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Abstract

Heme oxygenase (HO-1) mediates the enzymatic cleavage of heme, a molecule with proin-

flammatory and prooxidant properties. HO-1 activity deeply impacts host capacity to tolerate

infection through reduction of tissue damage or affecting resistance, the ability of the host to

control pathogen loads. In this Review, we will discuss the contribution of HO-1 in different

and complex protozoan infections, such as malaria, leishmaniasis, Chagas disease, and

toxoplasmosis. The complexity of these infections and the pleiotropic effects of HO-1 consti-

tute an interesting area of study and an opportunity for drug development.

Introduction

The control of labile heme amounts is a main asset in the daily fight for survival, especially rel-

evant in conditions of hemolysis, extensive tissue damage, and infection. Throughout evolu-

tion, several mechanisms were selected that counteract the deleterious effects of labile heme [1,

2]. The scavenging proteins haptoglobin and hemopexin contribute to the clearance of hemo-

globin and heme from the bloodstream [3]. In the intracellular environment, heme is degraded

by heme oxygenases (HOs), enzymes expressed by most living organisms and coded by the

highly conserved HMOX genes [4]. HO cleaves heme, generating equimolar amounts of bili-

verdin (which can be further reduced to bilirubin by biliverdin reductase), carbon monoxide

(CO), and ferrous iron [5]. HO-1 is inducible, and its expression is triggered by a number of

stress-inducing stimuli, while HO-2 is constitutively expressed in the kidneys, liver, testes, and

central nervous system [4, 6].

Given its critical role in homeostasis [7–10], it is not surprising that HO-1 profoundly

affects the host response to infection in multiple ways [4, 11–13]. There are 2 main ways that a

host deals with infection; one is through resistance, the ability to restrict or eliminate the infec-

tious agent, a function primarily performed by the immune system. The second, disease toler-

ance, is the capacity of the host to mitigate or avoid the pathological consequences of an

infection [14, 15]. Several pieces of evidence indicate that HO-1, by reducing labile heme

amounts or dependently on the products of heme catabolism, can interfere with resistance and

disease tolerance. In fact, the induction of HO-1 by inflammatory stimuli, including heme,

proinflammatory cytokines, and pathogen-associated molecular patterns (PAMPs), indicates
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that HO-1 is part of a negative feedback loop controlling inflammation and tissue damage dur-

ing infection [4, 16–18].

Heme is a potent inducer of oxidative stress and inflammation, thus upon infection, it can

contribute to cell death and tissue damage [19–25]. Besides influencing tissue tolerance, heme

could also impair the resistance to infection through the inhibition of phagocytosis and as a

nutrient that facilitates pathogen growth [26, 27]. A recent study, however, indicates that heme

can promote innate immune memory, increasing resistance to bacterial infection [28].

By strongly inducing HO-1, heme triggers its own catabolism as a feedback control system.

HO-1 reduces the amounts of free heme and generates the antioxidant products biliverdin-bil-

irubin and CO, thus changing the redox balance that influences disease tolerance and resis-

tance [29–31]. Several studies support that biliverdin and bilirubin generation is an important

part of the tissue protective antioxidant role associated with HO-1 [32–37]. CO is also an anti-

oxidant with cytoprotective effects that induces the anti-inflammatory cytokine interleukin 10

(IL-10), inhibits the production of inflammatory mediators, and binds to heme on the hemo-

globin avoiding heme release [38–41]. Biliverdin, bilirubin, and CO also have microbicidal

activities, contributing to resistance against infection [42–45]. Interestingly, CO triggers ATP

release by bacteria, which in turn induces IL-1β production dependently on NLRP3, macro-

phage activation, and bacterial killing [46].

HO-1 not only contributes to a differential susceptibility of the cells to stress but also alters

the iron pool availability to pathogens through the release of iron from heme and by inducing

the expression of iron scavengers and transporters [47–48]. In fact, many of the protective

effects mediated by HO-1 are linked to ferritin H chain (FtH), which forms a protein complex

with crucial cytoprotective and antioxidant functions. FtH is induced by free iron and scav-

enges ferrous iron, preventing redox deleterious reactions and the availability of iron to patho-

gens [49, 50]. In some circumstances, exacerbated expression of HO-1 is associated with

cytotoxic effects mediated by uncontrolled iron amounts [51].

Protozoan infections are an important cause of morbidity and are among the major causes

of death worldwide [52]. In what follows, we discuss the current knowledge of the mechanisms

and roles of HO-1 during infections caused by the major protozoan pathogens, using as a

framework the paradigm of resistance and disease tolerance.

HO-1 in malaria

With an estimated 228 million cases worldwide in 2018, malaria presents one of the highest

morbidities and mortality rates among parasitic diseases (estimated number of deaths at

405,000) [53]. The human disease is caused by different Plasmodium species, including P. fal-
ciparum, P. vivax, P. malariae, P. ovale, and P. knowlesi, and is characterized by 2 distinct

stages: the hepatic (or pre-erythrocytic) and the erythrocytic. In the hepatic stage, after inva-

sion of hepatocytes and differentiation into merozoites, parasites are released into the blood-

stream. Then, merozoites invade and replicate within red blood cells, leading to their lysis to

initiate the erythrocytic phase, a stage associated with the release of heme into the circulation

and high fever [54–56]. The severe forms of malaria include cerebral malaria (CM), severe

malaria anemia (SMA), and acute respiratory syndrome (ARDS). Despite important differ-

ences regarding the human disease, mouse models constitute important tools to characterize

the molecular mechanisms of malarial pathogenesis.

In 2007, Pamplona and colleagues established a clear connection between HO-1 expression

and experimental cerebral malaria (ECM) in mice. Infection with P. berghei ANKA causes

high rates of ECM and low expression of HO-1 in C57BL/6 mice, in contrast to the paucity of

disease signs and high expression of HO-1 observed in the BALB/C strain [57]. Indeed, genetic
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disruption of Hmox1 (the gene that encodes HO-1) in BALB/C mice led to an increase in the

development of ECM, and conversely, the induction of HO-1 expression in C57BL/6 mice pre-

vents pathology and lethality. Importantly, the reduction of ECM and lethality conferred by

HO-1 occurs independently of changes on parasitemia, indicating that HO-1 triggers disease

tolerance without affecting the resistance. The protective effect of increased HO-1 expression

is mimicked by the administration of CO [57]. CO has several effects that converge to a benefi-

cial disease outcome—including its ability to bind heme, thus reducing its release from hemo-

globin, the inhibition of proinflammatory cytokines, the recruitment of leukocytes, and the

tissue damage—without interfering with the parasite load. These fundamental findings were

confirmed with a CO-releasing molecule (CO-RM), capable of protecting against ECM

through the induction of HO-1 and without affecting oxygen transport by hemoglobin [58].

Individuals with sickle-cell trait, heterozygous with a point mutation in the β chain of

hemoglobin, have hemolytic episodes and reduced incidence of the severe forms of malaria,

including the cerebral manifestations and anemia [59–60]. Importantly, transgenic sickle-cell

disease hemizygous mice also have episodes of hemolysis and are protected against ECM, with

similar parasitemia as the controls, in a mechanism associated with disease tolerance mediated

by the activity of HO-1 [61]. This notion is in sharp contrast to the accepted paradigm that

attributes the protection to an increased resistance of sickle cell disease (SCD) erythrocytes to

P. falciparum infection. The control of heme concentrations during acute malaria infection

was associated with a milder proinflammatory response in children with the HbAS genotype

compared to the HbAA genotype [62]. Surprisingly, in this study the expression of HO-1 was

not associated with the reduction of heme.

HO-1 inhibits the expression of CXCL10, and conversely, upon P. berghei ANKA infection,

Cxcl10−/− mice have increased survival despite lower levels of HO-1 protein expression, indi-

cating a central role of the CXCL10-CXCR3 axis on HO-1 expression and ECM [63, 64].

Importantly, heme induces CXCL10 expression, contributing to CD8+ T-cell recruitment and

activation in the brain microvasculature [65]. These results reveal an intricate regulatory loop

involving heme, HO-1, and CXCL10 during malaria.

The protective effects of increased HO-1 expression and CO treatment have also been dem-

onstrated in malaria-associated acute lung injury in mice infected with P. berghei ANKA [58,

66], thus suggesting that these treatments, by reducing the oxidative stress and the inflamma-

tory response, constitute promising strategies against this important cause of death in adults

with malaria [67]. HO-1 also protects mice in other experimental models of malaria, as dem-

onstrated by the high rates of hepatic failure and death of Hmox1-deficient mice infected with

P. chabaudi chabaudi compared to the benign outcome of BALB/C controls [68]. In line with

the idea that HO-1 promotes disease tolerance in malaria, mice transduced with a recombinant

adenovirus expressing HO-1 in the liver and infected with P. chabaudi have reduced inflam-

mation and tissue damage, through an antioxidant effect that prevents hepatocyte apoptosis

without affecting pathogen load. Treatment with the antioxidant N-acetylcysteine (NAC)

reduces inflammation and recapitulates the protective effect of HO-1 on liver injury caused by

Plasmodium infection [68][69]. Importantly, heme released from parasitized red blood cells

induces formation of intravascular neutrophil extracellular traps (NETs) dependent on reac-

tive oxygen species (ROS) and contributes to increased neutrophil inflammation and liver

damage in an experimental model of malaria [70].

Recent evidence supports the notion that HO-1-dependent FtH expression is required for

cytoprotection against P. chabaudi infection through the inhibition of c-Jun N-terminal kinase

(JNK) activation [71]. Even more striking is the observation that mice lacking the expression

of HO-1 or FtH exclusively on proximal tubular epithelial cells have increased acute kidney

injury and lethality in a model of malaria caused by P. chabaudi, despite similar parasitemia,
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compared to the infected controls [72]. These results favor the idea that HO-1 and FtH provide

protection in malaria mouse models through tissue-specific disease tolerance. Conversely,

increased HO-1 expression in the liver stage during the infection with P. berghei ANKA and P.

yoelli in BALB/C mice has been associated with disease progression [73]. In this study, inocu-

lated sporozoites invade, proliferate, and differentiate to merozoites inside hepatocytes. HO-1

and/or its byproducts CO and biliverdin were described to protect infected hepatocytes from

cell death, which significantly increased the number of parasites that reach the erythrocytic

stage of the parasite life cycle. Thus, HO-1 cytoprotective effects are associated with lower dis-

ease resistance and increased parasite load during the liver stage, exposing a putative mecha-

nism of parasite evasion associated with induction of HO-1 expression. Thus, HO-1 can affect

both resistance and disease tolerance during malaria infection (Fig 1).

Malaria is also associated with an increased mortality after secondary bacterial infections

[74]. Interestingly, inhibition of HO-1 reverts the susceptibility to Salmonella during P. yoelii
infection in mice [75]. These results suggest that the increased susceptibility is governed by HO-

1 induction through mobilization of immature progenitor cells from the bone marrow. These

immature cells possess defects on oxidative burst and are not able to restrict intracellular bacte-

ria proliferation, which correlates with increased bacterial burden. It is important to mention

that higher susceptibility to bacterial infections have also been described in patients with SCD,

in which increased free heme circulation and HO-1 expression is expected [76]. A recent study

indicates that heme can also impair bacterial clearance independently of HO-1, through dysre-

gulated actin polymerization and inhibition of phagocytosis via Dedicator of Cytokinesis 8

(DOCK8) and Cell division control protein 42 homolog (Cdc42) activation [26]. Thus, HO-1

decreasing host capacity to deal with infections and heme through inhibition of phagocyte activ-

ity can contribute to higher susceptibility to secondary infections after hemolytic events.

The involvement of HO-1 in human malaria is a matter of intense debate. Schluesener and

colleagues (2001) demonstrated the up-regulation of HO-1 in lesions of individuals with CM,

although its role in protection or disease progression was not addressed [77]. In addition to the

complex regulation of HO-1, in humans a polymorphism in the HMOX1 gene affects the level

of HO-1 expression upon different stimuli. This polymorphism is observed in the number of

GT repeats in the promoter region of the gene. Low frequency of GT repeats is associated with a

higher expression of HO-1. Takeda and colleagues explored the correlation between (GT)n

polymorphism and susceptibility to CM in Myanmarese patients with uncomplicated malaria

and CM and found that the frequency of homozygous for the shorter (GT)n alleles was signifi-

cantly higher in CM patients than those with mild disease, thus representing a genetic risk factor

for CM [78]. Similarly, HMOX1 gene promoter alleles and SNPs associated to higher HO-1

expression correlate with severe malaria in children [79]. On the other hand, Kuesap and col-

leagues did not find an association between HO-1 polymorphism and disease severity in 329

cases of non-severe malaria (with acute uncomplicated P. falciparum malaria) and 80 cases with

P. vivax malaria, and 77 cases with severe or CM for analysis of genetic polymorphisms of HO-

1 [80]. Mendonça and colleagues (2012) described that long (GT)n repeats were associated with

symptomatic malaria in a study including 264 patients with symptomatic malaria, asymptom-

atic malaria, and uninfected individuals [81]. Although these contrasting results could be, at

least in part, explained by different etiologic agents, further studies are required in order to dis-

sect the impact of polymorphisms in HMOX-1 in malaria progression and severity.

HO-1 in Chagas disease

Chagas disease is the result of the infection by the protozoan parasite Trypanosoma cruzi. Sev-

eral strains with high variability have been associated with the characteristic morbidity of the
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disease, and although described as a single species, T. cruzi strains show major differences

[82]. Chagas disease affects 11 million people in endemic areas of Central and South America,

but some cases have been reported in Europe and North America, mainly in immigrants from

these endemic areas [83]. Between 30% and 40% of infected individuals develop the chronic

Fig 1. Role of HO-1 in malaria. The outcome of HO-1 expression depends on the stage of the disease. In the liver stage, HO-1 protects infected hepatocytes

from dying, allowing a greater parasitism, thus reducing disease resistance to infection. During erythrocytic phase, HO-1 is crucial to prevent heme-induced

inflammation through its catabolic activity. Its byproduct CO reduces heme levels by complexing with Hb and avoiding heme release. These effects combine

with its immunoregulatory and cytoprotective capacity to drive the protective effects in this phase of infection, increasing the disease tolerance. BV,

biliverdin; Hb, hemoglobin; HO-1, heme oxygenase 1; iRBC, infected red blood cells; ROS, reactive oxygen species; TNF, tumor necrosis factor; TNFR,

tumor necrosis factor receptor.

https://doi.org/10.1371/journal.ppat.1008599.g001
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and debilitating forms of the disease. Two-thirds of these patients develop cardiomyopathy,

and a third will develop the gastrointestinal form [84]. As for malaria, little is known about

what drives the susceptibility of certain individuals to chronic phase pathology or even to a

fatal progression (50% of the individuals who develop the cardiac forms die from sudden

death and 37% from heart failure).

Recent studies were performed to understand the role of HO-1 in mouse models of Chagas

disease. The induction of HO-1 by Cobalt protoporphyrin IX (CoPPIX) reduces parasite bur-

den in vivo and also on macrophages in vitro [85]. These effects could be mimicked by HO-1

gene overexpression in macrophages, providing pharmacological and genetic evidence of the

importance of HO-1 in this setting. However, HO-1 is clearly not the sole effector mechanism

promoted by CoPPIX, since treatment of Hmox1−/− bone marrow derived macrophages

(BMDMs) with CoPPIX also reduces parasite burden. Overexpression of nuclear factor ery-

throid 2-related factor 2 (NRF2), a transcription factor known to control antioxidant responses

(including HO-1 expression) also reduces parasite burden, while CoPPIX fails to reduce the

parasite burden of infected Nrf2−/− BMDMs [85]. These results indicate that NRF2 activates

redundant pathways that lead to parasite control. HO-1 exerts effects on T. cruzi by different

mechanisms. Since heme is an indispensable molecule for T. cruzi biology [86, 87], the biosyn-

thetic pathway is absent in this parasite [88], and it is possible that increased HO-1 expression

and consequent reduction of the intracellular heme pool is detrimental to the parasite. Reduc-

tions in the pool of intracellular labile iron are also detrimental to the parasite. It has been

shown that CoPPIX along with other antioxidants, such as NAC and apocynin, increase the

expression of FtH and ferroportin to affect the availability of labile iron [85]. These results sug-

gest that ROS likely acts mobilizing iron to increase parasite growth. In fact, manipulations of

the iron pool were reported to interfere with parasite proliferation, indicating that the parasite

also feeds on labile iron.

Gutierrez and colleagues showed that the administration of Zinc protoporphyrin IX

(ZnPPIX), a chemical inhibitor of HO-1, reduces the survival and increases the production of

proinflammatory cytokines and the cardiac inflammatory infiltration in T. cruzi–infected

BALB/c mice [89]. Surprisingly, although in this model the HO-1 inducer heme reduced car-

diac inflammatory infiltrate and prolonged survival, both ZnPPIX and heme decreased acute

phase parasitemia. These results differ from those from Paiva and colleagues, in which infected

C57BL/6 mice treated with the inhibitor of HO-1 activity Tin protoporphyrin IX (SnPPIX)

had increased parasite burden and inflammation [39]. Both groups worked with T. cruzi Y-

strain, using different mouse lineages. The reasons for the conflicting effects between metallo-

porphyrins ZnPPIX and SnPPIX remain unclear. It must be acknowledged, however, that this

latter work used the HO-1 inducer CoPPIX, which has no iron in its composition and does

not induce oxidative stress as a provocation [39], whereas in the former, the HO-1 inducer

heme acts by first causing oxidative stress and then activating antioxidant defenses [89],

besides being a source of iron to the parasite.

Although the increase in the inflammatory response after HO-1 inhibition by ZnPPIX was

beneficial after 9 days post infection to promote nitric oxide production and parasite control,

it was followed by a significant increase in tumor necrosis factor alpha (TNF-α) and interferon

gamma (IFN-γ) in different tissues. These cytokines are crucial players in the anti-chagasic

immune response at the acute phase and also reported to promote tissue damage [90–92].

HO-1 inhibition by ZnPPIX has also been demonstrated to reduce the number of regulatory T

cells (Tregs) (CD4+ CD25+ T cells) in cardiac tissue [93]. In fact, HO-1 increases Treg–T-effec-

tor cell ratio, mediating tissue protection against intestinal and lung inflammation [94–96],

and cardiac tissue protection [93, 97]. In contrast to the inhibition of HO-1 by ZnPPIX, its

induction by heme administration increased the survival of T. cruzi–infected mice due to an
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anti-inflammatory response and consequent tissue protection. Overall, these studies

highlighted the protective role of HO-1 induction in Chagas disease animal models. However,

in contrast to malaria models, HO-1 has a deep impact on parasitemia reduction and host

resistance to infection. It is important to note, however, that HO-1 also positively impacts host

disease tolerance during T. cruzi infection by reducing inflammation-derived damage (Fig 2).

HO-1 in leishmaniasis

Leishmaniasis is caused by parasites from the genus Leishmania. In mammalian hosts, Leish-
mania is an obligate intracellular protozoan parasite of macrophages that replicates within

phagolysosomes with more than 21 species reported to cause disease in humans worldwide

[98]. The disease presents 3 major forms: the cutaneous form (subdivided into localized, dif-

fuse, and disseminated forms), the muco-cutaneous form, and the visceral form; the latter

causes the majority of the 20,000 annual deaths associated with the disease [99]. Although

some Leishmania species are associated with certain forms of the disease, host endogenous fac-

tors also contribute to govern the clinical presentation and severity of the disease.

Leishmania sp. is closely related to T. cruzi and shares some biological features with this

parasite, such as the lack of biosynthetic route to generate heme [100]. Since Leishmania sp.

depends on host heme for several metabolic pathways, up-regulating HO-1 expression could

represent a strategy to inhibit intracellular parasite growth by reducing heme availability. The

first study to evaluate the role of HO-1 on leishmaniasis, using L. mexicana pifanoi, showed

that amastigotes induce high HO-1 expression early after macrophage infection [55]. Inhibi-

tion of HO-1 activity with SnPPIX increased ROS production after amastigote phagocytosis,

while induction of HO-1 with CoPPIX reduced the amounts of superoxide, an important ROS

associated to Leishmania control inside macrophages [101]. However, these authors did not

Fig 2. HO-1 in Chagas disease. (A) HO-1 promotes increased resistance in acute T. cruzi infection in mice. HO-1

expression reduces macrophage and heart parasitism and is associated with increased resistance to the infection during

acute and chronic phases of the disease. (B) Up-regulation of HO-1 expression in macrophages reduces intracellular

ROS and labile iron pool through FtH and ferroportin-1 expression. The net result is reduction of parasitism. FtH,

ferritin H chain; HO-1, heme oxygenase 1; IFN, interferon; NRF2, nuclear factor erythroid 2-related factor 2; ROS,

reactive oxygen species; Teff, T effector cells; TNF, tumor necrosis factor; Treg, regulatory T cell.

https://doi.org/10.1371/journal.ppat.1008599.g002

PLOS PATHOGENS

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1008599 July 21, 2020 7 / 18

https://doi.org/10.1371/journal.ppat.1008599.g002
https://doi.org/10.1371/journal.ppat.1008599


study the effects of manipulating HO-1 on parasite burden. From this study, it became clear

that one of the mechanisms that govern the reduction of ROS levels by HO-1 is decreased

heme availability, which abolishes gp91phox maturation, the heme binding subunit of peroxide

generating NADPH oxidase [102], within the parasitophorus vacuole [49]. Interestingly,

gp91phox genetic deletion affects the immune response to L. major, resulting in visceralization

[103]. In addition, mice deficient in gp91phox have increased parasitemia and delayed control

of infection with L. donovani [104]. In fact, a recent study demonstrated that infection of mac-

rophages with L. donovani induces the expression of HO-1, which in turn reduces the amount

of heme and the maturation of gp91phox, resulting in decreased ROS and increased survival of

amastigotes [58]. Moreover, the authors demonstrated that inhibition of inflammatory cyto-

kines by HO-1 is dependent on CO through interference of toll-like receptor (TLR) signaling.

Inhibition of HO-1 with SnPPIX in mice reduces parasite burden, whereas it increases the

amount of IL-12 and TNF [105]. These studies highlight a lower host resistance associated to

HO-1 expression during leishmaniasis.

Infection by L. chagasi is associated with an increase in HO-1 expression in mouse macro-

phages. In such a context, CoPPIX (through HO-1 increased expression) promotes the pro-

gression of infection, and conversely, macrophages from Hmox1−/− mice present lower

parasite burden compared to wild-type controls [106]. In agreement with these data, HO-1

induction reduces TNF-α expression and NO production by macrophages stimulated with

IFN-γ in vitro, a classical mechanism involved in the control of parasite burden. In dog macro-

phages, the induction of HO-1 by CoPPIX also correlates with increase L. infantum amasti-

gotes and reduction of NO and ROS, whereas the inhibition of HO-1 activity decreases the

infection burden and increases NO and ROS [107].

Treatment of primary human macrophages with resolvin D1, an important eicosanoid with

anti-inflammatory and pro-resolving properties, promotes intracellular L. amazonensis repli-

cation through a mechanism associated with induction of HO-1 [108]. It has been proposed

that sand fly saliva increases the infection of Leishmania both in vitro and in vivo by modulat-

ing several physiological responses of the vertebrate host [106, 109]. The ability of sand fly

saliva to induce NRF2 and HO-1 in human and mice skin in vivo and on macrophages in

vitro, inhibiting the inflammatory response, indicates a previously unappreciated mechanism

by which vector saliva affects resistance to Leishmania infection [109]. A recent study showed

that patients with higher concentrations of heme in the serum and increased expression of

HO-1 have higher parasite burden and a decreased number of neutrophils [110–111]. These

results are corroborated by the observation that human neutrophils stimulated with heme

have higher parasite numbers.

Conversely, different compounds with leishmanicidal activities reduce the expression of

HO-1 [111–113]. Miltefosine has direct activity against L. donovani but also contributes to

host response against infection in a mechanism that involves HO-1 inhibition [113]. Interest-

ingly, recent studies demonstrated that treatment with plant extracts—precursors of flavonoids

or purified flavonoids presenting anti-leishmanicidal activity in promastigotes and amastigotes

of L. amazonensis and L. brasiliensis—induce NRF2, HO-1, and FtH expression, reducing the

labile iron pool of infected macrophages [114–116]. The authors attribute the reduction on

macrophage infection by these plant products in part to the depletion of available iron. Gerol-

dinger and colleagues [117] showed that inhibitors of HO-1 could inhibit the leishmanicidal

activity of artemisinin. Thus, altogether these results point to a key role of HO-1 in the pro-

gression of the disease and indicate the need for more studies evaluating HO-1 as a potential

target for therapeutic strategies. In conclusion, HO-1 induction is associated with decreased

resistance to Leishmania sp. infection, inhibiting important mediators of intracellular clear-

ance of the parasite, such as NO, ROS, and TNF (Fig 3).
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HO-1 in toxoplasmosis

Toxoplasmosis is a disease with worldwide distribution caused by the protozoan parasite Toxo-
plasma gondii. T. gondii is able to infect almost all mammals, and its importance to humans

was evidenced 70 years ago when Schwartzman and colleagues described congenital toxoplas-

mosis [118]. Infection by T. gondii is a global health concern especially because of the emer-

gence of AIDS and the increased use of immunosuppressive therapies [119–121]. Similar to

other protozoan infections, a cellular immune response is crucial to control and inhibit T. gon-
dii dissemination, but excessive inflammation is associated with tissue damage and disease

[122]. T. gondii infection induces a robust HO-1 expression in the lungs of BALB/C and

C57BL/6 mice [13]. HO-1 inhibition with ZnPPIX resulted in increased tissue parasitism by

cyst-like structures and parasitophorous vacuoles. Conversely, treatment with heme, a classic

HO-1 inducer, reduced parasite burden. Both treatments increased the expression of TNF and

IFN-γ in the lungs, two factors known to play key roles in the immune response to T. gondii.
Two other inducers of HO-1, curcumin and resveratrol, were also associated with an anti-

inflammatory protective effect in a model of ileitis after T. gondii oral infection [123]. Experi-

ments using Hmox1−/− mice are required to define the putative participation of HO-1 in the

protective effects in these models of T. gondii. Finally, these results indicate HO-1 as a host fac-

tor capable of increasing both resistance (Fig 4) and disease tolerance to T. gondii infection, a

scenario that makes HO-1 induction a candidate therapeutic approach to treat patients with

toxoplasmosis.

Therapeutic opportunities

The development of drugs and vaccines to infectious diseases, including parasitic diseases, has

been oriented to reduce or eliminate the pathogen load, acting directly in the parasite or

increasing the resistance of the host. In recent decades, few new drugs against protozoan para-

sites have become available, and in the case of antimalarial drugs, the emergence of resistance

Fig 3. HO-1 on Leishmania sp. Leishmania infection induces HO-1 on macrophages causing a reduction in intracellular levels of heme that affect gp91Phox

activity and ROS generation. NO and TNF production are also inhibited by HO-1. Thus, up-regulation of HO-1 expression increases parasitism and disease tolerance.

gp91Phox, glycosylated 91-kDa phagocyte NADPH oxidase; HO-1, heme oxygenase 1; NO, nitric oxide; ROS, reactive oxygen species; TNF, tumor necrosis factor.

https://doi.org/10.1371/journal.ppat.1008599.g003
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is a major problem related to controlling the disease. Thus, the development of drugs that

increase disease tolerance, aiming at conditions that are caused by the host response to proto-

zoan parasite infections, could be a strategy to complement the current therapies based on

antiprotozoal drugs. This is an open and promising field of study and an opportunity to drug

development. As discussed earlier, HO-1 exerts differential influences on resistance and dis-

ease tolerance in malaria, Chagas disease, leishmaniasis, and toxoplasmosis.

In the case of malaria, the beneficial effects of increased HO-1 expression could also be

reproduced by its byproduct, CO. We think that HO-1 inducers or CO-based therapy are

good candidates for patients with severe malaria [124]. Considering the neutral or negative

impact of HO-1 induction or CO on pathogen load, we speculate that these treatments should

be combined to antimalarial drugs, especially during the liver stage of the disease. A similar

scenario is observed in leishmaniasis, suggesting that inducers of HO-1 could be used as

adjunctive therapy associated to leishmanicidal drugs, controlling tissue damage [125]. In Cha-

gas disease, HO-1 induction seems to be promising, since HO-1 is associated with both

increased resistance and disease tolerance. Several compounds that induce HO-1 are beneficial

to mice chronically infected with T. cruzi even when the treatment started after the establish-

ment of severe cardiomyopathy [126–127]. Similarly, HO-1 inducers seem to be good candi-

dates to treat toxoplasmosis, as HO-1 increases both resistance and disease tolerance. Future

Fig 4. HO-1 on toxoplasmosis. In mice pretreated with chemical regulators of HO-1, induction of HO-1 expression decreases parasite burden on tissues

and the morbidity of infected mice, while inhibition of HO-1 activity produced the opposite effect. This indicates that, in toxoplasmosis, HO-1 increases

resistance and disease tolerance. HO-1, heme oxygenase 1.

https://doi.org/10.1371/journal.ppat.1008599.g004
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studies using improved experimental animal models and clinical trials will determine whether

some of the promises of manipulating HO-1 on protozoan infections can be fulfilled.

Conclusions

HO-1 is an essential enzyme regulating heme and iron metabolism, stress, and inflammatory

responses. HO-1 induction has been described as an important mechanism of host protection

in a number of sterile and infectious disease models in mice [11, 128, 129]. In protozoan dis-

eases, HO-1 might influence both resistance and disease tolerance. HO-1 increases disease tol-

erance without interfering with the parasite burden during the erythrocytic phase of malaria.

However, HO-1 can increase parasite burden during the hepatic phase of malaria and in leish-

maniasis, thus reducing resistance to infection. Conversely, in Chagas disease and toxoplasmo-

sis, HO-1 exerts protection by increasing resistance or reducing parasite growth. The

mechanisms by which HO-1 exerts its protective effects on pathology are associated with its

anti-oxidative and anti-inflammatory effects, which restrict cell death and tissue damage

caused by inflammatory response and oxidative stress. Based on the previously discussed find-

ings, we assume that HO-1 expression can influence protozoan infections by a number of

mechanisms, including the reduction of heme availability to pathogens, especially from the

Trypanosomatidae family; altering iron metabolism; regulating the immune response (direct

influence on resistance and disease tolerance to inflammatory damage); restraining the patho-

gen load (through its influence on microbicidal molecules such as NOX2); and ameliorating

pathogen and inflammatory mediated damage (disease tolerance), through its cytoprotective

effects. The outcome of the manipulation of HO-1 expression and activity reflect the balance

between its effects on resistance and on disease tolerance during protozoan infections. In these

complex disease settings, understanding the precise role of HO-1 appears a difficult, but very

promising, task.
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