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ABSTRACT

Transfer RNA-derived fragments (tRFs) are a new
class of small non-coding RNAs and play impor-
tant roles in biological and physiological processes.
Prediction of tRF target genes and binding sites is
crucial in understanding the biological functions of
tRFs in the molecular mechanisms of human dis-
eases. We developed a publicly accessible web-
based database, tRFtarget (http://trftarget.net), for
tRF target prediction. It contains the computation-
ally predicted interactions between tRFs and mRNA
transcripts using the two state-of-the-art prediction
tools RNAhybrid and IntaRNA, including location of
the binding sites on the target, the binding region,
and free energy of the binding stability with graphic
illustration. tRFtarget covers 936 tRFs and 135 thou-
sand predicted targets in eight species. It allows re-
searchers to search either target genes by tRF IDs
or tRFs by gene symbols/transcript names. We also
integrated the manually curated experimental evi-
dence of the predicted interactions into the database.
Furthermore, we provided a convenient link to the
DAVID® web server to perform downstream func-
tional pathway analysis and gene ontology annota-
tion on the predicted target genes. This database pro-
vides useful information for the scientific community
to experimentally validate tRF target genes and facil-
itate the investigation of the molecular functions and
mechanisms of tRFs.

INTRODUCTION

Transfer RNA-derived fragments (tRFs) are a new class of
small non-coding RNA (ncRNA) in the length of 13–48 nu-
cleotides (nts) (1). tRFs are the products of non-random

cleavage of either the precursor or mature transfer RNAs
(tRNAs). Based on the cleavage sites of tRNA, tRFs are
classified into five categories: tRF-1s (also termed as tRNA-
derived small RNAs [tsRNAs]), tRF-3s, tRF-5s, tRF-2s
and stress-induced tRNAs (tiRs) (Figure 1) (2). tRF-1s are
generated from the 3′ end of the precursor tRNAs, whereas
the other four types of tRFs are derived from different parts
of the mature tRNAs with the 3′ end for tRF-3s and the 5′
end for tRF-5s, respectively (2). tRF-3s can be further di-
vided into two subcategories with different lengths: short as
tRF-3a and long as tRF-3b. Similarly, based on the length
from short to long, tRF-5s can be divided into three subcat-
egories: tRF-5a, tRF-5b and tRF-5c (3). tiRs have two sub-
categories: a 5tiR starts from the 5′ end of a mature tRNA
to the end of the anticodon loop, and a 3tiR from the 3′
end to the end of the anticodon loop. tRF-2s, a new type
of tRFs, are derived from the anticodon loop of the mature
tRNAs (2).

tRFs have been found to be conserved in diverse organ-
isms from bacteria to humans (4). They are involved in
many biological and physiological processes such as reg-
ulation of gene expression, RNA processing, tumor sup-
pression, and cell proliferation (2). tRF dysregulation may
play important roles in human diseases including cancer
(5–7). Recently, several studies revisited datasets from The
Cancer Genome Atlas (TCGA) and the NCI-60 human
tumor cell lines screen, and reported tRFs as potential
biomarkers in human cancer (8,9). Experimental results
suggested that tRFs function as microRNAs (miRNAs) in
post-transcriptional regulation of gene expression by par-
tially complementary to target messenger RNAs (mRNAs),
leading to the degradation or translational repression of
target mRNAs (10,11). The results of photoactivatable-
ribonucleoside-enhanced crosslinking and immunoprecip-
itation (PAR-CLIP) in human HEK293 cells showed the si-
lencing complex formation of tRF-5s and tRF-3s in combi-
nation with Argonautes 1, 3 and 4 (4,12). RNA sequencing
analysis further demonstrated the tRF–mRNA chimeric
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Figure 1. Illustration of the five categories of tRFs. tRF-1 or tsRNA is generated from the 3′ end of the precursor tRNA, whereas tRF-3, tRF-5, tiR and
tRF-2 are derived from different parts of the mature tRNA. tRF, transfer RNA-derived fragment. tsRNA, tRNA-derived small RNA. tiR, stress-induced
tRNA. ANG, angiogenin.

formation in the cross-linking, ligation and sequencing of
hybrids (CLASH) data (4,13,14).

There are more than 30 web-based miRNA target predic-
tion databases which have served as powerful tools for ex-
perimental validation of miRNA targets in multiple species
(15,16), and accelerated the investigation of the biological
functions of miRNAs by providing the binding sites on
mRNAs. However, to our knowledge, there is no such tar-
get database available for tRFs. A previous study inferred
the targeting modes of tRFs based on the limited experi-
mental CLASH datasets that cover 26 human Argonaute-
loaded tRFs (14). However, the bindings may be biased in
the context of tissues and cells. Another approach to infer
potential tRF targets is via co-expression network analysis
or chromatin immunoprecipitation sequencing (ChIP-seq),
which do not directly consider the complementary pairing
between sequences (8,9). Site-directed mutations using re-
porter genes is a fundamental approach to seek the binding
sites in the target genes, however, it requires the known re-
gions where the binding site(s) is located.

In this study, we established a publicly accessible web-
based transcriptome-wide tRF target prediction database,
tRFtarget (http://trftarget.net), for eight species includ-
ing human, mouse, Drosophila, Caenorhabditis elegans,
Schizosaccharomyces pombe, Rhodobacter sphaeroides,

Xenopus tropicalis and Zebrafish. It was hosted by the
Extreme Science and Engineering Discovery Environment
(XSEDE) (17). tRF target genes were computationally
predicted based on the interactions between tRFs and
mRNA transcripts using the two state-of-the-art al-
gorithms RNAhybrid (18,19) and IntaRNA (20). The
contents of the database include maximum complementary
length (MCL) of the paired tRF and target transcript,
binding sites on the transcript (from 5′ end) and binding
regions of 5′ untranslated region (UTR), coding sequence
(CDS), or 3′ UTR of the transcript, free energy which is a
measure of the stability of the binding between a tRF and a
candidate target transcript, and graphic illustration of the
pairing sequences. tRFtarget allows researchers to search
tRF–target interactions by either tRF ID, or transcript or
gene symbol, and demonstrates the pairing regions between
a tRF and target transcripts as well as their locations. It
facilitates researchers to use such information to perform
various experiments such as amplifying the interested
regions, making mutations in the regions for clone and
plasmid construction, and constructing reporter assays
for validation of target genes. The database also provides
experimental evidence of the predicted tRF–mRNA inter-
actions and functional studies on tRFs based on manually
curated publications. In addition, the predicted target

http://trftarget.net
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genes can be further used for functional pathway analysis
and gene ontology annotation, providing the potential
biological functions of tRFs.

MATERIALS AND METHODS

Data source

A workflow of the tRFtarget database construction is
shown in Figure 2. The tRF sequences were retrieved
from tRFdb (http://genome.bioch.virginia.edu/trfdb/) (3)
and a tsRNA study (21). The transcript sequences were
currently restricted to protein-coding transcripts, and
downloaded from GENCODE (version GRCh38.p13
for human and version GRCm38.p6 for mouse,
https://www.gencodegenes.org/) (22). Human gene symbols
and the corresponding Ensembl gene IDs were downloaded
from HGNC BioMart (https://biomart.genenames.org/)
(23), and mouse gene symbols and Ensembl gene IDs were
downloaded from MGI (http://www.informatics.jax.org/)
(24). The transcript names and the corresponding Ensembl
transcript IDs were downloaded from Ensembl BioMart
(version GRCh38.p13 for human and version GRCm38.p6
for mouse, http://www.ensembl.org/biomart/martview/)
(25). The genes and protein-coding transcripts of other
species were downloaded from Ensembl BioMart (version
BDGP6.28 for Drosophila, version WBcel235 for C. elegans,
version Xenopus tropicalis v9.1 for Xenopus tropicalis, and
version GRCz11 for Zebrafish), EnsemblFungi BioMart
(version ASM294v2 for S. pombe, http://fungi.ensembl.
org/biomart/martview/) and EnsemblBacteria (version
ASM1640v1 for R. sphaeroides, https://bacteria.ensembl.
org/Rhodobacter sphaeroides atcc 17025/Info/Index) (25).

RNAhybrid prediction

RNAhybrid (version 2.1.2, https://bibiserv.cebitec.uni-
bielefeld.de/rnahybrid) is a computational tool for pre-
dicting interactions between a short RNA and a long
target RNA based on free energy (18,19). We set an energy
threshold of –15 kcal/mol and provided five best binding
sites per RNA pair given by RNAhybrid. As this algorithm
only allows an input of a target sequence of no more
than 50 kilobases (kb) in length, all transcripts longer
than 50 kb are excluded for prediction and archived in
the database. Other parameters were set at the default
values of the algorithm. We ran RNAhybrid for all pairs
of tRFs and transcripts, parsed the unstructured results,
extracted important features, and then stored them in the
database. MCL is the length of the longest successively
complementary sequences for a specific interaction. Entries
with a MCL less than 6 nts were excluded because such
a short complementary sequence is unlikely to result in a
functional interaction (26).

IntaRNA prediction

IntaRNA (version 3.1.3, http://rna.informatik.uni-
freiburg.de/IntaRNA/Input.jsp) is another computational
tool to predict interactions between two RNA molecules
based on a combination of free energy and accessibility
(20,27). We used the exact mode in IntaRNA to get more

accurate target gene prediction. We set a seed length
threshold of 6 nts and provided five best binding sites
per RNA pair. Other parameters were set at the default
values of the algorithm. We ran IntaRNA for all pairs of
tRFs and transcripts, parsed the results, and then stored
them in the database. Interactions between the same tRF
and transcript with similar pairing sequences and almost
identical binding locations were considered as duplicated
entries, and only the entry with a minimal free energy was
kept (see manual webpage (http://trftarget.net/manual) for
an example of duplicated entries).

Consensus between predictions with RNAhybrid and In-
taRNA

We evaluated the concordance of binding sites predicted
from RNAhybrid and IntaRNA. A consensus pair of pre-
dictions was defined as similar pairing sequences and al-
most identical binding locations on a transcript (allowing
2 nts offset in the start and/or end of the pairing sequences,
see manual webpage (http://trftarget.net/manual) for an ex-
ample of consensus predictions). Users have an option to
search for consensus predictions in the database.

Functional pathway analysis

In the database, we provided users a list of the predicted tar-
get genes to perform downstream functional pathway anal-
ysis and gene ontology annotation. The gene list was ob-
tained based on the free energy and MCL of the interac-
tions with a tRF. The interactions between a tRF and all
target transcripts were ranked by an ascending order of free
energy, and the interactions with the same free energy were
further ranked by a descending order of MCL. When rank-
ing genes from consensus interactions, free energy gener-
ated by IntaRNA was used. We then selected the top in-
teractions to create a list of gene Ensemble IDs. The default
number of the top interactions is 2000. Users can also spec-
ify the number of genes to be included in the top gene list.
The gene list is copied to clipboard automatically and can
be pasted into the input box on the DAVID® web server
(https://david.ncifcrf.gov/) for functional pathway analysis
(28,29).

RESULTS

Database overview

tRFtarget includes 936 tRFs, 135 000 target genes and 294
million interactions across eight species. The database can
be queried in three ways:

1) search by tRF ID for all predicted target transcripts;
2) search by transcript Ensembl ID or name for all poten-

tial interacting tRFs;
3) search by gene Ensembl ID or symbol for all tRFs which

potentially interact with any transcripts of a given gene.

In each query method, additional filter criteria on the
binding regions, free energy and MCL can be specified by
users to narrow the prediction results. Results are displayed
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Figure 2. Flow diagram of constructing tRFtarget database. tRFtarget can be retrieved through web service. tRF, transfer RNA-derived fragment.

Table 1. Summary statistics of tRFtarget database

Species tRFs
Target

transcripts
Target
genes

Target
interactions

Human 270 100 291 20 355 153 284 308
Mouse 164 67 125 22 385 60 074 771
Drosophila 86 30 588 13 947 14 822 386
C. elegans 47 33 552 20 191 7 685 677
S. pombe 104 5146 5145 3 105 075
R. sphaeroides 87 3111 3111 1 433 321
Xenopus tropicalis 51 54 848 19 983 16 449 592
Zebrafish 127 51 259 30 149 37 389 780

in a tabular form and can be downloaded as a CSV file. Sort-
ing or filtering by table column is also supported. There are
two columns in the table that demonstrate the experimental
evidence at the gene and site levels for each predicted in-
teraction, respectively. Furthermore, hyperlinks to the rele-
vant information from other databases were provided in the
search results for users to browse detailed information of
tRFs, genes and transcripts. A click button allows users to
perform downstream functional pathway analysis on tRF
target genes. Table 1 summarizes the total number of tRFs,
genes and transcripts, and the prediction results by RNAhy-
brid and IntaRNA across eight species. A detailed descrip-
tion of this information can be found on the statistics web-
page of the database (http://trftarget.net/statistics).

Validation of prediction

A previous study investigated interactions between small
ncRNAs and mRNAs in the HEK293 cells using the
CLASH experiments (13) and identified many tRF–mRNA
chimeras, especially tRF-3–mRNA chimeras (4,14). We
used the top 10 most abundant tRF-3–mRNA experimen-
tal interactions (4) for validation of our prediction results.
Among the top 10 interactions in the CLASH data, four
tRFs, tRF-3034a, 3035a, 3036a and 3037a, were not present
in human tRFdb (3) and as a result were not included in
the database. For tRF-3014a, the MCL of the reported in-

teraction is 5 nts which is less than the threshold value of
6 nts, so this interaction structure was not indexed in the
database. We then considered the experimental interactions
from the remaining 5 tRFs to validate the prediction results.
Figure 3 shows the interactions with mRNAs of the 5 tRFs
illustrated by the predicted interactions of the CLASH tRF-
3–mRNA chimeras using mfold, a computational tool for
the prediction of the RNA secondary structure (30), and
the predicted interactions in the tRFtarget database whose
structures are most similar to the mfold predictions. All
five CLASH chimeras have matched entries in the database.
Moreover, our database provided more interactions with
target mRNAs. For example, we found another interaction
between tRF-3001a and the target mRNA RABEPK-203,
besides the interactions of tRF-3001a with the two mRNAs
DCTPP1-201 and DCTPP1-203 in the CLASH data. All
three interactions have the same pairing sequences.

Comparison with gene correlation analysis

In our previous study of tRFs in breast cancer, five tRFs,
tRF-5024a, ts-34, ts-49, ts-58 and 5P tRNA-Leu-CAA-4-1,
were significantly associated with breast cancer patient sur-
vival. Among the five tRFs, tRF-5024a had the largest num-
ber of correlations with mRNA transcripts in which there
were 404 positively and 2,292 negatively correlated genes
(31). Here, we compared the predicted targets of tRF-5024a
with the genes identified in correlation analysis. Among the
2292 genes that were negatively correlated with tRF-5024a,
625 genes are non-coding genes and were not indexed in the
database. In the remaining 1667 genes, 1506 genes (90.3%)
had at least one consensus interaction with tRF-5024a.
Among the 404 genes that were positively correlated with
tRF-5024a, 50 genes are non-coding genes and were not
indexed in the database. In the remaining 354 genes, 296
genes (83.6%) had at least one consensus interaction with
tRF-5024a. The target gene information and binding sites
for the 1667 positively and 354 negatively correlated genes
with tRF-5024a were shown in Supplementary Table S1.

http://trftarget.net/statistics
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Figure 3. Illustration of the interaction structures of tRF-3–mRNA chimeras from CLASH and the corresponding binding sites in tRFtarget. The interac-
tion structures of tRF-3–mRNA chimeras were inferred by mfold RNA Folding Form using default settings, and the reads of the chimeras and the delta G
values (dG) given by mfold are shown at the right. The binding sites in tRFtarget are shown below the mfold prediction. The transcript names are shown at
the left, and the prediction algorithms and free energy (FE) are shown at the right. Black represents non-interaction sequences; blue represents interaction
sequences of tRFs, green and red represent paired and non-paired bases of mRNA, respectively. CLASH, cross-linking, ligation and sequencing of hybrids.
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DISCUSSION

tRFs are a novel class of regulatory ncRNAs and have been
found to be dysregulated in cancer (1). Although previous
studies have revealed the roles of tRFs in biological pro-
cesses, there are still many features of tRFs, such as the bio-
genesis of tRF-3s and tRF-5s, and the functions of tRFs,
yet to be fully characterized (2). To facilitate the research
on tRFs, serval tRF-related databases have been developed
based on omics data. For example, PtRFdb collects detailed
information of plant tRFs (32); tRFdb includes a standard-
ized nomenclature of tRFs in eight organisms (3); tRFex-
plorer provides expression profiles of identified tRFs in ev-
ery cell line in NCI-60 and for each TCGA cancer type (9);
MINTbase contains the abundance of tRFs identified in all
TCGA projects (33); and tRF2Cancer not only provides the
expression of identified tRFs in TCGA but supports search-
ing for novel tRFs from user uploaded sequencing data (34).
However, to our knowledge, there is no database available
for a comprehensive prediction of tRF targets. tRFtarget
developed in this study is the first tRF target prediction
database to fill this gap. In tRFtarget, interactions between
tRFs and mRNA transcripts were predicted by two algo-
rithms, RNAhybrid (18,19) and IntaRNA (20). Both meth-
ods are free energy-based tools to predict RNA–RNA inter-
action. RNAhybrid is a popular tool to discover the target-
ing modes of small ncRNAs (14) and achieves more pre-
cise prediction than alignment-based methods (35,36). It
utilizes the dynamic programming technique to efficiently
calculate the optimal binding sites and can be easily run in
parallel. RNAhybrid achieves high sensitivity but low preci-
sion in a comprehensive comparison study (36). IntaRNA,
on the other hand, uses the ‘accessibility’ feature (20,27) to
improve the accuracy of target prediction (35–37). ‘Accessi-
bility’ is calculated as the free energy needed to unfold the
binding sites in both RNAs to make the sites accessible for
hybridization. It measures the likelihood that a short RNA
is able to bind a specific site on the target mRNA and leads
to a higher but more diverse free energy. As a result, In-
taRNA achieves high sensitivity and high precision in target
prediction (35,36).

We provided five best binding sites per RNA pair rather
than the one with minimal free energy in tRFtarget for the
following considerations. First, similar to miRNAs, each
tRF may have multiple binding sites with a target transcript
in the process of gene regulation (38). Second, the accu-
racy of target prediction commonly decreases as the length
of target transcript increases when we use prediction based
on minimal free energy. Providing more binding sites will
be more likely to include the true interaction even when
the target transcript is long (35,36). Third, the interaction
with minimal free energy may not be biologically active. We
also provided the suboptimal interactions with a bit higher
free energy than the minimal one for users’ reference (36).
When comparing the predicted targets in tRFtarget with the
CLASH data (4), our database covered the most abundant
tRF–mRNA interaction structures of the CLASH dataset,
suggesting the reliability of target prediction. We also eval-
uated the overlap of the predicted targets and the correlated
genes of tRF-5024a. More than 80% of the correlated genes
were found to interact with tRF-5024a. Because correlation

based on gene expression does not necessarily suggest inter-
action, there were some correlated genes that were not the
predicted targets of tRF-5024a.

tRFtarget can be further improved in the following as-
pects. First, tRFs in the current version of the database
were retrieved from tRFdb (3), and novel tRFs will continu-
ously be identified by experiments. We will regularly update
the database to include more tRFs and their targets. Sec-
ond, tRFs interacted with a variety of RNAs including mR-
NAs, miRNAs and long intergenic ncRNAs (lincRNAs) in
the CLASH data (14). We will expand the database by in-
cluding ncRNAs as potential targets. Third, the motifs of
tRFs based on interactions with different transcripts will be
included in the database for query. Lastly, tRFtarget may
include false positive interactions, but still provides useful
information for further cost-effective experimental valida-
tion.

In conclusion, we developed tRFtarget, a transcriptome-
wide tRF target prediction database for querying interac-
tions between tRFs and transcripts in eight species. Man-
ually curated experimental evidence was integrated into
the database. This database provides useful information to
guide biological experiments and target validation, as well
as accelerates the understanding of the function and mech-
anism of tRFs.
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