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INTRODUCTION 
 

DNA methylation represents an epigenetic mark with a 

critical role in early life development and aging [1] 

that differs across tissues [2]. Previous studies in 

ageing research have emphasized adulthood, however 

increasing evidence has highlighted that age-

associated cognitive decline as well as adverse later 

life health outcomes, for example, depend largely on 
epigenetic programming or adaptations during fetal 

development [3]. With the complex reprogramming 

during early-life stages, interplay of dynamic DNA 

methylation, chromatin marks and environmental 

effects during the life course make it further 

complicated to identify age-related versus cumulative 

life-course manifestations of the genome [4, 5]. 

Prenatal and lifetime exposures have a tremendous 

impact on both short- and long-term consequences 

mediated through epigenetic mechanisms and may 

contribute to a broad spectrum of immune responses, 

respiratory, cardiovascular and age-related diseases in 

later life [6, 7]. Evidence suggests impact of hypo- and 

hyper-methylation [8] including an altered epigenetic 

state on several age-associated neurological functions 
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ABSTRACT 
 

Fetal perturbations in DNA methylation during lung development may reveal insights into the enduring impacts 
on adult lung health and disease during aging that have not been explored altogether before. 
We studied the association between genome-wide DNA-methylation and post-conception age in fetal-lung 
(n=78, 42 exposed to in-utero-smoke (IUS)) tissue and chronological age in adult-lung tissue (n=160, 114 with 
Chronic Obstructive Pulmonary Disease) using multi-variate linear regression models with covariate adjustment 
and tested for effect modification by phenotypes. Overlapping age-associations were evaluated for functional 
and tissue-specific enrichment using the Genotype-Tissue-Expression (GTEx) project. 
We identified 244 age-associated differentially methylated positions and 878 regions overlapping between fetal 
and adult-lung tissues. Hyper-methylated CpGs (96%) were enriched in transcription factor activity (FDR 
adjusted P=2x10-33) and implicated in developmental processes including embryonic organ morphogenesis, 
neurogenesis and growth delay. Hypo-methylated CpGs (2%) were enriched in oxido-reductase activity and 
VEGFA-VEGFR2 Signaling. Twenty-one age-by-sex and eleven age-by-pack-years interactions were statistically 
significant (FDR<0.05) in adult-lung tissue. 
DNA methylation in transcription factors during development in fetal lung recapitulates in adult-lung tissue 
with aging. These findings reveal molecular mechanisms and pathways that may link disrupted development in 
early-life and age-associated lung diseases. 

mailto:dawn.demeo@channing.harvard.edu
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


 

www.aging-us.com 1743 AGING 

and human disease [9]. A recent meta-analysis 

identified several novel age-associated differentially 

methylated CpG sites in newborns and children 

reflective of processes critical to development [10]. 

Further efforts have identified the role of sex [11] and 

race-specific [12] differential methylation in blood 

along the aging process or associated pathologies. 

Fetal tissue DNA methylation changes associated with 

post-conception age and sex have been suggested to 

reflect brain development and are supportive of the 

idea that aging processes start early in life [13]. 

Previously, strong tissue-specific age associations with 

DNA methylation and gene expression have been 

identified in fetal and adult human livers [14], 

however, there is a paucity of previously reported 

tissue-specific studies in the literature and none for 

lung. Therefore, identifying more accurate biomarkers 

in lung tissue may merit further investigation to 

identify individuals at risk for age-associated lung 

function decline. 

 

Recent studies have identified DNA methylation at 

selected CpGs to strongly predict chronological [15–

21] age, constituting the epigenetic clock [21]. This 

may be especially useful to identify or differentiate 

individuals at the greatest risk for age-related health 

disparities and conditions. There is also a growing 

interest in understanding the role of epigenetic age 

acceleration or deceleration during the intrauterine 

period and adulthood. A significant association was 

observed between prenatal exposure to tobacco smoke 

and the risk of accelerated aging at birth [22], 

suggestive of developmental effects during childhood 

and the biomarker potential of age acceleration in 

adulthood [23]. However, limited agreement with low 

to moderate correlations have been observed between 

different epigenetic clocks estimating biological age 

owing to the various aspects captured by them 

including mortality risk, smoking, lifespan and time to 

death [21, 24]. 

 

To our knowledge, epigenetic links between fetal 

lung development and age-associated epigenetic 

marks in adult lung tissue (including DNA 

methylation age) have not been extensively explored. 

In this study, we performed a comparative analysis 

of age associated differential methylation and DNA 

methylation age in fetal and adult lung tissues and 

evaluated effect modification of age associations as a 

marker of development by sex and smoke exposure.  

Given that chronic lung diseases may be impacted by 

both altered lung development and accelerated aging 

processes, investigating age associated DNA 
methylation may inform new insights into lung 

diseases of aging, including chronic obstructive lung 

disease (COPD). 

RESULTS 
 

Age-associated differential methylation in fetal and 

adult lung tissues 

 

The IUS-exposed and unexposed samples did not differ 

by mean gestational age of the percentage of males and 

females in the fetal lung dataset (Table 1). 94,834 CpGs 

(27.1%) were significantly associated with fetal age 

(FDR <0.05; Supplementary Table 1, Figure 1, 

Supplementary Figure 1) and 35,846 (10.3%) age-

associated differentially methylated positions (aDMPs) 

remained at a Bonferroni significance threshold 

(P<1.43x10-7). Of the 94,834 CpGs, 40,836 sites were 

relatively hypo-methylated and 53,998 sites were 

relatively hyper-methylated with increasing age 

(Supplementary Figure 2A) and were strongly enriched 

in gene body and 3’UTRs (Hypergeometric  

P-Value<2.2x10-16, P-Value=5.4x10-62 respectively) 

regions. Of the top 20 significant age-associated DMPs, 

11 were located in CpG shores and their top associated 

genes included C17orf96 and CASZ1 (Table 2A). 

Twelve CpGs were also significantly associated with 

age at an absolute difference in methylation of at least 

1% and with most sites increasing in methylation with 

age; their top associated genes included IGFBP1 and 

MEGF11 (Supplementary Figure 2A). In our fetal lung 

aDMPs, we also found previously discussed 

differentially methylated age-associations identified in 

fetal brain tissue [13] including SFRP1, NR4A2 and 

SHANK2. 

 

In the adult lung tissue (ALT) dataset, COPD subjects 

differed from subjects without COPD by time since 

quitting cigarette smoking (in months), LAA-950 and 

pack-years but did not differ by age (Table 1). We 

identified 2,217 (0.7%) significant aDMPs (FDR <0.05, 

Supplementary Table 2, Figure 1). Of those, 2,181 were 

relatively hyper-methylated and 36 were relatively 

hypo-methylated with increasing age and a maximum 

absolute effect size of 0.7% per year (Supplementary 

Figure 2B). These aDMPs were strongly enriched  

for transcription start sites (Hypergeometric  

P-Value=2.1x10-31). The top 20 significant age-

associated DMPs were mostly located in CpG islands; 

their top associated genes included DLL3 and PRDM2 
(Table 2B). Two sites, cg16867657 (regression 

coefficient: 0.004, FDR adjusted P=3.8x10-9) and 

cg24724428 (regression coefficient: 0.006, FDR adjusted 

P=3.8x10-9) annotated to ELOVL2 gene, a biomarker of 

age [25] and also the top gene based on effect size in the 

adult lung data (Supplementary Figure 2B). 

 

From the aDMPs identified in the adult lung dataset, 

244 CpGs (11% of the differentially methylated loci) 

that mapped to 144 unique genes (13.7% of the unique  
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Table 1. Overall clinical characteristics in fetal and adult lung tissue (ALT) datasets.  

Fetal lung tissue (n=78) 

 
All subjects  

(n = 78) 

IUS-Exposed  

(n = 42) 

Unexposed  

(n = 36) 
P-value 

Post-Conception Age (days), mean (SD) 88.7 (16) 86 (16.4) 91.9 (15.2) 0.1 

Chronological Age (years), mean (SD) -0.50 (0.04) -0.50 (0.04) -0.49 (0.04) 0.1 

DNAmAge (years), mean (SD) 0.50 (0.30) 0.41 (0.28) 0.60 (0.30) 8.1x10-3 

Age Acc. difference, mean (SD) 0.99 (0.27) 0.92 (0.25) 1.08 (0.27) 7.1x10-3 

Age Acc. residual, mean (SD) 0.00 (0.20) -0.04 (0.17) 0.05 (0.21) 0.03 

Sex, n (%)    0.84 

   Female 28 (36) 16 (38) 12 (33)  

   Male 50 (64) 26 (62) 24 (67)  

Adult lung tissue  (n=160) 

 
All subjects  

(n = 160) 

With COPD  

(n = 114) 

Without COPD  

(n = 46) 
P-value 

Age (years), mean (SD) 63.9 (7.4) 63.4 (6.7) 65.3 (8.9) 0.19 

DNAmAge (years), mean (SD) 66.8 (6.6) 66.4 (6.2) 67.7 (7.4) 0.33 

Age Acc. difference, mean (SD) 2.8 (5.1) 3 (4.4) 2.3 (6.7) 0.50 

Age Acc. Residual, mean (SD) 0.00 (4.5) 0.01 (4) -0.04 (5.5) 0.96 

Sex, n (%)    0.31 

Female 89 (56) 60 (53) 29 (63)  

   Male 71 (44) 54 (47) 17 (37)  

Race, n (%)    0.78 

   African American 25 (16) 19 (17) 6 (13)  

   White 131 (81.9) 92 (80.7) 39 (84.8)  

   Others 4 (2.5) 3 (2.6) 1 (2.2)  

Time since quitting (months), mean (SD) 112 (113) 181 (139.9) 84.7 (87.2) 6.7x10-5 

LAA-950, mean (SD) 0.3 (0.2) 0.3 (0.1) 0.0 (0.1) <2.2x10-16 

Pack-years 53.3 (27.8) 61.2 (26.4) 33.6 (20.5) 1.6x10-10 

Significance of difference was evaluated using two-sample t-test for continuous variables and chi-squared test for categorical 
variables except race where fisher test was used due to smaller number of samples in individual categories. Missing data: 
Time since quitting data (months) was missing for 1 subject without COPD, fraction of lung voxels with low attenuation areas 
at less than -950 Hounsfield Units (LAA-950) was missing for 27 subjects without COPD and 28 COPD subjects. 
Abbreviations: SD, standard deviation; n, number of subjects; DNAmAge, DNA methylation or epigenetic age; Acc., 
Acceleration. 

 

differentially methylated genes) overlapped with the 

fetal lung age-EWAS (Supplementary Table 3). The 

corresponding findings from the analysis stratified by 

IUS-exposure and COPD status in fetal and adult lung 

datasets for these 244 CpGs have been included in 

Supplementary Table 3. In the fetal lung dataset, the 

effect estimates for 238 CpGs from the non-IUS-

exposed and all 244 CpGs from the IUS-exposed 

samples only analysis were in the same direction to the 

effect estimates of the 244 overlapping aDMPs from the 

overall fetal lung analysis. In the ALT dataset, 243 

CpGs from the non-COPD subjects only and all 244 

CpGs from the COPD case-only analysis were in the 

same direction of effect to the effect estimates of the 

244 overlapping aDMPs from the overall ALT analysis 

(Supplementary Table 3). 

The top 20 annotated CpGs were associated with nine 

transcription factors: EVX1, HIF1A, ALX3, SATB2, 

PITX2, NKX2-4, ZIC1, ZIC2, BSX and are presented in 

Table 2C. Of those 244 CpGs, 215 had effect estimates 

in the same direction (210 hyper- and five hypo-

methylated) including the CpG site cg16867657 mapped 

to the promoter of ELOVL2 gene. The methylation 

patterns for cg16867657 were progressively hyper-

methylated with age for both the fetal and adult lung 

datasets (Supplementary Figure 3A, 3B). 

 

Considering aging may have a genetic component, we 

had further investigated the presence of methylation 

quantitative trait loci (mQTLs) among the overlapping 

244 aDMPs using the previously published methylation 

lung tissue QTL results [26]. Sixty-three (25.8%) and 17 
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(7%) of the 244 aDMPs in both fetal and adult lung 

datasets overlapped with the 1,787 significant cis mQTLs 

(located within 1 Mb of a specific CpG site) and 133 

significant trans mQTLs (located beyond 1 Mb of a 

specific CpG site or on different chromosomes) at an 

FDR < 0.05 (Supplementary Table 4) which provide 

evidence for genetically influenced aDMPs. Interestingly, 

among the overlap with cis-mQTLs, the top gene based 

on significance was FADS2; its associated 

polymorphisms modulate fatty acid metabolism [27] and 

influence asthma risk [28]. However, the smaller overlap 

with mQTLs suggests that majority of our age 

associations (67.2%) were not genetically driven. 

 

The regional analysis in fetal and adult lung datasets 

resulted in 14,427 and 270 significant regions 

(FDR<0.05) respectively with an overlap of three 

regions by exact chromosomal coordinates and 878 

regions (Supplementary Table 5) by overlapping genes. 

Two of those regions with exact overlap of chromosomal 

coordinates mostly mapped to small nucleolar RNAs 

(snoRNAs/SNORA) and small cajal body-specific RNAs 

(scaRNAs/SCARNA) family genes, while the third 

region could not be mapped to any genes. 

Effect modification of age-associated methylation by 

smoke exposure and sex 

 

In the fetal lung data, the interaction between 

gestational age and exposure to cotinine (continuous 

variable) resulted in 11,810 differentially methylated 

CpGs (P<0.05); none were robust to adjustment at an 

FDR of 5% (FDR<0.05) or less stringent threshold of 

10% (FDR<0.10) but many passed at a nominal P-value 

of 0.05 (Supplementary Table 6). This is consistent with 

the modest findings from our prior IUS “main effects” 

analysis [29]. Interaction between gestational age and 

sex revealed three CpGs. relatively hyper-methylated 

with age in males compared to females (FDR<0.10, 

Supplementary Table 7). 

 

In the adult lung data, the interaction of chronological 

age with time since smoking cessation resulted in one 

differentially methylated CpG site mapped to the 

DSCC1 gene (cg21745419; regression coefficient 

=3.3x10-6; FDR adjusted P=3.9x10-3). The interaction 

between age and pack-years resulted in 10 differentially 

methylated CpGs significant at an FDR threshold  

of 0.05 (Supplementary Table 8). One CpG site: 

 

 
 

Figure 1. Manhattan plot depicting significance on y-axis and distribution of CpGs across all chromosomes on x-axis for fetal 
lung dataset (top panel) and adult lung dataset associations with age (bottom panel). Top 20 CpGs in both datasets have been 

highlighted in green. The two red lines represent the CpG sites significant at an FDR<0.05 and at a Bonferroni threshold (0.05/number of tests) 
in fetal and adult lung datasets. 
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Table 2A. Age-associated differential methylation in the fetal lung tissue datasets. 

CG site UCSC Gene CHR MAPINFO Island 
Gene 

context 
Coef AveBeta P-Value Adjusted P 

cg14651082 NA 12 125,145,939 S_Shore  0.004 0.26 1.67E-37 5.82E-32 

cg00964751 C17orf96 17 36,828,900 N_Shore 1stExon 0.005 0.32 9.66E-37 1.55E-31 

cg01821043 CASZ1 1 10,766,044 S_Shore 5'UTR 0.005 0.60 2.09E-36 1.55E-31 

cg03955927 LOC100132215 2 63,272,232 Island Body 0.007 0.66 2.19E-36 1.55E-31 

cg05457903 PLEC1 8 145,052,304 Island TSS1500 0.004 0.28 2.23E-36 1.55E-31 

cg03389701 DLEU7 13 51,418,221 S_Shore TSS1500 0.004 0.47 5.03E-36 2.93E-31 

cg25133130 MAP3K6 1 27,687,685 Island Body 0.004 0.43 1.79E-35 8.93E-31 

cg09018299 TNRC6A 16 24,748,339 OpenSea Body -0.006 0.72 4.01E-35 1.75E-30 

cg24025567 CUX1 7 101,505,662 OpenSea Body 0.003 0.47 6.38E-35 2.31E-30 

cg11067714 PURA 5 139,492,230 N_Shore TSS1500 0.006 0.34 6.74E-35 2.31E-30 

cg14205663 NR2F2 15 96,872,827 N_Shore TSS1500 0.005 0.29 7.48E-35 2.31E-30 

cg25903143 NA 11 68,920,466 OpenSea  0.006 0.25 8.33E-35 2.31E-30 

cg11654900 NA 1 51,444,685 S_Shore  0.009 0.26 8.58E-35 2.31E-30 

cg13803234 RAD51L1 14 68,830,813 OpenSea Body 0.005 0.50 9.65E-35 2.38E-30 

cg00079023 PURA 5 139,492,535 N_Shore TSS1500 0.003 0.18 1.02E-34 2.38E-30 

cg10681992 TBC1D14 4 6,964,527 OpenSea Body 0.004 0.62 1.62E-34 3.53E-30 

cg05878390 MAB21L2 4 151,502,935 N_Shore TSS200 0.007 0.23 2.36E-34 4.84E-30 

cg19791727 NA 10 21,798,015 Island  0.008 0.55 2.57E-34 4.84E-30 

cg22783327 FXYD1 19 35,633,258 N_Shore Body 0.006 0.30 2.71E-34 4.84E-30 

cg06519422 GABBR1 6 29,599,226 N_Shore Body 0.004 0.46 2.82E-34 4.84E-30 

Top 20 significant differentially methylated CpGs associated with age in the fetal lung data set. P-values were adjusted by the 
Benjamini-Hochberg method to correct for multiple testing. 
Abbreviations: UCSC, The University of California Santa Cruz; Coef, regression coefficient - Adjusted mean difference (per day 
increase or decrease) in methylation with age. NA: un-annotated CpG site; CHR, chromosome; AveBeta, average beta; P, p-value. 

 

cg10682155 mapped to the SIM2 gene and overlapped 

with the nominal age by exposure associations in fetal 

lung (Supplementary Table 7). Interaction of age with 

sex resulted in 47 significant differentially methylated 

sites (FDR<0.10, Supplementary Table 8); 21 of those 

CpG sites were also significant at an FDR threshold of 

0.05. Interestingly, cg24724428 mapped to the ELOVL2 

gene promoter and also demonstrated age-by-sex 

associations (regression coefficient=0.007; FDR adjusted 

P=0.06). This CpG was 10 bases upstream of the age-

associated ELOVL2 CpG site cg16867657. These 

analyses demonstrated potential methylation effect 

modification with age by both sex and smoke exposure in 

fetal and ALT datasets. 

 

CpGs associated with age are enriched in 

transcription factor pathways 

 

Genes annotated to hyper-methylated aDMPs in both 

fetal and adult lung tissue datasets had the most 

significant enrichment for RNA polymerase II-specific 

DNA-binding transcription factor activity (FDR adjusted 

P=2.0x10-33; 52 genes; Supplementary Table 9, Figure 

2A). Genes annotated to hypo-methylated aDMPs were 

mainly enriched (FDR<0.05, Figure 2B) for Cell Cycle 

(PRKCA, NCAPD3), oxidoreductase activity (ALDH4A1, 

PDIA6) and VEGFA-VEGFR2 signaling pathway 

(PRKCA, PDIA6), however this analysis may have been 

limited due to the small number of genes represented by 

few overlapping hypo-methylated aDMPs between both 

datasets. Most enriched biological processes in the 

overlapping aDMPs between fetal and ALT included 

terms related to development including embryonic organ 

morphogenesis, neurogenesis and growth delay. Two  

enriched wiki-pathways were identified: Neural Crest 

Differentiation annotated with five genes (ZIC1, HAND1, 

OLIG3, ZIC5, PAX3) and Mesodermal Commitment 

Pathway annotated with six genes (PITX2, ZIC2, 

HAND1, PAX6, ZIC5, SOX21). 

 

The 125 genes with age associations in the same 

direction in both fetal and ALT datasets were further 
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Table 2B. Age-associated differential methylation in the adult lung tissue dataset. 

CG site 
UCSC 

Gene 
CHR MAPINFO Island Gene context Coef AveBeta P-Value Adjusted P 

cg07640648 DLL3 19 39,993,697 Island Body 0.001 0.04 1.15E-14 2.00E-09 

cg26830108 NA 7 100,813,299 N_Shelf  0.002 0.07 7.02E-15 2.00E-09 

cg02650266 NA 4 147,558,239 Island  0.003 0.13 2.73E-14 2.34E-09 

cg05024939 NA 4 113,442,251 N_Shore  0.002 0.26 3.35E-14 2.34E-09 

cg23813012 PRDM2 1 14,026,482 Island TSS1500 0.002 0.10 2.70E-14 2.34E-09 

cg05617798 AURKB 17 8,113,714 Island 5'UTR 0.001 0.07 6.07E-14 2.61E-09 

cg21186299 VGF 7 100,808,810 Island 1stExon 0.001 0.03 6.73E-14 2.61E-09 

cg23606718 AMER3 2 131,513,927 Island 5'UTR 0.003 0.24 5.61E-14 2.61E-09 

cg27320127 KCNK12 2 47,798,396 Island TSS1500 0.003 0.22 4.54E-14 2.61E-09 

cg16477091 PPM1E 17 56,833,000 Island TSS1500 0.002 0.15 8.06E-14 2.82E-09 

cg10806820 CELSR3 3 48,699,090 Island 1stExon 0.003 0.22 9.47E-14 3.01E-09 

cg12373771 CECR6 22 17,601,381 Island 1stExon 0.003 0.22 1.25E-13 3.65E-09 

cg16867657 ELOVL2 6 11,044,877 Island TSS1500 0.004 0.74 1.49E-13 3.76E-09 

cg24724428 ELOVL2 6 11,044,888 Island TSS1500 0.006 0.26 1.50E-13 3.76E-09 

cg01763090 OTUD7A 15 31,775,406 N_Shore 3'UTR 0.002 0.12 1.89E-13 4.40E-09 

cg15906794 YBX2 17 7,197,963 Island TSS200 0.004 0.17 2.84E-13 6.22E-09 

cg02383785 NA 7 127,808,848 Island  0.003 0.22 3.68E-13 7.57E-09 

cg05991454 NA 4 147,558,435 Island  0.003 0.12 5.58E-13 1.08E-08 

cg07544187 CILP2 19 19,651,235 Island Body 0.004 0.15 6.05E-13 1.11E-08 

cg03036557 GPC5 13 92,050,720 N_Shore TSS1500 0.002 0.07 1.79E-12 3.13E-08 

Top 20 significant and differentially methylated CpGs associated with age in the adult lung tissue dataset. P-values were 
adjusted by the Benjamini-Hochberg method to correct for multiple testing. 
Abbreviations: UCSC, The University of California Santa Cruz; Coef, regression coefficient - Adjusted mean difference (per year 
increase or decrease) in methylation with age. NA: un-annotated CpG site; CHR, chromosome; AveBeta, average beta; P, p-
value. 

 

assessed for gene-based enrichment analysis and 

functional relevance in gene-sets using tissue-specific 

expression in 54 tissue types from the Genotype-

Tissue Expression project (GTEx) v8 [30]. Among the 

tissue-specific gene-sets, the strongest enrichment for 

hyper-methylated CpGs was observed among the 

down-regulated genes in the lung; up-regulated genes 

were noted for brain regions but not for lung (Figure 

2C, Supplementary Table 10). Among the curated 

gene-sets and transcription factor targets obtained 

from MsigDB, the strongest enrichment was for poly-

comb regulated genes in human embryonic stem cells, 

predominantly H3K27me3 and transcription factor 

binding sites respectively (Supplementary Figure 4A, 

4B). The most enriched transcription factor target 

gene-set included PAX6, HOXC4, FOXG1, SALL3, 
TBR1, DLX1, ZIC4, ZIC1, SHOX2, ATOH1, PITX2 

and OLIG3 (Supplementary Figure 4C) with hyper-

methylated CpGs in our findings. There was no tissue-
specific or gene set enrichment observed for genes 

annotated to hypo-methylated CpGs, likely due to 

small numbers. Gene associations for the significant 

differentially methylated regions also had the most 

significant enrichment for RNA polymerase II 

transcription factor activity/sequence-specific DNA 

binding (Supplementary Table 11) with a significant 

percentage of those within 5kb of transcription start 

site for both fetal and ALT datasets (Figure 2D, 2E). 

 

Measures of epigenetic age acceleration in fetal and 

adult lung tissues 

 

We did not identify a large overlap between the 353 

Horvath clock markers and our differentially 

methylated age EWAS associations. Of the 353 CpG 

clock markers, 91 markers existed within the fetal  

lung aDMPs and 17 within the adult lung aDMPs and 

two CpGs (cg12946225: HMG20B; cg23517605: 

TUBB2B) were common to all three comparisons.  

Our EWAS quality control processing pipeline filtered 

out some of those 353 clock markers, however  
the smaller overlap may also suggest a different  

subset of age associations captured between the 

models. 
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Table 2C. Age-associated differential methylation in the fetal and adult lung tissue datasets. 

     Fetal lung Adult lung  

CG site CHR MAPINFO UCSC Gene Context Avebeta Coef Adjusted P AveBeta Coef Adjusted P Direction 

cg22296612 6 15,457,699 JARID2 Body 0.92 0.002 3.60E-15 0.99 -0.0001 0.016 +- 

cg17110767 1 243,637,966 SDCCAG8 Body 0.67 0.003 4.24E-13 0.97 0.001 0.014 ++ 

cg20801476 7 27,281,465 EVX1 TSS1500 0.06 0.001 5.27E-13 0.24 0.001 0.048 ++ 

cg20580088 14 62,161,583 HIF1A TSS1500 0.13 0.001 2.28E-12 0.28 0.002 0.012 ++ 

cg17611674 10 8,094,431 FLJ45983 Body 0.10 0.001 2.34E-12 0.38 0.002 0.020 ++ 

cg24388061 8 141,249,678 TRAPPC9 Body 0.73 0.002 7.82E-12 0.94 0.001 0.008 ++ 

cg21595709 19 15,344,186 EPHX3 TSS1500 0.05 0.001 2.90E-11 0.21 0.001 0.039 ++ 

cg00484358 1 110,610,995 ALX3 Body 0.12 0.001 1.07E-10 0.38 0.001 0.039 ++ 

cg27583307 2 200,320,750 SATB2 Body 0.03 0.000 2.35E-10 0.11 0.001 0.049 ++ 

cg03470772 4 85,503,328 CDS1 TSS1500 0.03 0.000 4.48E-10 0.26 0.002 0.028 ++ 

cg20992114 4 111,542,825 PITX2 Body 0.08 0.001 7.98E-10 0.28 0.001 0.002 ++ 

cg07247419 20 21,376,484 NKX2-4 3'UTR 0.02 0.000 1.45E-09 0.24 0.002 0.007 ++ 

cg22197050 2 63,276,183 LOC100132215 TSS1500 0.03 0.000 5.83E-09 0.27 0.002 0.000 ++ 

cg06306198 3 147,128,998 ZIC1 Body 0.05 0.001 1.73E-08 0.23 0.001 0.042 ++ 

cg11814235 18 28,621,490 DSC3 Body 0.02 0.000 1.97E-08 0.12 0.001 0.031 ++ 

cg14614094 9 133,567,903 EXOSC2 TSS1500 0.36 0.001 3.80E-08 0.69 0.002 0.015 ++ 

cg15110296 12 12,509,705 LOH12CR1 TSS1500 0.68 -0.002 5.41E-08 0.26 -0.003 0.042 -- 

cg18431640 13 100,637,191 ZIC2 Body 0.03 0.000 1.45E-07 0.19 0.001 0.008 ++ 

cg24719321 11 122,850,490 BSX Body 0.02 0.000 1.53E-07 0.18 0.002 0.002 ++ 

cg08376141 6 32,116,591 PRRT1 3'UTR 0.11 0.001 2.11E-07 0.53 0.003 0.003 ++ 

Top 20 annotated and differentially methylated age-associated DMPs overlapping between fetal lung and the adult lung tissue 
dataset. P-values were adjusted by the Benjamini-Hochberg method and are sorted based on the discovery fetal lung dataset. 
Abbreviations: UCSC, The University of California Santa Cruz; Coef, regression coefficient - Adjusted mean difference (per day 
increase or decrease for fetal lung dataset and per year increase or decrease for adult lung tissue dataset) in methylation with 
age. NA: un-annotated CpG site; CHR, chromosome; AveBeta, average beta; P, p-value. 

 

Among the fetal lung samples, chronological age was 

significantly positively correlated with the DNAmAge 

as expected (cor=0.76, P=3.6x10-16, Supplementary 

Figure 5A). Overall, the fetal lung sample ages 

appeared epigenetically accelerated with higher age 

estimates for DNA methylation age compared to 

chronological age (Table 1). However, IUS-exposure 

was associated with lower epigenetic age differences 

when compared to epigenetic age of unexposed samples 

after adjusting for available covariates, suggesting 

relative developmental delay related to IUS exposure 

(Estimate: -0.10; 95% CI: -0.19, -0.01; P=0.03; Table 

3). In the multivariate regression model including age 

and other covariates, we did not detect statistical 

differences by sex although they were in the same 

direction of effect as in the ALT dataset (Table 3). 

 

In the adult lung dataset, we observed significant  

positive correlation between chronological age and the 

DNAmAge (cor=0.74, P<2.2x10-16; Supplementary 

Figure 5B). The COPD cases showed a trend for 

accelerated aging compared to subjects without COPD 

(Estimate: 2.20; 95% CI: -1.04, 5.44; P=0.18, Table 3); 

however males demonstrated significant epigenetic age 

acceleration compared to females that stayed robust after 

adjustment with covariates in the multivariate model 

(Estimate: 1.98; 95% CI: 0.13, 3.83; P=0.036, Table 3). 

 

Investigating smoking cessation behaviors, there was a 

suggestive trend for association between age acceleration 

and recent smoke cessation only within females 

compared to males in the multivariate model. The trend 

was not significant in males, however the effect estimates 

were in the same direction (Supplementary Table 12). 

 

DISCUSSION 
 

Aging and age-associated epigenetic drift [31] in 

prenatal and postnatal life drive progressive and 

widespread methylation changes that can be captured by 



 

www.aging-us.com 1749 AGING 

 

Figure 2. Network visualization, functional enrichment and region-gene associations in both fetal and adult lung tissue 
datasets. Network clusters of the molecular function gene ontology terms and annotated pathways including reactome and wikiPathways 

were created using the gene symbols mapped to the significant and age-associated differentially methylated positions (DMPs) overlapping 
between fetal and adult lung datasets. (A) Hyper-methylated CpGs were mainly enriched in transcription factor DNA binding whereas  
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(B) hypo-methylated CpGs were enriched in oxidoreductase activity. Size corresponds to the overlap of genes between the enriched terms 
and color corresponds to significance. The analysis for hypo-methylated CpGs was limited by few numbers of genes represented by few CpGs 
(C) Functional enrichment of age-associated hyper-methylated DMPs in both fetal and adult lung tissue datasets amongst differentially 
expressed genes in 54 GTEx tissues (x-axis) and –log10(P-value) on the y-axis. Tissues with significant gene enrichment (FDR<0.05) are 
highlighted by red bars and tissues with the highest enrichment amongst the downregulated and upregulated genes are highlighted by 
arrows (D) Region-Gene associations using chromosomal coordinates for the differentially methylated regions in fetal lung dataset (E) Adult 
lung tissue dataset. TSS: transcription start site. 

 

epigenetic clocks [16], however there is no clear gold 

standard [21]. Telomere shortening had long been 

considered a hallmark of biological aging, however 

recently weak correlation was found between telomere 

length and age-associated health outcomes [32]. With 

refinement in aging algorithms, ongoing efforts for 

precision health initiatives aim to identify better 

epigenetic biomarkers with predictive potential for 

obstructive lung disease, as these may facilitate primary 

interventions [33]. Our study importantly contributes to 

identifying age-associated patterns of differential 

methylation overlapping between early-life (fetal) and 

adulthood (adult lung) implicated in crucial 

developmental processes and demonstrates their effect 

modification by sex and smoke-exposure. This has never 

been examined before in lung tissue studies. 

 

Rapid and considerable changes in methylation occur in 

early fetal life; therefore our finding of thousands of age-

associated DMPs in fetal lung is not surprising. One of 

the most interesting and encouraging global findings was 

enrichment of hyper-methylated CpGs for transcription 

factor activity and down-regulated genes in the lung from 

GTEx gene-sets. Increased tissue-specific transcriptional 

variability has been associated with age, with DNA 

methylation playing an integral role in activating  

or silencing a gene mediated by transcription factor 

binding [34]. Evidence also suggests age-associated 

hypermethylation in whole blood to occur at chromatin 

promoter domains typical of transcriptional repression in 

nearby neural genes [35] and those that are involved in 

DNA binding and transcriptional regulation [36]. 

Aberrant hypermethylation and silencing of genes 

required for maintenance of a differentiated state has 

been observed in murine lung development and lung 

cancer [37]. A 2012 healthy aging study [38] pointed out 

that the age-associated DMPs and DMRs that are often 

activated or deregulated early in life hinted towards 

developmental defects that may not necessarily represent 

healthy aging in later life and cause a wide range of 

detrimental health outcomes. As an example, one of the 

several transcription factors that we mentioned was ZIC1. 

The tissue-specific transcription factor ZIC1 and its 

family functions by binding to enhancer regions in the 
developing brain and was identified as having a crucial 

regulatory role in neuronal differentiation and age-related 

Alzheimer's disease [39].  When looking specifically  

at region-overlap, the majority of those genes included 

snoRNAs/scaRNAs. These non-coding RNAs have 

gained substantial interest lately due to their clinical 

relevance in various pathologies including lung cancer, 

host antiviral responses and their regulatory role in RNA 

modifications, splicing and telomerase activity [40]. 

Moreover, it was reassuring that our overlapping age-

associated DMRs between both fetal and adult lung tissue 

datasets were also enriched in DNA-binding transcription 

factor activity with common gene-sets, which may 

represent regions of regulatory potential as well as targets 

of epigenetic therapy. Of course, functional transcription 

factor binding can only be confirmed via experimental 

validation. However these results do suggest that 

methylation changes associated with aging and 

environmentally mediated exposures throughout life may 

impact biological processes and pathways crucial for 

growth, development and immune system regulation 

during the life course. Considering directionality of 

effect, most of our adult EWAS findings between both 

fetal and adult lung datasets were hyper-methylated with 

age which is in line with the previous findings [38] 

pointing towards the methylation hotspots that are 

consistently altered with age-dependent or age-related 

phenotypes. 

 

Age associated epigenetic variation may additionally 

reveal genes further disrupted in age associated lung 

diseases such as COPD. In our fetal lung aDMPs, we 

found previously discussed differentially methylated 

age-associations identified in fetal brain tissue [13] 

including the Wnt antagonist SFRP1 known to be 

differentially methylated in adults with asthma [41] and 

previously associated with emphysema [42], nuclear 

receptor gene NR4A2 crucial for neurogenesis and 

SHANK2 implicated in neurodevelopmental disorders 

such as autism and severe asthma [13, 43]. ELOVL2 is a 

consistently identified biomarker for aging [12] further 

supported by our finding of association of the age-

related ELOVL2 gene and the rapid hypermethylation of 

its promoter cg16867657 [25, 44]. Interestingly, we also 

identified an age-by-sex association for the ELOVL2 

gene, at another nearby CpG site: cg24724428; both 

these sites were significantly correlated with age in the 

EWAS Atlas and in the majority of tissues [44]. 
 

Age associated enrichment of hypo-methylated sites 

characterized by methylation protein binding, oxido-

reductase and aldehyde dehydrogenase activity while



 

www.aging-us.com 1751 AGING 

Table 3. Associations between epigenetic age acceleration and lung phenotypes; 
IUS-exposure and sex in fetal lung dataset and COPD status, sex, time since quitting 
(in months), pack-years and fraction of lung voxels with low attenuation areas at 
less than -950 Hounsfield Units (LAA-950) in the adult lung tissue dataset. 

Epigenetic clock metrics in fetal and adult lung tissues 

 Age Acceleration 

Multivariate model predictors   

Fetal Lung Estimate (95% CI) P-value 

IUS-exposure -0.10 (-0.19, -0.01) 0.03 

Sex 0.03 (-0.07, 0.12) 0.57 

Adult Lung Estimate (95% CI) P-value 

COPD 2.20 (-1.04, 5.44) 0.18 

Sex 1.98 (0.13, 3.83) 0.036 

months-quit -0.01 (-0.02, 0.004) 0.21 

pack-years -0.01 (-0.05, 0.02) 0.46 

LAA-950 -1.94 (-9.30, 5.43) 0.60 

Multivariate models were residualized for age and were additionally adjusted for potential 
confounders in both datasets. In fetal lung dataset, unexposed samples were used as 
reference compared to IUS-exposed samples; covariates included post-conception/gestational 
age (continuous) and sex (male or female; female as reference). In adult lung tissue dataset, 
subjects without COPD were used as reference compared to COPD subjects; covariates 
included chronological age, sex (male or female; female as reference), race (white, African-
Americans and others), pack-years (smoke exposure, continuous), LAA-950 (marker for airway 
emphysema, continuous), months-quit, (time since quitting in months, continuous) and 
technical covariate sample plate. DNAmAge as output from Horvath clock (in years) was used 
for both datasets. Age acceleration was calculated as the difference between DNAmAge and 
chronological age. Significant P-Values are highlighted as bold. 
Abbreviations: CI, confidence interval. 
Missing data: Time sine quitting data (months) was missing for 1 subject without COPD, 
fraction of lung voxels with low attenuation areas at less than -950 Hounsfield Units (LAA-950) 
was missing for 27 subjects without COPD and 28 COPD subjects. 

 

limited with few CpGs in our study could point to 

oxidative stress that can cause susceptibility to 

inflammatory disorders of the airways such as asthma 

and COPD. Variable methylation and expression 

changes have previously linked aging, COPD [45] and 

idiopathic pulmonary fibrosis (IPF) [46]. Of note, 

genes in VEGFA-VEGFR2 signaling mapped to hypo-

methylated CpGs. The vascular endothelial growth 

factor-A and its family is crucial for endothelial cell 

survival and angiogenesis and its components are 

known biomarkers for asthma-COPD overlap 

syndrome [47]. One of the blood-based studies in lung 

tissue associated smoking with site-specific hypo-

methylation [48]. The age-associated sites modified 

by smoke exposure and smoking cessation may 

further attenuate the risk of age-related lung diseases 

such as COPD and IPF or may point to reversed 

methylation signatures by smoking cessation over 

time for fetal origins of lung disease and susceptibility 

to other developmental or neurological disorders 

triggered in early life. There is also evidence  

that imbalance in the redox potential mediates 

inflammation, airflow limitation and airway 

remodeling in asthma and COPD [49]. Cigarette 

smoking is known to cause oxidative stress, disrupting 

the vascular endothelial growth factor (VEGF)/VEGF 

receptor (VEGFR) signaling and may promote 

emphysema [49]. These findings provide mechanistic 

insights into lung tissue-specific signatures of hypo- 

and hyper-methylation with age, pointing to a 

sensitive transcriptional regulation mediated by DNA 

methylation modifications during in-utero periods of 

developmental plasticity and later life. 

 

We further examined epigenetic age acceleration or 

deceleration during the critical prenatal exposures and in 

later life. Our study highlighted epigenetic clock 

deceleration in IUS-exposed compared to unexposed 

samples. Prenatal exposure to hypoxic conditions has 

been associated with epigenetic age deceleration [50], 
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alterations in immune and inflammatory responses, 

developmental delay and cognitive decline in later life 

[51]. In ALT, we observed age acceleration in males 

compared to females. This is in line with previously 

reported age acceleration in males over females 

corresponding with higher all-cause male mortality [12, 

23, 51]. We also observed a suggestive trend in ALT for 

more recent smoking driving epigenetic age acceleration 

suggesting that smoking cessation could improve 

respiratory and lung health through modulation of lung 

aging pathways, a finding of potential public health 

relevance further supporting efforts to curb inhalational 

exposures starting early in life. 

 

These findings suggest two plausible aging mechanisms 

[22]: (i) disruption to the aging processes may begin 

before birth, and (ii) certain prenatal exposures might 

increase/decrease the disease risks through 

perturbations in aging pathways as a defense or 

adaptation mechanism. In accordance with this 

hypothesis, decreased epigenetic age was associated 

with longevity in supercentenarians and their offspring 

[52] but also cerebroplacental ratio, a marker for fetal 

adaption to hypoxic conditions and adverse pregnancy 

outcome [50]. 

 

We acknowledge that our study also has limitations 

including the sample sizes of the lung datasets, paucity of 

longitudinal lung tissue data, limited phenotype data 

including race, geography, socioeconomic status in the 

fetal lung dataset and potential residual confounding by 

cellular heterogeneity associated with the lung samples 

even after surrogate variable adjustment. Evidence of high 

genomic inflation, despite adjusting for confounders as we 

have in this study, has also been observed and discussed 

frequently in other age EWAS studies and in principle 

could be used as a marker of development and biological 

age [11, 53, 54]. Moreover, limited association in fetal 

and adult lung tissue with the epigenetic clock metrics 

could be due to lack of a true association or the 

consideration that a lung specific clock would perform 

better, given the richness of the age associated EWAS 

findings. However, investigating age-associated 

methylation signatures using a robust analytical 

framework, in unrelated fetal and adult lung tissue 

samples with a broader age range including critical stages 

of development as well as adulthood, strengthens our 

study. Of note, it is unlikely that one particular omic-type 

or few genetic variants could lead to complex diseases of 

lung. Therefore, integrative omics analyses with larger 

sample sizes would mostly support future sensitivity or 

sex-stratified analyses and contribute to the greatest extent 

in identifying causal genes and pathways. 
 

In summary, our findings point to age-related differential 

methylation that may serve as a starting point for similar 

future studies to advance our understanding of age-

associated epigenetic programming and aid development 

of more sensitive lung based epigenetic age estimator. 

From a public health standpoint, considering overlapping 

developmental and aging pathways as potential targets 

for future interventions early in life may have relevance 

to curb the incidence of complex chronic diseases with 

the aging of the global population. Our study combines 

aging and epigenetic signatures and may constitute a 

system to promote lung health and longevity by 

evaluating age-modifying interventions across the life 

course. 

 

MATERIALS AND METHODS 
 

Study samples 

 

Fetal lung DNA samples (n=78, 42 exposed to in utero 

maternal cigarette smoke (IUS), 36 non-IUS-exposed) 

were isolated from discarded tissue from 57-122 days of 

gestation as previously described [29, 55]. We 

performed genome-wide methylation profiling on these 

samples using the Illumina HumanMethylation450 

BeadChip. Fetal sex was confirmed using unique Y 

chromosome microarray probes and verified using X 

and Y chromosome methylation. IUS exposure was 

assessed by measuring placental cotinine concentrations 

[56]. Exposure was treated as a dichotomous variable 

(1/0 with 1=exposed), with levels of cotinine < 7.5 ng/g 

considered as unexposed and levels of cotinine > 

7.5 ng/g as exposed, though we also assessed the 

continuous cotinine variable. Approval was obtained 

from the Partners Human Research Committee 

Institutional Review Board in Boston, MA. 

 

We used our previously published [57] adult lung tissue 

(ALT) dataset, from the Adult Lung Tissue study 

(n=160; 114 COPD cases, 46 subjects without COPD) 

to investigate age-associated differential methylation in 

adulthood. Genetic data was available for a subset of 

these samples. This led to removal of eight samples 

from the fetal lung dataset and 11 samples from the 

ALT dataset for whom we could not calculate ancestry 

principal components due to unavailability of the data. 

This applied to all the epigenome-wide association 

(EWAS) models. 

 

Epigenome-wide age association and statistical 

analyses 

 

The proportion of DNA methylation at any CpG site 

reported as the Illumina beta (β)-value is defined as the 

ratio between methylated signal intensity and total 

probe signal intensity of methylated and un-methylated 

signal. A β-value ranges between 0 and 1 where 0 is 

considered an un-methylated CpG site and a value 
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approaching 1 is considered a completely methylated 

CpG site. For biological interpretation purposes, we 

used beta-scale for all models [58]. Normalization and 

preprocessing were performed in Bioconductor [59] 

package Minfi [60]. We evaluated site based differential 

methylation (outcome) by age in both fetal lung and 

adult lung datasets with linear regression using limma 

[61] with correction for multiple testing using 

Benjamini-Hochberg method. We accounted for the 

following available covariates from the fetal lung data: 

IUS-exposure to cotinine (0: unexposed as reference, 1: 

exposed subjects) and sex (male/female with female as 

reference) and sample plate and sentrix position as 

technical covariates. Correcting for sentrix position 

accounts for the positional effects of the samples on the 

array [62]. For adult lung data, we included the 

following covariates: COPD disease status 

(cases/subjects without COPD as reference), sex 

(male/female as reference), race (white as reference 

versus black and others), pack-years (continuous) and 

sample plate as a technical covariate. The models 

evaluating age-associated differential methylation were 

further tested with interaction terms to assess effect 

modification by smoke exposure and sex. Ancestry 

composition was estimated from genetic data using the 

TRACE program (fasT and Robust Ancestry Coordinate 

Estimation) as implemented in the LASER package: 

(http://csg.sph.umich.edu/chaolong/LASER/) [63]. For 

the fetal and ALT datasets, we adjusted for genetic 

confounding using the first three (12.3%) and two 

(8.3%) principal components (PCs) respectively that 

explained most variability in the data. PCs did not reveal 

any confounding by row and column for the ALT dataset 

so sentrix position was not included in the model. 

Additionally, we accounted for unknown technical 

confounders in the fetal lung dataset such as observed 

due to cell-type heterogeneity using supervised version 

of surrogate variable analysis (s-sva) [64].  

 

Differentially methylated positions (DMPs) were 

categorized as hyper- or hypo-methylated with a unit 

increase in chronological age (per day for fetal lung and 

per year for adult lung dataset). We further evaluated 

age-related differential methylation for effect 

modification and included interaction terms of age with 

IUS-exposure (categorical variable), cotinine levels 

(continuous variable) and sex in the fetal lung dataset 

and pack-years, sex, COPD, time since quitting/ 

smoking cessation (in months) and fraction of lung 

voxels with low attenuation areas at less than -950 

Hounsfield Units (LAA-950) to assess emphysema in the 

adult lung dataset. For main effects, we used a False 

Discovery Rate (FDR) of less than or equal to 0.05 and 
for interaction results, we relaxed thresholds for 

exploration and used an FDR of 10% (FDR<0.10). CpG 

sites were mapped to genes within which they were 

located using Human Genome build: GRCh37/hg19 and 

Bioconductor annotation package: IlluminaHuman 

Methylation450kanno.ilmn12.hg19 [65] and their gene 

context annotations were provided. If the CpG sites 

were not mapped to a gene, only their CpG island 

annotations were provided. We identified the 

overlapping age-associated differentially methylated 

positions/CpGs (aDMPs) between fetal and ALT 

datasets at probe level and at an FDR < 0.05. As a 

sensitivity analysis, we additionally evaluated the age 

associations in fetal and ALT datasets after stratifying 

by IUS-exposure and COPD status respectively. 

Considering aging may have a genetic component, we 

further investigated the presence of methylation 

quantitative trait loci (mQTLs) among these aDMPs 

using the previously published methylation lung tissue 

QTL results [26]. 

 

Region-based analyses was performed using the kernel 

smoothing method DMRCate [66]. Differentially 

methylated regions (DMRs) were calculated from log 

transformed CpG values (M-values) and defined as 

regions with at least two significant sites separated by a 

maximal distance of 1000 base pairs at an FDR of less 

than or equal to 0.05. 

 

Enrichment of disease associations and pathway 

analysis 

 

Functional gene-set enrichment [30] and visualization of 

tissue-specific gene clusters was performed for 

significant aDMPs overlapping between fetal and ALT 

datasets using FUMA [30]. Unique gene symbols were 

mapped to Entrez IDs using Bioconductor package 

org.Hs.eg.db [67]. Network representation of clusters for 

the enriched gene ontology terms and pathways was 

performed using AutoAnnotate [68] and EnrichmentMap 

[69] apps in Cytoscape 3.7.1 [70]. Biological processes 

and pathways connected by edges were retained in the 

final network. Over-representation and pathway analysis 

of genes annotated to overlapping sites and regions was 

performed using gProfiler2 [71] package in R and 

Genomic Regions Enrichment of Annotations Tool 

(GREAT) [72] version 4.0.4 (http://great.stanford.edu/ 

public/html/) respectively. 

 

DNAmAge and measures of epigenetic age acceleration  

 

The Horvath clock [16] captures DNA methylation 

changes in chronological age using multiple tissue types 

and implies the epigenetic patterns from birth to the 

current age and included lung and fetal tissues during 

algorithm development. Therefore, we chose the 
Horvath clock method to determine the epigenetic age 

(DNAmAge) (http://labs.genetics.ucla.edu/horvath/dna 

mage/) [16] for the complete set of fetal (n=78) and 

http://csg.sph.umich.edu/chaolong/LASER/
http://great.stanford.edu/public/html/
http://great.stanford.edu/public/html/
http://labs.genetics.ucla.edu/horvath/dna
http://labs.genetics.ucla.edu/horvath/dna
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adult lung samples (n=160) and additionally 

investigated differential methylation of the 353 CpG 

markers that form the aging clock. We computed two 

methylation-based age acceleration measures: age 

acceleration difference (epigenetic age – chronological 

age) and residual (linear regressing DNA methylation 

age on chronological age). Using age acceleration 

difference, we tested associations with IUS-exposure in 

fetal lung, and lung phenotypes in ALT. For all 

regression models, chronological age was included as a 

covariate [16]. To keep the units comparable to the 

chronological age in adult lung, post-conception age (in 

days) in fetal lung dataset was converted to a negative 

chronological age (in years) implying before birth: 

Chronological Age (in years) = Post Conception  

Age – (9*30)/365. In ALT dataset, correlation of 

epigenetic age acceleration with time since smoke 

cessation/quitting (in months) and LAA-950 was 

performed using Pearson correlation test. A positive 

difference between calculated epigenetic age and 

chronological age was considered accelerated aging and 

a negative difference decelerated aging. 

 

Ethics approval and consent to participate 

 

Institutional Review Board approval was obtained at the 

three centers (Brigham and Women’s Hospital (Boston, 

MA), St. Elizabeth’s Hospital (Boston, MA), and Temple 

University Hospital (Philadelphia, PA)) for adult lung 

tissue dataset. Human fetal lung tissues were obtained 

from two NICHD-supported tissue retrieval programs at 

the University of Washington Center for Birth Defects 

Research (Seattle, WA) and the University of Maryland 

Brain and Tissue Bank for Developmental Disorders 

(Baltimore, MD). Approval was obtained from the 

Partners Human Research Committee Institutional 

Review Board at Brigham and Women’s Hospital in 

Boston, MA who declared the use of these tissues non-

human subject research (2010-P-002399). Written 

informed consent was obtained from all participants. Our 

research was performed in accordance with the principles 

of the Helsinki Declaration. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 

Supplementary Figure 1. Q-Q plot for fetal (left panel) and adult lung tissue (right panel) dataset. 

 

 

 

Supplementary Figure 2. Volcano plot depicting the effect size on x-axis and – log10P-Value on the y-axis. The blue colored dots 

are the CpG sites at an FDR adjusted P-Value of 0.05. (A) Fetal lung dataset. Gray line represents the cut-off for the age-associated DMPs at 
the Bonferroni threshold of 1.43×10-7. Highlighted CpG sites as red dots and associated genes are at an absolute regression coefficient 
threshold (effect size) of 0.01. (B) Adult lung tissue (ALT) dataset. Gray line represents the cut-off for the age-associated DMPs at the 
Bonferroni threshold of 1.43×10-7. Highlighted CpG sites as red dots and associated genes are at an absolute regression coefficient (effect 
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size) threshold of 0.005. CpG sites colored green are those that passed the effect size threshold, however were not significant. Legend 
abbreviations: Black dots as NS, not significant; Blue dots as p-value: age-associated DMPs at FDR<0.05; Red dots as p-value and regression 
coefficient, represented by difference in methylation with per day increase in age in fetal lung and per year increase in ALT dataset. 

 

 
 

Supplementary Figure 3. Age-associated differential methylation of cg16867657 located within ELOVL2 gene promoter for fetal lung (A) 

and adult lung tissue (B) datasets. 
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Supplementary Figure 4. Gene-set enrichment analysis for the genes annotated to the hyper-methylated age-associated 
DMPs overlapping between fetal and adult lung tissue datasets using curated gene-sets and transcription factor targets 
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obtained from MsigDB. (A) Enrichment based on Chemical and Genetic perturbation gene-sets (MsigDB). As an example: 
BENPORATH_EED_TARGETS signify genes identified by ChIP as targets of the Polycomb protein embryonic ectoderm development (EED) 
[GeneID=8726] in human embryonic stem cells. This protein mediates repression of gene activity through histone deacetylation and may act 
as a regulator of integrin function. (B) Enrichment based on GO molecular function gene-sets (MsigDB) (C) Enrichment based on gene-sets 
from TF targets (MsigDB). As an example, OCT1_04 signifies genes having at least one occurrence of the transcription factor-binding site (v7.4 
TRANSFAC) in the regions spanning up to 4 kilo-bases around their (TSS) transcription starting sites. 

 

 
 

Supplementary Figure 5. Scatter plot of correlation between chronological age on x-axis and estimated DNAmAge (in years) 
on y-axis. Red: IUS-exposed fetal lung samples and COPD cases, Blue: Unexposed samples and controls respectively in fetal lung (A) and 

adult lung tissue (B) datasets. For fetal lung datasets, chronological age in days post conception was also converted to years (refer the paper 
for details), therefore x-axis represents before birth chronological age in negative. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–11. 

 

Supplementary Table 1. Differentially methylated CpGs associated with age in the fetal lung tissue dataset (94,834 
CpGs; FDR adjusted P-Value < 0.05). 

Supplementary Table 2. Differentially methylated CpGs associated with age in the adult lung tissue dataset (2,217 
CpGs; FDR adjusted P-Value < 0.05). 

Supplementary Table 3. Fetal age-associated differentially methylated positions (DMPs) overlapping with adult lung 
tissue (244 CpGs at FDR<0.05), sorted by column J (FDR adjusted P-value for the overall fetal lung analysis).  

Supplementary Table 4. Overlapping age-associated differentially methylated positions (aDMPs) with previously 
published lung tissue methylation quantitative trait loci (mQTLs) in cis (67 unique CpGs annotated to 44 unique 
genes, line 2) and trans (17 unique CpGs annotated to nine unique genes, line 1915). 

Supplementary Table 5. Differentially methylated regions (DMRs) between fetal with adult lung tissue datasets 
based on overlapping genes (878 regions at Stouffer's FDR<0.05, sorted by significance in fetal lung data). 

Supplementary Table 6. Summary statistics (number of CpGs) for the evaluated epigenome-wide age associations 
and their effect modification by phenotypes in the fetal and adult lung tissue. 

Supplementary Table 7. Differentially methylated CpGs with effect modification by age*sex interactions in fetal 
(n=3) and adult lung (n=47) dataset (FDR Adjusted P-Value < 0.10). 

Supplementary Table 8. Differentially methylated CpGs with effect modification by age*pack-years interactions 
(exposure to cigarette smoke; main predictor: age*pack-years) in adult lung tissue dataset (n=11; FDR adjusted P-
Value<0.10). 

Supplementary Table 9. Gene enrichment analysis for the genes annotated to the overlapping hyper (210 CpGs, 120 
genes) and hypo-methylated (five CpGs, five genes) age-associated DMPs between fetal and adult lung dataset (144 
unique genes) using gProfiler2. 

Supplementary Table 10. Functional enrichment of age-associated hyper-methylated DMPs in both fetal and adult 
lung tissue datasets amongst differentially expressed genes in 54 GTEx tissues (sorted by FDR adjusted P-Value). 

Supplementary Table 11. Region-based enrichment analysis using GREAT server for Fetal lung (row 4) and adult lung 
(row 119) tissue differentially methylated regions (DMRs) with overlapping genes. 

Supplementary Table 12. Association between epigenetic age acceleration and 
adult lung tissue dataset phenotype: recent smoke cessation stratified by sex: in 
females and males. 

  Age acceleration 

Multivariate 

model 

predictors 

    

Females Estimate (95% CI) P-value 

months-quit -0.01 (-0.02, 0.001) 0.068 

Males Estimate (95% CI) P-value 

months-quit -0.01 (-0.02, 0.01) 0.3 

Note: Multivariate models were residualized for chronological age and were additionally 
adjusted for race, pack-years, LAA-950 and technical covariate plate. 
Abbreviations: CI, confidence interval; percentage of low attenuation areas at less than -
950 Hounsfield Units (LAA-950). 
Missing data: Time sine quitting data (months) was missing for 1 subject without COPD. 


