical features in an unsupervised setting, topic models78,79 are natural
choices as they can capture underlying patterns in high-dimensional EHR
data80,81. To achieve this, we incorporated FedWeight into EmbeddedTopic
Model (ETM)79 (see “Federated embedded topic model" in “Methods”),
leveraging its ability to learn a low-dimensional semantic representation of
clinical features while preserving patient privacy in a FL setting. First, we
developed FedAvg-ETM, which shares the encoder weights and clinical
feature embeddings between silos (i.e., eICUandMIMIC-III) to infer robust
latent topics fromdistributedEHRdata (Fig. 7a). To address covariate shifts,
we further extended FedAvg-ETM to FedWeight-ETM (Fig. 7b). Quanti-
tatively, we benchmarked the performances of non-federated ETM,
FedAvg-ETM, and FedWeight-ETM by predicting readmission mortality
using the corresponding topic mixtures as inputs to a logistic regression
classifier. Overall, FedAvg-ETM and FedWeight-ETM demonstrated
comparable performance and outperformed the baseline non-federated
ETM across different topic numbers (Supplementary Fig. 5).

We evaluated FedWeight-ETM’s ability to capture topics related to
patient mortality. We identified the top 5 topics that are significantly
associated with patient mortality. Figure 8a, b display the top three-digit
International Classification of Diseases (9th revision)(ICD) diagnostic
codes82 under each topic supportedby theFisher-exact testp values for eICU
andMIMIC-III data, respectively. For eICU,Topic 16 is themost significant
topic with the top ICD code being chronic renal failure (ICD-585). Indeed,
renal failure disrupts fluid, electrolyte, and metabolic equilibrium and
ultimately systemic homeostasis. For critically ill patients, it exacerbates
comorbidities such as sepsis and is a hallmark of multiorgan dysfunction
syndrome (MODS), perpetuating systemic inflammation and hemody-
namic instability, which increases the risks of patient mortality83,84. As the
second significant topic, Topic 31 involves cardiac dysrhythmias (ICD-427),
which has direct impact on hemodynamic stability and causes critical
conditions such as myocardial ischemia, heart failure, or sepsis. Moreover,
ventricular arrhythmias and atrial fibrillation can lead to reduced cardiac
output, tissue hypoperfusion, and multiorgan dysfunction in critically ill
patients85. As the third focus, Topic 28 involves acute renal failure
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(ICD-584). We observed that while acute renal failure is strongly associated
withmortality, its correlation isweaker than that of chronic renal failure.This
may be due to its potential reversibility with timely medical intervention86.

We also observed clinically meaningful topics inferred from the
MIMIC-III dataset (Fig. 8b). Namely, Topic 17 is characterized by septi-
cemia (ICD-38), which triggers widespread endothelial damage, capillary
leakage, and coagulopathy, culminating in septic shock and multi-organ
failure87. Furthermore, for Topic 10, the top disease identified by ourmodel
is abnormal findings on examination of blood (ICD-790). Severe
abnormalities in blood parameters—such as metabolic acidosis, electrolyte
imbalances, coagulation abnormalities, and hematologic dyscrasias—can

precipitate multi-organ failure, hemodynamic instability, and increased
susceptibility to infections88. These abnormalities often reflect underlying
pathophysiological insults, such as sepsis, acute kidney injury, or hemato-
logical malignancies, which all increase the risks of patient mortality. As the
third significant topic, Topic 25 is identified as complications peculiar to
certain specified procedures (ICD-996). These complications involve
device-related infections, graft failures, prosthetic malfunctions, and post-
surgical hemorrhage,which canprecipitate systemic instability,multi-organ
failure, or sepsis. This indicates that FedWeight-ETM is able to efficaciously
capture semantically meaningful topics, thus helping to uncovering clini-
cally relevant patterns in healthcare data. The association of these medical
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Fig. 7 | Federated latent topic modeling. a FedAvg-ETM. In each local hospital k ∈
K,Xk is input into the encoder, whose output goes into two separate linear layers and
produces μk and σk. Then, through the re-parameterization trick, we obtain the latent
representation Zk. After applying the softmax function, Zk gives the patient-topic
distribution θk. The learnable topic embeddingαk and ICDembedding ρk generate the

topic-ICDmixture βk. Then, βk is multiplied with θk to reconstruct the input. During
federated averaging, only the encoder network and the ICD embedding are uploaded
to the target hospital for aggregation,whilst all othermodel parameters arekept locally
updated. b FedWeight-ETM. FedWeight-ETMbuilds on FedAvg-ETMby applying a
re-weight to the log-likelihood term of the ELBO function for each patient.
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b. Top ICD Codes from Mortality-associated Topics
(by FedWeight-ETM + Wilcoxon Test P-Values on MIMIC-III)

Neg. Log of P-values of ICD Codes for Mortality
(by Fisher-exact Test on MIMIC-III)

a. Top ICD Codes from Mortality-associated Topics
(by FedWeight-ETM + Wilcoxon Test P-Values on eICU)

Neg. Log of P-values of ICD Codes for Mortality
(by Fisher-exact Test on eICU)

Fig. 8 | Relationship between the most and least mortality-associated topics and
ICD codes identified by FedWeight-ETM. We identified the top 5 mortality-
associated topics based onWilcoxon test on topic proportions between deceased and
surviving patients. The color intensity of the heatmap indicates the probability of an
ICD codes within a given topic. We selected the top ICD codes whose probability is

greater than 0.08. These ICD codes were validated by Fisher’s exact test p values on
the eICU and MIMIC-III data, visualized in a scatter plot for the most and least
mortality-associated ICD codes. aMortality-associated topics and ICD codes on
eICU. b Mortality-associated topics and ICD codes on MIMIC-III.
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conditionswithmortality underscores the necessity of rigorousmonitoring,
prompt identification, and timely intervention to mitigate these risks and
improve patient survival.

Discussion
FL is a promising approach for leveraging decentralized EHR data. How-
ever, FL notoriously suffers from the covariate shift issue, where data dis-
tributions differ significantly across clinical sites. These differences in
demographics, clinical practices, and data collection processes may lead to
significant performance degradation of the sharedmodelwhendeployed for
a target population. Tomitigate this issue,we propose FedWeight, wherewe
probabilistically re-weight the patients from the source hospitals. Intuitively,
samples more similar to the target distribution receive higher weights, thus
contributing more during training, whereas those less similar are assigned
lower weights, thereby contributing less during training. This approach
ensures that the data more relevant to the target distribution has a more
significant impact on model training, thus aligning the trained model with
the data distribution of the target hospital and effectively addressing cov-
ariate shifts in FL environments.

We conducted extensive experiments by FL across hospitals within the
eICUdataset and between the eICUandMIMIC-III datasets. Our approach
demonstrates the following strengths: (1) enhances the generalization of FL
classifiers for predicting clinical outcomes such as mortality, sepsis, venti-
lator usage, and ICU length of stay; (2) uncovers subtle yet significant drugs
and lab tests associated with clinical outcomes; and (3) identifies relation-
ships between diseases, involving renal and heart failure, and future mor-
tality at ICU readmission. Compared to FedAvg and FedProx, FedWeight
achieved more stable performance with lower variance across runs, even
thoughFedProxoccasionally attainedhigher average scores in specific tasks.
This robustness under covariate shift highlights FedWeight’s suitability for
real-world federated clinical applications, where differences in patient
demographics and treatment practices are common. Moreover, FedWeight
maintains a lightweight design with minimal computational overhead
relative to FedAvg,making it practical for deployment at scale.We have also
theoretically analyzed its convergence properties (refer to Supplementary
Note 1) and empirically validated its training stability. These findings
underscore the scalability and reliability of FedWeight when applied to
decentralized clinical data affected by distributional shift.

In future work, we aim to theoretically investigate why certain density
estimators (e.g. VAE) perform better in specific prediction tasks. We also
plan to develop density estimators and federated models that perform well
even on small datasets. Furthermore, we now aggregated patient clinical
data across all time points to estimate density. We will also explore density
estimators designed for time series data. Moreover, although our method
enhances performance on the target hospital, its ability to generalize to
entirely new or highly heterogeneous sites remains uncertain. A potential
future direction could involve systematically analyzing the degree of data
heterogeneity underwhichFedWeight outperforms othermethods.Wewill
establish quantitative benchmarks to rigorously assess its effectiveness
across different levels of distribution shifts. Besides, since some patients
experience multiple ventilation episodes, medications administered during
treatment may be mistakenly identified as predictors of future treatments.
We aim to mitigate this spurious correlation in our future work. Moreover,
to further protect patients’ privacy, we aim to incorporate additional
privacy-preserving techniques, such as differential privacy, into our future
research directions. Finally, wewill integrate ourmethod into existing open-
source Software Development Kit (SDK) such as Flower89, Federated AI
Technology Enabler (FATE)90, FedScale91, as well as NVIDIA Federated
Learning Application Runtime Environment (NVIDIA FLARE)92, for
practical application in real-world health institutions.

Methods
FedWeight
Problem formulation. Assuming there are K source hospitals and one
target hospital τ in the federated network. For each source hospital k∈K,

we have input data Xk 2 RNk ×D and labels yk 2 RNk , where Nk is the
number of patients in hospital k and D is the feature size, and N ¼PK

k¼1 Nk is the total number of patients in the federated network. The
notations and their corresponding descriptions are outlined in Supple-
mentary Table 3.

Federated Learning. Before delving into FedWeight, we first described
the baseline Federated Average (FedAvg)3, whose training process is as
follows:
• Local computation: Each source hospital k ∈ K updates its model

parameters wk on its local data.
• Parameter sharing: Then, the source hospital k sends its updated

parameters wk to the target hospital τ.
• Aggregation at the target hospital: The target hospital τ receives these

updated parameters and aggregates them to update the global model,
which is then sent back to the source hospitals for the next round
training.

w ¼
XK
k¼1

Nk

N
wk ð1Þ

Weighted log-likelihood. However, FedAvg does not account for the
covariate shift issue. Specifically, covariate shift can happen when the
source and target hospitals may have different local resources / clinical
practices: pk(X) ≠ pτ(X) while clinical outcomes given certain drugs
remain similar across hospitals: pk(y∣X) = pτ(y∣X). To mitigate this
issue, we may employ the weighted log-likelihood algorithm13, which
modifies the standard log-likelihood calculation by assigning weights
to different data points. Samplesmore similar to the target distribution
are given higher weights, thus contributing more during training,
while those less similar are assigned lower weights, thereby con-
tributing less during training. Consequently, this approach ensures
that the trainedmodel gives preference to data which aremore relevant
to the target distribution, thus addressing covariate shift in FL
environments.

The weighted log-likelihood for hospital k can be expressed mathe-
matically as follows:

LðwkÞ ¼
1
Nk

XNk

n¼1

φðxnÞ log pðynjxn;wkÞ ð2Þ

where φðxnÞ ¼ pτ ðxnÞ
pkðxnÞ

� �λ
denotes the weight assigned to the n-th data point,

pτ represents the density estimator trained on target hospital τ, and pk
denotes the density estimator trained on source hospital k. Furthermore, λ is
a hyper-parameter that controls the degree of re-weighting. Moreover, we
employed various density estimators such as MADE, VAE, and VQ-VAE
on account of their suitability in estimating the underlying probability
distributions.

We developed FedWeight by incorporating the weighted log-
likelihood algorithm into FL settings. Therefore, the log-likelihood for the
entire federated network can be expressed as follows:

LðwÞ ¼ PK
k¼1

Nk
N LðwkÞ

¼ PK
k¼1

Nk
N

1
Nk

PNk

n¼1
φðxnÞ log pðynjxn;wkÞ

¼ 1
N

PK
k¼1

PNk

n¼1
φðxnÞ log pðynjxn;wkÞ

ð3Þ

Density estimation. To calculate the re-weight φ(xn), we need to effec-
tively train the density estimator pk and pτ, which is described below.
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(1) Masked Autoencoder for Density Estimation (MADE) The Masked
Autoencoder forDensity Estimation (MADE) is a neural networkmodel for
efficient density estimation in high-dimensional data39. It modifies the
traditional autoencoder architecture by applying masks to its connections,
ensuring that the output at each unit satisfies the autoregressive property,
thus effectively modeling the input data’s joint distribution.

The density estimation using the autoregressive property is calculated
as follows:

pðxÞ ¼
YD
d¼1

pðxdjx < dÞ ð4Þ

To achieve the autoregressive property, the conventional autoencoder
architecture is modified by masking some of the model weights. Therefore,
the MADE training algorithm consists of the following three steps:
• Number Assignment: Initially, a unique integer ranging from 1 toD is

sequentially assigned to each input and output unit of the autoencoder
model. Moreover, every hidden unit is randomly allocated an integer
within the range of 1 to D − 1, inclusive.

• Mask Construction: Assuming the autoencoder model consists of L
layers, let MWl

represent the mask matrix between layer l and its
preceding layer l−1, except for the output layer.Weconnect theunitk0

in layer l and the unit k in its preceding layer l− 1 only if the assigned
integermlðk0Þ is greater than or equal toml−1(k); in all other cases, we
apply masks. Therefore, this mask matrix is calculated as follows:

MWl

k0;k ¼ I½mlðk0Þ≥ml�1ðkÞ� ð5Þ

Let MV denote the mask matrix between the output layer L and the
last hidden layerL− 1. Specifically, we connect the output unit d0 and
the unit d in the last hidden layer only if the assigned integermLðd0Þ is
strictly greater than mL−1(d); in all other cases, we apply masks.
Therefore, this mask matrix is calculated as follows:

MV
d0;d ¼ I½mLðd0Þ > mL�1ðdÞÞ� ð6Þ

• Output Calculation: Then the autoencoder output x̂ is computed as
follows:

hlðxÞ ¼ αðbl þ ðWl �MWl Þhl�1ðxÞÞ; ð7Þ

x̂ ¼ σðbL þ ðWL �MVÞhL�1ðxÞÞ ð8Þ
where the masks MWl

and MV are applied through element-wise
multiplication with their respectivemodel weightsWl andWL. bl and
bL are the bias for the model hidden and output layers. α is the
activation function in the hidden layer, while σ denotes the sigmoid
function.
Given the output x̂, we find the model parameters to maximize the
reconstruction likelihood.

(2)Variational Autoencoder (VAE). VariationalAutoencoder (VAE) is
a generative machine learning model that uses deep neural networks to
encode data into a latent space and then decode it back, enabling tasks like
data generation and density estimation40. Specifically, a VAEmodel consists
of two coupled components: an encodermodelqφ(z∣x), andadecodermodel
pθ(x∣z). During training, the encoder maps the observations x to an
approximate posterior over the latent variables, parameterized by a mean μ
andvarianceσ2. Insteadof directly sampling the latent representation z from
the encoded latent distribution qφ(z∣x), which is non-differentiable, z can be
expressed as z = μ+ σ⊙ ϵ, where ϵ � N ð0; IÞ. Finally, the decoder ingests
the latent representations z to reconstruct the initial data x̂.

Furthermore, the decoder parameters θ and the variational parameters
φ are learnedbymaximizing theEvidenceLowerBound (ELBO),wherep(z)
denotes a standard normal distribution.

ELBO ¼ Eq log pθðxjzÞ
� �

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Reconstruction log-likelihood

�KL qφðzjxÞjjpðzÞ
h i

ð9Þ

Based on log pðxÞ ¼ KL½qφðzjxÞjjpðzjxÞ� þ ELBO, when the model is
converged, we expect the variational distribution qφ(z∣x) approaches the
true posterior distribution p(z∣x), leading to their KL divergence converges
to zero. Consequently, we may leverage ELBO in density estimation, as
log pðxÞ approaches to ELBO when the model is converged.

(3) Vector Quantized Variational Autoencoder (VQ-VAE). In addition
to the aforementioned density estimators, we may also utilize the Vector
Quantized Variational Autoencoder (VQ-VAE) to estimate density41.
Compared with traditional VAE that utilizes continuous latent repre-
sentations, VQ-VAE employs a discretized latent space. Moreover, VQ-
VAEuses categorical distributions for both posteriorsq(z∣x) andpriors p(z).

Similar to the VAE architecture, VQ-VAE also contains an encoder
and decoder. Further, VQ-VAE maintains a codebook E = {e1, e2,…, eC},
whereC is the total codewords. For each codeword ec 2 RH ,H denotes the
codeword dimension.

When trainingVQ-VAE, the encoder takes x as input and generates ze.
Then ze goes into the codebook E to find the index of the nearest codeword
ĉ ¼ argminc2Cjjze � ecjj2. Then we use this index to construct the one-hot
encoded latent representation z ¼ ½zc�×C , where zc ¼ I½c ¼ ĉ�. Subse-
quently, the decoder takes eĉ as input and reconstructs the original input
data x̂. Finally, we may leverage ELBO in density estimation.

FedWeight algorithm design. The FedWeight training process is as
follows:
• Density estimator training:At the beginningof the trainingprocess, the

target hospital τ trains a density estimator pτ. Meanwhile, each source
hospital k ∈ K also trains its own density estimator pk. We selected
specific density estimator models, including MADE, VAE, and VQ-
VAE on account of their suitability in estimating the underlying
probability distributions (Fig. 3a).

• Sharing of target density estimator: Then the target hospital distributes
its density estimator pτ to all the source hospitals (Fig. 3b).

• Re-weighted localmodel training:Upon receiptpτ, eachsourcehospital

k ∈ K computes the re-weight φðxnÞ ¼ pτ ðxnÞ
pkðxnÞ

� �λ
for patient n ∈ Nk,

where λ is a hyper-parameter that controls the degree of re-weighting.
Leveraging such re-weight, the source hospital k trains its own model
locally. Then, the parameters of such model wk is further sent to the
target hospital τ (Fig. 3c).

• Aggregation at the target hospital: The target hospital τ receives these
updated parameters and aggregates them to update the global model,
which has better generalization capabilities when applied to the target
hospital’s data (Fig. 3d).

w ¼
XK
k¼1

Nk

N
wk ð10Þ

FedWeight effectively adapts themodel trained on source hospital data
to a target hospital. However, there may be scenarios in which hospitals
must mutually benefit from each other’s data distributions. To address the
collaboration among these hospitals, we developed a Symmetric FedWeight
training paradigm. For simplicity, we assumed a federatednetworkwith two
hospitals, namelyA andB. During local training atHospital A,Hospital B is
treated as the target to estimate the reweighting ratios. Conversely, when
training at Hospital B, Hospital A serves as the target for reweighting. This
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symmetric approach allows both hospitals to benefit from each other by
adapting to their respective data distributions (Fig. 3e–h).

FedWeight employs task-specific models, including LSTM for
sequence prediction and VAE for density estimation. Detailed model
architectures are provided in Supplementary Note 2. Moreover, to
protect patients’ privacy, only the parameters of the models are
exchanged within the federated networks, ensuring no transmission of
raw data.

We also analyzed FedWeight’s convergence behavior under covariate
shifts and found that it achieves a convergence rate ofO(1/T), aligning with
FedAvg. The detailed convergence analysis is provided in Supplementary
Note 1.

Federated embedded topic model
ETM. ETM is a generative model of documents that learns interpretable
topics and word embeddings and is robust to large vocabularies. For each
patient diagnosis data point xn, the encoder, parameterized bywθ, maps it
to μn and log σ2

n through two distinct linear layers, parameterized by wμ

and wσ.

μn; log σ
2
n ¼ f ðxn;wθ;wμ;wσÞ ð11Þ

Through the re-parameterization trick,weobtain the latent represatation zn,
which eventually outputs the patient-topic mixture θn via a softmax
operation across all latent topics.

zn ¼ μn þ σn � ϵn; where ϵn � N ð0; IÞ ð12Þ

θn ¼ softmax ðznÞ ð13Þ

The decoding process involves themultiplication of two learnable matrices:
the topic embedding matrix α and the ICD embedding matrix ρ. The
operation yields a topic-ICD mixture β, which represents the probabilistic
association between topics and ICD codes. Eventually, β is multiplied by θn,
resulting in the reconstruction of the input x̂n.

x̂n ¼ θnβ; where β ¼ αρ ð14Þ

ETM is trained by maximizing the following ELBO function:

ELBOn ¼ Eq½log pðxnjznÞ� � KL½qðznjxnÞ k pðznÞ� ð15Þ
FedAvg-ETM. The topics are not identifiable between hospitals, pre-
venting directly model averaging. Instead, we aggregate only wθ and ρ,
while wμ, wσ, and α are kept locally updated (Fig. 7a). Specifically, the
FedAvg-ETM training process is as follows:
• Local computation: Each source hospital k∈K updates its local model

parameters wk ¼ fwk
θ;w

k
μ;w

k
σ ; α

k; ρkg.
• Parameter sharing: Then, the source hospital k sends the non-topic-

associated model parameters wk
θ and ρk to the target hospital τ.

• Aggregation at the target hospital: The target hospital τ receives these
updated parameters and aggregates them to update the global model,
which is then sent back to the source hospitals for the next round of
training.

wθ ¼
XK
k¼1

Nk

N
wk

θ ρ ¼
XK
k¼1

Nk

N
ρk ð16Þ

FedWeight-ETM. Variations in clinical practices, patient demo-
graphics, and data collection methods, may engender covariate shifts in
clinical data, which hinders FedAvg-ETM from effectively uncovering
semantically meaningful latent topics. To address this challenge, we
proposed FedWeight-ETM, which integrates the FedWeight

framework with the ETMmodel. Specifically, we assign the reweighting

ratio φðxnÞ ¼ pτ ðxnÞ
pkðxnÞ

� �λ
to the likelihood term of the ELBO function of

the n-th data point (Fig. 7b), leading to the weighted ELBO function:

ELBOn ¼ φðxnÞEq½log pðxnjznÞ� � KL½qðznjxnÞ k pðznÞ� ð17Þ

Data preprocessing
We applied our method to the eICU Collaborative Research Database with
data from 208 hospitals and 200,859 patients, and the MIMIC-III dataset.
For the eICU dataset, we selected 10 hospitals with the most patients:
Hospitals 167, 420, 199, 458, 252, 165, 148, 281, 449, and 283. The dataset
includes 1,399 distinct drugs, which were binarized for model analyses; a
value of “1" indicates the patient received the drug, whereas “0" signifies no
administration. Since patients typically receive only 1% to 2% of the total
drug catalog, this binarization results in a sparse matrix with a pre-
dominance of “0" values in the dataset. In addition to drug data, our model
incorporates patientdemographics (age, sex, BMI, and ethnicity) to enhance
predictive accuracy. To avoid null or incomplete demographic records, we
excluded samples with missing values; however, the proportion of such
records is very low compared to the full dataset (Supplementary Fig. 6). Age
was encoded into eight categories: <30, 30-39, 40-49, 50-59, 60-69, 70-79,
80-89, and >89 years. Sex was dichotomized, with “1" representing males
and “0" indicating females. BMI was categorized into four groups: under-
weight (<18.5), normal (18.5-24.9), overweight (25-29.9), and obesity
(≥30)93. Ethnicity was classified into five categories: Caucasian, African
American, Hispanic, Asian, and Native American, reflecting the diversity
within the patient population. For MIMIC-III dataset, we removed the
newborn patients. Moreover, given the small sample size, we excluded the
MIMIC patients in Cluster 2 for simplicity (Supplementary Fig. 1a).

Drug imputation. In the eICU dataset, approximately one-third of drug
names are not recorded across all the 208 hospitals. If these unrecorded
drugs are represented as “0", we tend to have an extremely sparse input,
which hampers the training of density estimators due to the lack of
informative features. For instance, if density estimators likeMADE,VAE,
or VQ-VAE are trained under such conditions, these auto-encoders tend
to reconstruct more zeros than ones. To address this challenge, we
implemented a strategy for imputing the missing drug names. While
some drugs lack recorded names, we observed that they possess Hier-
archical Ingredient Code List (HICL) codes — a standardized coding
system for identifying healthcare products. Consequently, we could
match these unrecorded drugs with their counterparts with both HICL
codes and recorded names in the database. This imputation method
allows us to fill in missing drug names based on their HICL codes. As a
result, the proportion of unrecorded drugs in our dataset decreases to
around 20%, which enhances the accuracy and reliability of our models
by providing a richer set of features (Fig. 1d, e).

Drug harmonization. We discovered that different hospitals may use
different drug names, although they share the same identity (e.g. “aspirin”
and “acetylsalicylic acid”). We also found that the dosage information is
included in some drug names (e.g. “aspirin 10 mg”). Consequently, we
have minimal overlap in drug names between hospitals, further exacer-
bating the challenge of sparse input data and hindering the training
process. To address this, we implemented a harmonization process to
standardize drug names. We merged those with shared identities while
disregarding dosage details. Our algorithm comprises two main steps:
• Initial drug mapping: We maintained a reference panel of drug names

on the server, containing the 237 most common drugs94, which is
periodically updated and shared with client hospitals. For each drug
name fromaclient hospital (e.g., “aspirin10mg”), the algorithmchecks
against each name in the reference panel to find if the reference name
(e.g., “aspirin”) is included in the client’s drug name ("aspirin 10 mg”).
If amatch is detected, the client’s drug name ismapped to the reference
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drug name (e.g., “aspirin”). This approach enables accuratemapping of
most drug names without dosage information.

• Use of BioWordVec for mapping: If no direct match is found, the
algorithm initiates a similarity analysis. First, the client’s drug name
and the reference drug name are converted into their respective word
embeddings using BioWordVec95. Then, we compute the cosine
similarity between these two word embeddings. After comparing with
all reference drug names, the reference name with the highest cosine
similarity is selected. This approach effectively matches drugs with
similar identities.

After harmonization, the proportion of overlapping drugs across
hospitals significantly increases (Fig. 1f, g).

Lab tests data preprocessing. We also included lab tests as model
input. However, we encountered several challenges due to discrepancies
between the eICU and MIMIC-III datasets. The eICU dataset contains
158 unique lab tests, whilstMIMIC-III includes 590 unique lab tests, with
differences in test names, abbreviations, and units across the two datasets.
Referring to a previous study that focused on the 29 most influential lab
tests for model training94, we identified 12 lab tests common to both
datasets (Supplementary Table 4). Due to variations in the scale of lab
results, we normalized the data to ensure consistency and comparability.

Timeseriesdatapreprocessing.We used the eICUdataset to construct
predictive models for patients’ mortality, ventilator use, and sepsis
diagnosis, and ICU length of stay. To prepare data for mortality and
length of stay prediction, we segmented the dataset into two intervals:
drug data within the initial 48 hours of ICU admission and mortality
outcomes and length of stay after 48 hours. The models were trained
using patient demographics and drug administration data from the first
48 hours to predict mortality and length of stay beyond this period. For
ventilator use and sepsis diagnosis, we designed a 72-hour observation
period after ICU entry, further divided into six 12-hour intervals. The
objective was to use drug and demographic information from each
interval to predict ventilator use and sepsis occurrence in the next
interval.

Simulation study
Generating inputs. We created the simulation dataset input from the
preprocessed eICU dataset, which included imputed and harmonized
drug data alongside age, sex, BMI, and ethnicity information. For sim-
plicity, we assumed one source hospital and one target hospital in the
network. To generate the simulation dataset, we utilized the input from
Hospital 167, which has the most patients, as the target input Xτ. We
further combined the remaining 9 hospitals as the source input Xk.

Generating labels. We simulated labels by first creating a linear model
f(X) = Xw + b, where the weight was sampled from Gaussian distribu-
tion: w � N ð0; IÞ. Meanwhile, we created a binary mask sampled from
Bernoulli distribution: m ~ Bernoulli(0.15). Then we applied the binary
maskm to the weight: w = w ⊙m. As a result, 15% of the weight values
were sampled from Gaussian distribution while setting the rest of weight
values as 0, which simulated around 15% of features are causal.

In terms of the bias of the linear model b 2 RN , we set it as: b ¼
� log 1�π

π where π = [0.15]×N. Then we created imbalanced dataset with
most labels were 0, which simulated the real-world scenario.

Finally, we generated simulated labels for source hospital:
yk ¼ I½ f ðXkÞ > 0�, and target hospital yτ ¼ I½ f ðXτÞ > 0�. We used the
same linearmodel f to generate source and target labels, ensuring consistent
conditional probabilities and simulating the covariate-shift problem.

Experimental design for reliable model evaluation
To enable early stopping and hyperparameter selection, we split the target
hospital data into a 50%valiadation set and a 50% test set. The validation set,

represented by ðXðvalÞ
τ ; yðvalÞτ Þ, assumes partial label availability at the target

hospital. The remaining data from the target hospital, without accessible
labels, formed the test set, ðXðtestÞ

τ ; yðtestÞτ Þ.
For a stable assessment of the model performance, our experimental

design employed multiple seeds. We selected the 5 hospitals (Hospital 167,
199, 252, 420, 458) from the 10 hospitals with themost patients as the target
hospitals.We looped these 5 hospitals, and each hospital under the loopwas
alternately designated as the target, while the remaining 9 were the source
hospitals. Models were trained on the source hospitals and evaluated on the
target. We employed bootstrap sampling to generate 100 distinct test sets
based on the existing test set ðXðtestÞ

τ ; yðtestÞτ Þ.We then evaluated ourmodel on
these 100 test sets, obtaining 100 individual results. By calculating themean
and standard deviation of these results, we ensured a more reliable assess-
ment of the model’s performance.

Hyperparameter selection for FedProx
We compared FedWeight with FedProx31. FedProx’s performance was
highly sensitive to the choice of its proximal term regularization coefficient
(λ). While the proximal term is intended to mitigate client drift by con-
straining local updates, an improperly chosen λ can either excessively limit
learning or fail to address data heterogeneity—both of which can degrade
performance. To ensure a fair and meaningful comparison, we carefully
tuned λ for each target hospital using its validation data. This per-hospital
tuning was performed via grid search to identify the optimal λ value that
yielded the best performance, ensuring that the reported results for FedProx
reflect its optimal performance under well-calibrated conditions.

Data availability
No datasets were generated or analysed during the current study.

Code availability
We implemented FedWeight in Python3.9. The software is available at:
https://github.com/li-lab-mcgill/FedWeight.
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