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Abstract: T-cell intracellular antigen 1 (TIA1)-related/like (TIAR/TIAL1) protein is a multifunctional
RNA-binding protein (RBP) involved in regulating many aspects of gene expression, independently
or in combination with its paralog TIA1. TIAR was first described in 1992 by Paul Anderson’s lab
in relation to the development of a cell death phenotype in immune system cells, as it possesses
nucleolytic activity against cytotoxic lymphocyte target cells. Similar to TIA1, it is characterized
by a subcellular nucleo-cytoplasmic localization and ubiquitous expression in the cells of different
tissues of higher organisms. In this paper, we review the relevant structural and functional infor-
mation available about TIAR from a triple perspective (molecular, cellular and pathophysiological),
paying special attention to its expression and regulation in cellular events and processes linked to
human pathophysiology.
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1. Introduction
TIAR: One Gene, Two Main Isoforms and a Classical RBP Structure

T-cell intracellular antigen 1-related/like (TIAR/TIAL1) protein is a classical member
of the RNA-binding protein (RBP) family. It was first identified in 1992 by Paul Anderson
and colleagues [1], and was named TIA1-related or TIA1-like protein due to its high degree
of identity and structural homology with its paralog TIA1—which had been identified one
year earlier by the same group [2].

Since then, much effort has been directed towards studying and characterizing this
gene and its products, including the different isoforms, its protein structure and organiza-
tion, and its selective and specific interaction with RNA sequences. Likewise, its multiple
functions in cellular processes and in pathology have been extensively investigated, as
evidenced by the wealth of published information during the past three decades (Figure 1).

The human TIAR gene consists of 12 exons located on the chromosomal region 10q [3]
(Figure 2). The correspondence between exons and the functional domains of the protein
are as follows: exons 1–4 code for RNA-recognition motif/module 1 (RRM1), exons 5–7
for RRM2 and exons 8–10 for RRM3. Exon 11 and the most 5′ part of exon 12 encode
the disorganized prion-like domain corresponding to the carboxyl terminus (Figure 2)
together with the 3′-untranslated region (3′-UTR) of its mature mRNA. Two major TIAR
isoforms have been identified in vertebrates—TIARa (50 kDa) and TIARb (42 kDa)—which
differ in 17 amino-acid peptides located between the ribonucleoprotein (RNP)1 and RNP2
motifs of RRM1. This additional peptide sequence in TIARa is the result of an alternative-
splicing event in the last 51 nucleotides of exon 3 [3] (Figure 2). This extra peptide confers
specificity to TIARa for the recognition of specific RNA sequences, as well as the potential
for interaction with other proteins and/or post-translational modifications [4]. The exonic
and intronic organization TIAR is conserved between mouse and human species and it
is located in the 7F4 region of the murine genome [3]. Nowadays, there is little scientific
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evidence about the differential regulatory role between main TIAR isoforms (a and b);
therefore, it will be an interesting challenge to be studied because characteristic patterns
of TIAR isoforms could determine specific cellular interactome among proteins and/or
RNAs with potential impacts on gene expression flux, biological processes and their
pathophysiological consequences.
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TIAR contains three RNA-recognition motifs (RRMs) and an auxiliary domain IDR rich in aspara-
gine and glutamine (Q/N-rich domain). The location and position of amino acid sequences on RRM1 
that differentiate the a and b isoforms is shown above a spacer. The secondary–tertiary structures 
of each of the three RRMs are shown. 
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TIAR is a modular RBP composed of three characteristic RRMs, highly conserved
with those found in TIA1 [3–6], and an unstructured or disorganized domain (IDR) in the
carboxyl-terminal region (Figure 3) [7]. Its C-terminal domain also possesses a lysosome-
targeting motif [1,7]. The major TIARa and TIARb isoforms are composed of 392 and
375 amino acid residues, respectively.
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ysis are as follows: Homo sapiens (Human) TIAR, PI_AAA36384.1; Macaca mulatta (Rhesus mon-
key) TIAR, XP_015003791.1; Mus musculus (Mouse) TIAR, PI_AAC52870.1; Gallus gallus (Rooster)
TIAR, PI_AAO49721.1; Danio rerio (Zebrafish) TIAR, NP_957426.1; Podarcis muralis (Lizard) TIAR,
XP_028585916; Xenopus tropicalis (Western clawed frog) TIAR, NP_001356541.1/NM_001369612.1;
Drosophila melanogaster (Fruit fly), NP_001303550.1; Caenorhabditis elegans (Nematode), NM_064317.2;
Homo sapiens (Human) TIA1, NP_071505.2.
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At the amino acid level, TIAR and TIA1 share 85% homology in the amino-terminal
region; specifically, RRM1–3 share 79%, 92% and 91% homology, respectively, and the
C-terminal region shares 51% homology (Figure 3). As well as having structural similarities,
TIAR, as a TIA1 paralog and vice versa, has overlapping functions with TIA1 in the field of
gene expression, cellular events and pathophysiology, for instance, because they regulate
specific and overlapping aspects of the transcriptome, translatome and interactome (RNA
and/or protein complexes), suggesting that their functional effects can be redundant,
additive and even independent [8], as we will see below.

2. Phylogenetics and Cellular/Tissular Expression Profiling

Structural orthologs of TIAR exist in different taxonomic groups, likely because of the
evolutionary role of RNA and RBPs, and their functional role in modulating and adapting
the RNA world to that of DNA and proteins. This implies the existence of a common
ancestor that has been shaped throughout evolution, and the segregation and specialization
of the multifunctional activities of the many RBPs with additional functions acquired
during the modular assembly. The structural and functional orthologs of TIAR proteins in
vertebrate and non-vertebrate taxonomic groups are shown in Figure 3.

The RRM domains have been characterized in detail, and much information is avail-
able on their topology and structure [9–11]. Similar to TIA1, the RRM2 of TIAR is the
main RNA and DNA sequence-specific interaction domain, showing preferences for uracil-
and/or adenine-, and cytidine-rich sequence repeats, termed ARE (AU-rich element) and
CU-rich sequences [4,12,13]. This sequence-dependent specificity is further extended to
cytosine- and uracil-rich sequences by the participation of RRM3 [13]. RRM1–3 of TIAR
have been crystallized and are under intense investigation by different laboratories [re-
viewed in 5]. However, as in the case of TIA1, precise information on the intimate structural
details as well as methodology to address the experimental challenges represented by the
structural “Pandora’s box” located in the carboxyl-terminal disorganized region (IDR) is
lacking. Likely, the development of new methodologies and algorithms will help to unravel
its grammar and language within the proteomic universe of networks, and elucidate its
functional dynamics [8].

TIAR is ubiquitously expressed in several cellular types in all tissues within the
eukaryotic kingdom [14] (Figure 4A). TIAR exhibits a low cell-type specificity in verte-
brate/human cells and tissues (Figure 4B), as reported in the human protein atlas [15].
Similarly, single-cell profiling involving massive analysis of proteome and transcriptome
data, including from associated diseases, revealed low cell immune specificity and low
human brain regional specificity [16–18]. However, it is known that there is regulatory
crosstalk among many major RBPs—-for example, several findings underscore the notion
that the expression, turnover and translation of regulatory RBPs (including AUF1, HuR,
KSRP, NF90, TIA1 and TIAR) are controlled, at least in part, at the post-transcriptional
level through a complex circuitry of self- and cross-regulatory RNP interactions as well as
through the tissue- and age-dependent expression of RBPs that influence mRNA turnover
and translation [19,20] (Figure 4B).

From a clinical perspective, several diseases/disorders are linked to TIAR expres-
sion/dysfunction, including tumorigenesis, acute inflammatory responses, autoimmunity,
infectious diseases and neurological disorders. Some of these diseases are summarized
in the list compiled by the Jensen laboratory and classified by Z-score of TIAR/TIAL1
disease associations (Figure 4C). Further, TIAR is an abundant protein in many eukary-
otic cells. For example, a recent study has estimated its concentration in HEK-293T cells
at around 1100 nM and 6.9 × 105 copies/cell compared to that of TIA1, at 630 nM and
3.8 × 105 copies/cell [21].
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phoma), Daudi (B lymphoma), HEK293 (human embryonic kidney), Rh30 (bone marrow rhab-
domyosarcoma), A375 (melanoma), T98G (glioblastoma), HCT-116 (colon carcinoma) and Hep-G2
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25 June 2022).

2.1. Gene Expression Control

As a DNA- and RNA-binding protein, TIAR is involved in myriad processes related
to gene expression regulatory flux, including DNA replication/transcription, processing
and splicing of pre-mRNAs, location, stability and translation of mature mRNAs, as well
as post-translational regulatory events (Figures 5 and 6).

2.2. Transcription

TIAR can modify the transcriptional rates of RNA polymerase II through interactions
with components of the transcriptional machinery [22] and its affinity for single- and double-
stranded DNA [23,24]. The depletion of TIAR in F9 cells is a good functional example of this
interaction, as it affects the promoter activity of an 80 bp fragment of the Pituitary adenylate
cyclase-activating polypeptide (PACAP) gene, suggesting that it might be involved in testis-
specific gene transcriptional regulation. PACAP is a pleiotropic neuropeptide localized in
the testis at concentrations comparable with those found in the brain, indicating that it is
involved in spermatogenesis [25]. Similarly, the genome-wide analysis of the transcriptome
of TIAR-depleted HeLa cells identified a large number of partner mRNAs associated with
inflammation, cellular signaling, immune response, angiogenesis, apoptosis, metabolism
and cell proliferation [26].

https://diseases.jensenlab.org/Entity?order=textmining,knowledge,experiments&textmining=10&knowledge=10&experiments=10&type1=9606&type2=-26&id1=ENSP00000358089
https://diseases.jensenlab.org/Entity?order=textmining,knowledge,experiments&textmining=10&knowledge=10&experiments=10&type1=9606&type2=-26&id1=ENSP00000358089
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2.3. Alternative Splicing

It was demonstrated early that TIAR interacts with selective and specific RNA mo-
tifs [4,12,13]. To participate in the control of alternative pre-mRNA splicing [27–43], TIAR
binds to uridine-rich sequences, which are mostly located in the introns, and seems to
facilitate the recruitment of the U1 small nuclear ribonucleoprotein, thus promoting the
recognition and processing of atypical 5′ splice sites [27–43].

TIAR was also identified as a novel player in the regulation of human calcitonin/CGRP
alternative RNA processing [42]. TIAR bound to the U-tract sequence motif downstream
of a pseudo 5′ splice site within a previously characterized intron enhancer element. The
binding of TIAR promoted the inclusion of the alternative 3′-terminal exon located more
than 200 nucleotides upstream from the U-tract. In cells that preferentially include this
exon, the overexpression of a mutant TIAR lacking the RNA-binding domains suppressed
the inclusion of this exon. In this cellular context, an unusual novel interaction was
demonstrated between U6 small nuclear (sn)RNA and the pseudo 5′ splice site, which
was shown previously to bind U1 snRNA. Interestingly, TIAR binding to the U-tract
sequence depends on the interaction of not only U1 but also U6 snRNA with the pseudo
5′ splice site. Conversely, TIAR binding promotes U6 snRNA binding to its target. The
synergistic relationship between TIAR and U6 snRNA strongly suggests a novel role for
U6 snRNP in regulated alternative RNA processing [42]. TIAR has also been associated
with tissue-specific splicing events [43].

TIAR can be displaced between the nucleus and cytoplasm in a specific sequence-
dependent manner, as mutations of the highly conserved RNP2 or RNP1 peptides in RRM2
redistribute TIAR to the cytoplasm, and similar modifications in RRM3 abolish TIAR
nuclear exports [44].

2.4. Translation

The post-transcriptional control of mRNA metabolism is mediated by RBPs, together
with long non-coding RNAs (lncRNAs) and/or microRNAs (miRNAs), which are assem-
bled with cellular transcripts forming transient and dynamic RNP particles that define
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the life and fate of cellular mRNAs in the short and medium term (in the absence of
transcriptional activity) in environmental-dependent contexts. The three RRMs of TIAR
allow its interaction with specific sequences localized in the UTRs of ~5% of the human
transcriptome [12,13,33,35,38,39]. Consequently, TIAR might be considered as a master
regulator of the translation of many cellular mRNAs [12,13,33,35,38,39]. This control is
selectively exerted through the recognition of AU- and CU-rich sequences located on 5′-
and 3′-UTRs on cellular mRNAs [12,13,33,35,38,39,45,46]. Some of most representative
mRNAs, whose translation is regulated/mediated by TIAR, include the following: hu-
man matrix metalloproteinase-13 (MMP13) in a TIARa isoform-dependent manner [47],
cyclooxygenase-2 (COX-2/PTGES) [48,49], β2-adrenergic receptor [50–52], Xenopus laevis
Vg1 [53], GADD45alpha [54], cytokines [55], c-myc [56], 5′-terminal oligopyrimidine tract
mRNAs [57,58], insulin [59], alpha-synuclein [60] and potential components of the cellular
and translational machinery [61,62]. TIAR is also associated with translational repressor
structures that form cytoplasmic foci similar to stress granules (SGs) [63]. Another transla-
tional repressor mechanism involves the interaction of TIAR with canonical components of
the cellular translational machinery, such as eIF4GI, in acute myocardial ischemia [64].

RBPs are subject to post-translational modifications (PTMs) that continuously adjust
their activity to maintain cell homeostasis. PTMs can dramatically change the subcellular
localization, the binding affinity for RNA and protein partners, and the turnover rate
of RBPs. Moreover, the ability of many RBPs to undergo phase transition and/or their
recruitment to previously formed membrane-less organelles, such as SGs, is also regulated
by specific PTMs [65,66].

2.5. Turnover/Stability

ARE sequences have been shown to be binding sites for numerous RBPs including
TIAR, revealing a role in the coordination/control of gene expression through the regu-
lation/modulation of stability and turnover of cellular RNAs [67–69]. Several examples
of human mRNAs regulated by TIAR at this level have been identified through the use
of loss- and gain-of-function cell models testing both endogenous and chimeric mRNAs.
Some relevant examples include iNOS [70], TPD52 [71] and alpha-synuclein [60] mRNAs.
Stability/turnover events can involve RNAs and SGs [72], and also non-coding RNAs
(lncRNAs/miRNAs) [73–80]. An example of this is the Hippo pathway, which is a regulator
of organ growth and tumorigenesis. In Drosophila, oncogenic RasV12 cooperates with
loss-of-cell polarity to promote Hippo-pathway-dependent tumor growth. Mechanistically,
Rox8 (the Drosophila ortholog of TIAR) directly binds to a target site located in the yki
3′ UTR and recruits and stabilizes the targeting of miR-8-loaded RNA-induced silencing
complex, which accelerates the decay of yki mRNA [73].
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2.6. lncRNA- and miRNA-Mediated Regulation

As mentioned above, several molecular, functional and regulatory links have been
identified between TIAR and distinct classes of cellular ncRNAs. For example, the lncRNA
MT1JP functions as a tumor suppressor by interacting with TIAR to modulate p53 sig-
naling [74]. Similarly, the lncRNA PHAROH regulates Myc translation in hepatocellular
carcinoma by sequestering TIAL1 [75], and the lncRNA LOXL1-AS1 interacts with TIAR
to modulate vasculogenic mimicry in glioma through the regulation of the miR-374b-
5p/MMP14 axis [76]. Interestingly, several single nucleotide polymorphisms in lncRNA
regions found in TIAR are associated with breast cancer risk [77]. The participation of miR-
NAs has also been reported—for example, the interaction between miR-223-3p and TIAL1,
which downregulates TIAL1, is involved in the neuroprotective effects of dexmedetomidine
on hippocampal neuronal cells in vitro [78], as well as vasculogenic mimicry in glioma
via the regulation of the miR-374b-5p/MMP14 axis [76]. As stated earlier, TIAR/Rox8
promotes miRNA-dependent yki messenger RNA decay [73]. TIAR coupled with miR-579
and miR-125b participates in combined transcription- and translation-repressive events
to tightly regulate pro-inflammatory gene expression in leukemic THP-1 cells during
endotoxin tolerance, a common feature of severe systemic inflammation [79].

TIAR also appears to be involved in the extracellular trafficking of cell-derived mi-
crovesicles, which is a novel mechanism of cell-to-cell communication. The finding that
microvesicles contain RNPs involved in the intracellular traffic of RNA and selected miR-
NAs suggests a dynamic regulation of RNA compartmentalization with potential biological
effects [80].

2.7. Tissular and Cellular Homeostasis

Tissular homeostasis can be perturbed by diverse cellular events, and the associated
adaptations in cellular function require the participation of RBPs, including TIAR, to drive
transcriptional/post-transcriptional changes to improve health cellular dynamics features
versus degenerative phenotypes in human diseases/disorders.
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2.8. Autophagy

Autophagy is a natural catabolic process of regeneration in which intracellular mate-
rial is degraded in vesicular structures called autophagolysosomes. Autophagy is necessary
for normal cell and tissue function, and to stop the accumulation of misfolded, damaged
and aggregated proteins and other toxic substances. Impaired autophagy is associated
with various human disorders, especially neurodegenerative diseases. Ablation of TIAR in
mouse embryonic fibroblasts stimulates high rates of adaptive autophagy [93]. Contrast-
ingly, transcriptome-wide analysis links the short-term expression of TIARb to a protective
proteostasis-mediated cell quiescence response [95,107].

The activation of the amino acid starvation response (AAR) is known to increase
lifespan and acute stress resistance, and to also regulate inflammation. The pharmacologic
activation of AAR by halofuginone was shown to significantly inhibit the production of the
proinflammatory cytokine interleukin 1β (IL-1β) and provide protection from intestinal
inflammation in mice. Halofuginone inhibits IL-1β through general control nonderepress-
ible 2 kinase (GCN2)-dependent activation of the cytoprotective integrated stress response
pathway, resulting in the rerouting of IL-1β mRNA from translationally active polysomes
to inactive ribocluster complexes—such as SGs—via the recruitment of the TIA1 and TIAR,
which are further cleared through the induction of autophagy [101]. Likewise, translation-
ally stalled IL-1β mRNAs recruit TIA1 and TIAR, resulting in RBP-RNA SG complexes.
The SG pathway regulates IL-1β production, and bound IL-1β mRNAs might undergo
degradation through the induction of autophagy [108]. TIAR is also a component of the
RNP in the control of endotoxin-induced macrophage responses [109].

2.9. Apoptosis

Apoptosis is an essential process of tissular homeostasis to remove damaged and
unneeded cells. Inappropriate apoptosis (either too little or too much) is a major factor in
many human diseases, including neurodegenerative diseases, ischemic damage, autoim-
mune disorders and many types of cancer. The ability to modulate the life or death of
a cell has immense therapeutic potential. One of the first reports on TIAR described its
involvement in stress-induced apoptosis [7], as it triggers DNA fragmentation in perme-
abilized thymocytes, and can redistribute from the cell nucleus to the cytoplasm during
Fas-induced cell death. Similarly, TIAR gain-of-function models in HEK293 cells trigger
an apoptotic phenotype in a p53 pathway-associated cellular response [95]. In the same
vein, the C. elegans TIA1/TIAR homolog, TIAR-1/TIAR-2, is required for germ cell apop-
tosis [105,110], and a correlation exists between thyroid disease and excessive apoptosis
in thyroid tissues associated with elevated TIAR expression [111]. Regardless, there is a
commonality between TIA1 and TIAR since their complete inactivation in HEK293 cells
leads to mitotic catastrophe and cell death [38].

2.10. Cell Cycle

Primordial germ cells (PGCs) give rise to both eggs and sperm via complex matu-
rational processes that require both cell migration and proliferation. TIAR is essential
for PGC development [81]. In response to DNA damage, the p38/MK2 complex is relo-
cated from the nucleus to the cytoplasm where MK2 phosphorylates hnRNPA0 to stabilize
GADD45alpha mRNA, while p38 phosphorylates and releases TIAR, suggesting a role for
the MK2 pathway in the post-transcriptional regulation of gene expression as part of the
DNA damage response in cancer cells [65].

TIAR is also involved in the timeline of cell proliferation through the cell cycle [26,38,91,93,104].
Indeed, TIAR accumulates in nuclear G2/M transition granules (GMGs) induced by replication
stress. During G2/M checkpoint activation, TIAR retains CDK1 in GMGs, attenuates CDK1 activity
and, thereby, promotes genome stability [104]. TIAR controls mitotic entry and is required for
G2/M checkpoint activation independently of the ATR-Chk1 pathway. During G2 and prophase,
TIAR accumulates in GMGs, which contain factors involved in transcription, splicing, DNA
replication, DNA repair, as well as CDK1/Cyclin B, and may be sites of stalled replication. In
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addition, loss- and gain-of-function cell models of TIAR have highlighted their participation in the
modulation of the proliferation of several transformed cell lines [26,38,56–58,91,99,100,104,112,113].

2.11. Mitochondrial Function

Mitochondrial biogenesis is a complex cellular process involving two separated and
compartmentalized genomes and several regulatory players that function as transcription
factors and/or RBPs to coordinate both genetic systems [114]. Experimental evidence from
loss- and gain-of-function TIA cell models has revealed modifications of mitochondrial
phenotypes, affecting mitochondrial function and morphology/architecture [93,99,100,115].
TIAR has been implicated in regulatory events associated with the post-transcriptional
control of splicing, translation and/or stability of nuclear-encoded mitochondrial mR-
NAs, and modulates the splicing and translation/stability of human OPA1 mRNA [100].
In fact, TIAR can potentially bind and target about 345 and 678 human mitochondrial
mRNAs as revealed by HeLa TIAL1 iCLIP [35] and HEK293 PARCLIP [38] analysis, respec-
tively. Of them, 288 targeted mRNAs are potentially shared between the two experimental
approaches, strongly supporting their modulation by TIAR. These nuclear-encoded mito-
chondrial components are associated with mitochondrial organization, metabolic processes,
respiration, generation of precursor metabolites and energy, and respiratory electron trans-
port chain activity [35,38]. Many of the potential targets can also be sequestered—for
example, during stress responses, such as oxidative stress or damaged DNA response.
TIAR can also modulate mitochondrial activity through mitochondrial master regulators,
such as NFE2L2/Nrf2, a TIAR-targeted mRNA [116]. The available experimental evidence
clearly indicates that Nrf2 is an important player in the maintenance of mitochondrial
homeostasis and structural integrity. Its role is particularly critical under conditions of ox-
idative, electrophilic or inflammatory stress, when the ability to upregulate Nrf2-mediated
cytoprotective responses influences the overall health and survival of the cell. As many
human pathological conditions involve oxidative stress, inflammation and mitochondrial
dysfunction, the pharmacological activation of Nrf2 holds promise for disease prevention
and treatment [117].

2.12. Cellular Stress

In response to stressful conditions, eukaryotic cells launch an arsenal of regulatory
programs to protect the proteome and the transcriptome. One major protective response
involves the arrest of protein translation and the formation of SGs, which we have men-
tioned are discrete cytoplasmic inclusions containing non-membranous RNP complexes
with abundant RBPs such as TIAR. The SG response is thought to ensure survival and to
preserve cell viability when conditions improve. Similar to TIA1, TIAR is a central player
in SG formation, structure and function [83,84].

The three RRMs of TIAR enable the selective binding to RNA, and its prion-like
domain allows TIAR to reversibly aggregate to form SGs [3–6]. The overexpression of the
TIAR prion domain is sufficient to induce SG formation [83]. Distinct macromolecular
interactions lead to the phase separation of protein and RNA during stress, such as protein–
protein, RNA–protein and RNA–RNA interactions. While the identities of many proteins
and RNAs contained in SGs have been recently elucidated using different experimental
approaches [118,119], the function of this conserved compartmentalization of the cytoplasm
during stress response remains elusive.

That being said, accumulating evidence points to an antiviral nature of SGs, which is
supported by the discovery of many viral factors that interfere with SG formation and/or
function [72,120,121]. SGs are, however, dispensable for mRNA stabilization during cellular
stress [96]. For example, in C. elegans, salt stress, oxidative stress and starvation, but not
heat shock, induce the relocalization of ubiquitin, proteasome and TIAR-2 into distinct
subnuclear regions referred to as stress-induced nuclear granules (SINGs) [122]. In the
case of viral infections (Sendai virus), virus-expressed factors enabling a well-balanced ratio
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of suppression and triggering of apoptosis are thought to be essential for optimal virus
replication [123].

Results from the depletion of G3BP1 and TIA1/TIAR in senescent cells revealed
that loss of G3BP1 contributes to impaired SG formation. Aging reduces Sp1 levels, and
this transcription factor regulates G3BP1 and TIA1/TIAR abundance, suggesting that the
decline in SG formation can provide a new biomarker to evaluate cellular aging [124].
Further, the migration of the splicing factor ASF/SF2 into SGs is strictly determined both by
its shuttling properties and its RNA-binding capacity, and it cooperates with TIA proteins
in the regulation of mRNA metabolism under normal conditions and also under conditions
of environmental stress [125]. For example, TIAR is one of the mRNA processing factors
involved in mammalian hibernation [126].

Human astrocytoma cell SGs contain mRNAs that are known to be involved in glioma
signaling and the mammalian target of rapamycin pathway, involving proteins such as the
cytokinetic proteins epithelial cell transforming 2 and Aurora kinase B (AURKB) together
with canonical components of SGs, such as TIAR and G3BP1 [127]. TIAR is also a compo-
nent of SGs in pluripotent stem cells under stress conditions, such as oxidative stress and
heat shock [128].

A recent study revealed that RNA granule components including 2 key SG RBPs with
low-complexity prion-like domains—PAB-1 and TIAR-2—aggregate in aged C. elegans
in the absence of disease [129]. This study presented new evidence that sustained SG
formation triggers RBP aggregation. In addition, the authors demonstrated that mild
chronic stress during aging promotes mislocalization of nuclear RBPs. These findings shed
light on how age-related changes can contribute to pathogenesis in neurodegenerative
diseases and the disruption of RNA homeostasis [129,130].

A higher number of cells with granules, which persist for longer periods than in
controls and ALS cases, represents an early molecular change occurring before ALS onset,
suggesting a transient pre-aggregative state [131]. In the case of HspBP1, it is associated
with the SG proteins G3BP1, HuR and TIA1/TIAR. HspBP1 also interacts with poly(A)-
RNA in vivo and binds directly RNA homopolymers in vitro. Multiple lines of evidence
and single-granule analyses demonstrate that HspBP1 is crucial for SG biogenesis [106].

Interestingly, Drosophila orthologs of the mammalian SG components AGO1, ATX2,
CAPRIN, eIF4E, FMRP, G3BP, LIN-28, PABP and TIAR are enriched in adult fly intestinal
progenitor cells, where they accumulate in small cytoplasmic messenger RNP complexes
(mRNPs). Treatment with sodium arsenite or rapamycin was shown to reorganize these
mRNPs into large cytoplasmic granules or intestinal progenitor stress granules (IPSGs), and
this depended on polysome disassembly, which resulted in translational downregulation,
and was reversible. Although the canonical SG nucleators ATX2 and G3BP were sufficient
for IPSG formation in the absence of stress, neither of them, nor TIAR, either individually
or collectively, were required for stress-induced IPSG formation [132].

The pathophysiological importance of SGs and their RNP components in the formation,
progression and metastatic fate of several human solid tumors have been recently reported
and reviewed [133,134]. It is known that genome integrity must be tightly preserved to
ensure cellular survival and to deter the genesis of disease. Endogenous and exogenous
stressors that impose threats to genomic stability through DNA damage are counteracted
by a tightly regulated DNA-damage response. TIA proteins and other RBPs are emerging as
regulators and mediators of diverse biological processes to maintain genome integrity and
prevent deleterious phenotypes in cellular scenario/conditions associated with genotoxic
stress [135].

2.13. Viral Biology

In the course of viral infectious cycles, many nuclear–cytoplasmic shuttling proteins
of mostly nuclear distribution are retained in the cytoplasm by viruses and re-purposed.
Indeed, several mammalian viruses hijack a common group of factors—for example, cy-
toplasmic RNA viruses use host nuclear factors in new functional roles supporting virus
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translation and virus RNA replication, a common theme employed by different virus
groups [136]. TIAR is one of these co-opted proteins in SG assembly in response to environ-
mental stress, including viral infections.

As mentioned earlier, there is accumulating evidence for the antiviral nature of SGs.
Indeed, viruses have evolved diverse mechanisms to prevent the formation of SGs and
enable the synthesis of viral proteins using host translation machinery. SGs facilitate the
establishment of an antiviral state by limiting viral protein accumulation and regulating
signaling cascades that affect virus replication and immune responses. Mechanisms have
been described that allow the ongoing translation of mRNPs that encode antiviral factors,
such as interferon-stimulated genes (ISGs), despite the arrest of bulk translation [137–139].

TIAR (and also TIA1) translocate from the nucleus to the cytoplasm after EV71 infec-
tion and localize to sites of viral replication. TIA proteins can facilitate EV71 replication by
enhancing viral genome synthesis in host cells. Both proteins were reported to bind the
stem-loop I of the 5′-UTR of the EV71 genome and improve the stability of viral genomic
RNA [140]. A role for TIAR in facilitating viral replication has also been associated with the
West Nile virus [86,89]. TIAR is also removed/sequestered by the Sendai virus [85], and by
the West Nile and dengue viruses [88].

By contrast, the formation of SGs is induced early during poliovirus infection [141],
but this ability is lost as the infection proceeds, and SGs disperse. Infection resulted in the
cleavage of G3BP, but not of TIA1 or TIAR, by the poliovirus 3C proteinase. The expression
of a cleavage-resistant G3BP mutant restored SG formation during poliovirus infection
and significantly inhibited virus replication. These results elucidate a mechanism for viral
interference with mRNP metabolism and gene regulation, and support a differential critical
role of RBPs in SG formation and the restriction of virus replication [141].

During HIV-2 infection, TIAR associates with genomic RNA to form a TIAR-HIV-2
ribonucleoprotein complex diffusely localizing in the cytoplasm or aggregated in SGs [142].
Moreover, the HIV-1 Gag protein blocks SG assembly irrespective of eIF2α phosphorylation,
and even when SG assembly is forced by the overexpression of G3BP1 or TIAR [143].

Another example is represented by the porcine reproductive and respiratory syndrome
virus (PRRSV), which induces SG formation via a PERK-dependent pathway in MARC-145
cells, with SGs involved in the signaling pathway of the PRRSV-induced inflammatory
response [144].

Previous studies reported TIA1/TIAR recruitment at sites of flavivirus replication,
and recent work has expanded on these observations and demonstrates that, similar to
TIA1, TIAR behaves as an inhibitor of viral replication [145]. The approach used by the
authors, using RNA interference in human cells, contradicts the previous hypothesis based
on mouse embryonic fibroblast knockout studies, and shows that tick-borne encephalitis
virus (TBEV) is capable of inducing bona fide G3BP1/eIF3/eIF4B-positive SGs together with
a differential phenotype of stress response proteins following viral infection, implicating
TIA1 in viral translation and as a modulator of TBEV replication [145].

Some, but not all, flavivirus-capsid proteins also block SG assembly, suggesting dif-
ferential interactions between flaviviruses and SG biogenesis pathways. The depletion of
the SG components G3BP1, TIAR, and Caprin-1, but not TIA1, reduced Zika virus (ZIKV)
replication [146]. These results are consistent with a scenario in which ZIKV uses multiple
viral components to hijack key SG proteins to benefit viral replication [101]. However,
the knockdown of TIA1 and TIAR affected ZIKV protein and RNA levels but not viral
titers. Conversely, the depletion of Ataxin2 and YB1 decreased virion production, despite
having only a small effect on ZIKV protein expression. This study provides new insights
into virus–host interactions and identifies the potential contribution of TIA proteins to the
unusual pathogenesis associated with this reemerging arbovirus [146].

However, human papillomaviruses sequester TIAR to repress the formation of SGs [147].
By contrast, hepatitis C virus (HCV) induces the formation of SGs, whose proteins regu-
late HCV RNA replication and virus assembly and egress [92] and the same occurs with
vesicular stomatitis virus [148]. Porcine reproductive and respiratory syndrome virus
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(PRRSV)-induced SGs are associated with viral replication complexes, and also TIAR, and
suppression of host translation [149].

Poliovirus 2A protease triggers a selective nucleo-cytoplasmic redistribution of splicing
factors (including TIA proteins) to regulate alternative pre-mRNA splicing [150]. TIAR
has been linked to the binding downstream of the nonconsensus donor of the large intron
present in the nonstructural gene of minute virus of mice to regulate of splicing [151].

3. Physiology and Pathology
3.1. Inflammation

The functional roles of RBPs in immunity and its associated diseases are well known.
The dysregulation of RBPs and their targets result in chronic inflammation and autoimmu-
nity [26,46,55,152,153]. TIAR is a well-known attenuator of inflammation and, accordingly,
it has been extensively studied as a key post-transcriptional regulator of inflammation
and immune response. TIAR can collaboratively or competitively bind the same target
mRNAs with other RBPs, such as AUF1, ELAVL1/HuR, KSRP, TIA1, TTP, Roquin or
Regnase, to enhance or dampen regulatory activities [152,153]. These RBPs can also bind
their own 3′-UTRs to negatively or positively regulate their expression. Both upstream
signaling pathways and miRNA regulation shape the interactions between RBPs and target
RNAs. In myeloid cells, TIAR has been shown to bind and regulate the translation and
stability of various mRNA-encoding proteins important for inflammatory response, such
as TNFα [45,55], Cox-2 [48,49], many proinflammatory cytokines [55], and IL-8 [154]. A
study in macrophages using a combination of RNA-IP and microarray analysis (RIP-chip)
identified over 400 mRNAs specifically bound by the full-length protein in response to
endotoxin [98].

The dysregulation of RBPs results in chronic inflammation and autoimmunity. In
this regard, a transcriptome meta-analysis identified an immune signature involving RBPs
in the immune cells of patients with ulcerative colitis (UC), who showed significantly
lower TIAR expression compared with healthy controls [103]. In the same study, the
deletion of TIAR in macrophages using siRNAs resulted in an enhanced production of
the inflammatory cytokine IL-1β [103]. By contrast the aberrant expression of TIA1 and
TIAR has been documented in patients with rheumatic diseases, leading to the production
of autoantibodies to TIA proteins, specifically, an increased prevalence in systemic lupus
erythematosus and systemic sclerosis and correlations with clinical features [155].

Another noteworthy aspect is neutrophilic inflammation in asthma, which is asso-
ciated with interleukin (IL)-17A, corticosteroid insensitivity and bronchodilator-induced
forced expiratory volume in 1 s (FEV1) reversibility. IL-17A synergizes with TNF-α in
the production of the neutrophil chemokine CXCL-8 by primary bronchial epithelial cells
(PBECs). At the molecular level, epithelial hyper-responsiveness was associated with
the failure of TIAR to translocate to the cytoplasm to halt CXCL-8 production, as con-
firmed by TIAR knockdown [156]. This is in line with the finding that hyper-responsive
PBECs also produce enhanced levels of other inflammatory mediators. Normalizing the
cytoplasmic translocation of TIAR is thus a potential therapeutic target in neutrophilic,
corticosteroid-insensitive asthma [156].

TIAR has also been identified as a potential component of a gene signature linked to
pulmonary sarcoidosis, as it was downregulated in patients with sarcoidosis compared
with healthy individuals [157]. Nevertheless, further studies are required to evaluate the
precise role for TIAR in inflammatory scenarios linked to human pathologies, such as au-
toimmunity, arthritis, ulcerative colitis, ulcerative colitis, asthma or pulmonary sarcoidosis.

3.2. Embryogenesis

The phenotypic differences observed between mice with the inactivation of TIAR [81]
and/or TIA1 [46] indicate that they may cooperate or act independently during early em-
bryogenesis. The phenotype of mice lacking TIAR appears to depend on the mouse strain
in which the studies are performed. TIAR deficiency resulted in embryonic lethality in 100%
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of BALB/c mice, but only in 90% of C57BL/6 embryos. Crossing BALB/c TIAR +/−mice
with C57BL/6 TIAR +/− mice produced 60% embryonic mortality. Of the remainder, half
of the mice survived to adulthood but were sterile with abnormalities in spermatogenesis
and oogenesis, as well as in the architecture of the gonads themselves. Other phenotypes
included obesity, despite being born with lower body mass, and neurological disorders.
In addition, the mice developed cervical cancer as adults [81]. Conversely, in a transgenic
mouse model of TIAR overexpression, 77% of embryos had abnormalities at embryonic day
7.5 [90]. TIAR was also reported to control self-renewal and the attenuation of differentia-
tion in mouse embryonic stem cells [97]. Overall, embryonic and germ cell development, as
well as the differentiation of murine embryonic stem cells, are compromised by the reduc-
tion/absence or overexpression of TIAR [46,81,90,93,97,158]. In the case of the C. elegans,
the TIA-1/TIAR homolog TIAR-1/TIAR-2 is required to induce germ cell apoptosis, and
TIAR-1 protects female germ cells from heat shock [105,110,159].

3.3. Carcinogenesis

TIAR/TIAL1 has been studied in several transformed cells and solid tumors. The first
seminal work showed that TIAR regulates translation of the c-myc oncogene mRNA in a
3′-UTR in K652 cells [56]. In the same vein, the knockdown of TIAR expression in HeLa
improves cell proliferation [26,91]. By contrast, using a cellular gain-of-function model
in HEK293 cells, TIAR overexpression was shown to inhibit cell proliferation and trigger
apoptosis and autophagy/mitophagy, indicating that TIAR functions as a tumor suppressor
in a p53-dependent manner [95]. TIAR was also identified as a transformation/tumor
suppressor in lung cancer tumors in an shRNA library-based genome-wide loss-of-function
screen [113]. These observations have been reinforced with recent findings revealing the role
of TIAR as a tumor suppressor via interaction with the lncRNA MT1JP to modulate the p53
pathway [74]. Furthermore, the downregulated expression of TIAR has been observed in
several cell lines and tumor samples [91,95,112,113,160] and it is an unfavorable prognostic
marker in liver cancer [15] and osteosarcoma [161].

The genome-wide analysis of transcript variation in breast cancer identified TIAR as in-
volved in aberrant splicing. Patterns of transcript variant expression identified “hub” genes
that differentiated the cancerous and normal transcriptomes, and the dysregulated expres-
sion of alternative transcripts may reveal novel biomarkers for tumor development [162].

The silencing of TIA proteins in several tumor cell lines triggers the upregulation
of HIF-1α expression, and rapid and severe hypoxia causes co-aggregation of TIA pro-
teins, which suppress HIF-1α expression, reflecting the control of HIF-1α expression by
TIAR/TIA1 [163].

A very recent study has demonstrated a tumor suppressor role for TIAR in the inci-
dence/progression of skin squamous cell carcinoma (SSCC) [160]. The downregulation
of muscleblind-like protein 1 (MBNL1) promoted cell metastases (measured as Transwell
migration) in SCL-1 cells, whereas the upregulation of MBNL1 reduced cell metastasis.
Additionally, the downregulation of MBNL1 suppressed the protein expression of TIAR,
myogenic determinant 1 (MyoD1) and caspase-3 in vitro. Consistent with these observa-
tions, the inhibition of TIAR or MYOD1 expression attenuated the effects of MBNL1 in
SSCC. These observations reveal that MBNL1 suppresses the cancer metastatic capacity of
SSCC via by TIAL1/MYOD1/caspase-3 signaling pathways [160].

TIAR is also a negative regulator of the BRCA1 oncogene; it has been shown to block
translation and reduce the protein expression of BRCA1 in chronic myeloid leukemia
cells, which leads to aneuploidy, spindle toxin resistance and genomic instability [164].
TIAR-mediated repression of BRCA1 mRNA translation is responsible for the downregula-
tion of BRCA1 protein level in BCR-ABL1-positive leukemia cells. This mechanism may
contribute to genomic instability [164]. Moreover, it is plausible that TIAR has the same
effect on BRCA1 protein expression in breast cancer [77,164]. As already mentioned, TIAR
interacts with LOXL1-AS1 to modulate vasculogenic mimicry in glioma via the miR-374b-
5p/MMP14 axis. This observation might reveal novel targets for glioma therapy [76].
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Nonetheless, an oncogenic or tumor suppressor function for TIAR (and their isoforms)
could be highly dependent on the cell-type and the associated interactomes involving
both RNA-protein and protein–protein interactions and dynamics [8,21]. TIAR ablation
in murine embryonic fibroblasts compromises cell proliferation by delaying cell cycle at
G2/M phase and triggering adaptive autophagy [93]. Additionally, the knockdown of TIAR
accelerates mitotic entry and leads to chromosomal instability in response to replication
stress, in a manner that can be alleviated by the concomitant depletion of Cdc25B or
inhibition of CDK1. As TIAR retains CDK1 in GMGs and attenuates CDK1 activity, it was
proposed that the assembly of GMGs may represent a hitherto unrecognized mechanism
that contributes to the activation of the G2/M checkpoint [104]. The depletion of both TIA1
and TIAL1 paralogs by CRISPR-Cas9 technology drives cell death after 7 days [38].

Tumor protein D52 (TPD52) reportedly plays an important role in the proliferation and
metastasis of various cancer cells, including oral squamous cell carcinoma (OSCC), and it is
expressed strongly at the hypoxic center of the tumor and is involved in cell death resistance.
This occurred through a mechanism involving enhanced mRNA stability by binding of
the mRNA to TIA1 and TIAR [165]. The simultaneous knockdown of TPD52 and HIF-
1α significantly reduced cell viability. In addition, in vivo tumor-xenograft experiments
showed that TPD52 acts as an autophagy inhibitor caused by a decrease in p62. Thus, the
expression of TPD52 increases in OSCC cells under hypoxia in a HIF-independent manner
and plays an important role in the proliferation and survival of the cells in concordance
with HIF [165].

Recently, it has been shown that glycolysis and tumor immunity are inter-related
cellular events in osteosarcoma that share glycolysis-immune-related genes. TIAR is one of
these genes and a potential candidate to construct a gene signature risk score to predict the
prognosis of patients with osteosarcoma [164].

3.4. Neurodegenerative Diseases

The timing, dosage and location of gene expression flux are the main determinants
of brain architectural complexity. In neurons, this is achieved by specific sets of RBPs and
their associated factors, which bind to specific cis-elements throughout the RNA sequence
to regulate splicing, polyadenylation, stability, transport and localized translation at both
axons and dendrites. Not surprisingly, the misregulation of RBP expression or disruption
of their function due to mutations or sequestration into nuclear or cytoplasmic inclusions
have been linked to the pathogenesis of several neuropsychiatric and neurodegenerative
disorders, such as fragile-X syndrome, autism spectrum disorders, spinal muscular atrophy,
amyotrophic lateral sclerosis and frontotemporal dementia. The roles of TIAR and other
RBPs have been analyzed by their specific molecular and cellular functions, the neurological
symptoms associated with their perturbation and their axo-dendritic transport/localization
along with their target mRNAs as part of larger macromolecular complexes termed RNP
granules [166].

3.4.1. Neurofibromatosis Type I

Neurofibromatosis type I (NF1) is a common inherited autosomal-dominant disease
that affects 1 in 3500 individuals with mutations that promote the loss of function of the
NF1 protein, neurofibromin, which is involved in diverse signaling cascades. The disease is
completely penetrant, but shows variable phenotypic expression in patients. NF1 is a large
gene, and its pre-mRNA undergoes alternative splicing [27]. One of the best characterized
occupations of NF1 is its function as a Ras-GAP (GTPase-activating protein). NF1 exon
23a is an alternative exon that lies within the GAP-related domain of neurofibromin. This
exon is predominantly included in most tissues, and it is skipped in central nervous
system neurons [27]. The isoform with the skipped exon 23a has 10-times greater Ras-GAP
activity than the isoform, including exon 23a. This inclusion is tightly regulated by at
least three different families of RBPs: CELF (CUG-BP, cytosine-uridine-guanine-binding
protein) and ETR-3 (ELAV (embryonic lethal abnormal vision)-type RNA-binding protein-
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like factor) [167,168], Hu and TIA1 /TIAR. The CELF and Hu proteins promote exon 23a
skipping, whereas the TIA1/TIAR proteins promote its inclusion [28,169]. The widespread
clinical variability observed among patients cannot be explained by NF1 mutations alone
and it is believed that modifier genes may have a role in the variability. The available
information suggests that the regulation of alternative splicing may act as a modifier to
contribute to the variable expression in NF1 [168].

3.4.2. Axon Regeneration

Axon regeneration is a coordinated and concerted process associated with various
cellular events, including but not restricted to the injury sensing, axonal transport, synthesis
of macromolecules, cellular energy homeostasis and cytoskeletal organization. Interest-
ingly, a negative link between TIAR expression/post-translational modification and axon
regeneration has been recently reported. Thus, C. elegans TIAR-2/TIAR protein functions
cell autonomously to inhibit axon regeneration. TIAR-2 undergoes liquid–liquid phase sep-
aration in vitro and forms granules with liquid-like properties in vivo. Axon injury induces
a transient increase in TIAR-2 granule number. The prion-like domain is necessary and
sufficient for granule formation and for inhibiting regeneration. Tyrosine residues within
the prion-like domain are important for granule formation and inhibition of regeneration.
TIAR-2 is also serine phosphorylated in vivo. Non-phosphorylatable TIAR-2 variants do
not form granules and are unable to inhibit axon regeneration. These observations suggest
an in vivo function for phase-separated TIAR-2 and identify features critical for its function
in axon regeneration [105]. However, there is a consensus that the regulation of a single
terminal gene may not be sufficient to drive post-injury axon regeneration, especially across
a long distance.

3.4.3. Alzheimer’s Disease

Alzheimer’s disease (AD) is a progressive and ultimately fatal neurocognitive disorder
with behavioral disturbances characterized by brain neuron loss and deposition of mis-
folded proteins. Several studies have recently identified a new type of molecular pathology
in AD that derives from the aggregation of RBPs, forming RNA–protein complexes that
include SGs [170,171]. SGs progressively accumulate in the brains of transgenic models of
tauopathy, and massively accumulate in patients with AD and other neurodegenerative
diseases [170]. Some SGs (e.g., those positive for TIA1) co-localize with tau pathology, while
other SGs (e.g., those positive for G3BP) often identify neurons that lack tau pathology.
A significant increase in the expression of TIAR is found in the hippocampal area in AD,
suggesting it could be linked with this process of neurodegeneration [83]. Further, the
expression of TIAR is increased in neurons after ischemic cerebral injury [172]. However,
many RBPs that are the core nucleating factors of SGs, including TIA1, TIAR, TTP and
G3BP1, are also found in the pathological lesions of other neurological conditions, such as
AD [94] and ischemic cerebral injury [172].

4. Future Challenges

TIAR/TIAL1 is an important multifunctional regulator of several aspects of gene ex-
pression. In this review, we included the most important discoveries related to TIAR/TIAL1
and its mechanistic implications, as well as the related cellular and pathophysiological
processes. Despite the many relevant advances in recent years, there are still many ques-
tions that remain to be answered and that deserve more detailed study. For instance, the
differential aspects of the a and b isoforms of TIAR have been scarcely studied. What
we know to date suggests putative differential roles of both isoforms in the regulation of
constitutive and alternative splicing, growth suppression, ability to act as proto-oncogenes,
regulation of proliferation and cell cycles and response to damaged DNA, etc. The analysis
of the interactome of RNAs and proteins associated with each of the cell-, tissue- and
species-dependent TIAR isoforms would help to address these aspects. Additionally, the
generation of tissue- and isoform-specific animal models with loss and gain of function
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would provide very useful information regarding the different activities involving TIAR
isoforms. Finally, obtaining single-cell transcriptomic and proteomic expression patterns
could provide novel and much more precise information concerning the role of TIAR in
different cell types.

As mentioned earlier, many questions remain open about the modulation of mitochon-
drial activity by TIAR through, for example, NFE2L2 and other potential targets, and a
comprehensive understanding of the precise mechanisms will be essential for the rational
design of future clinical trials and may offer new biomarkers for monitoring therapeutic
efficacy [117].

Another feature that remains poorly studied is the post-translational modification pat-
terns of TIAR, including acetylation, methylation, phosphorylation and sumoylation, which
could form another level of regulation of the protein and its isoforms and, consequently, of
the processes that they modulate.

Lastly, the profiles of TIAR gene mutations should be obtained to distinguish the
role of mutated variants in oncogenesis or proteostasis, as is the case of gain of function
associated with tumoral and proteotoxic responses. This could also be correlated with the
identification of prognostic and therapeutic targets. The ultimate and most important goal
should be the development of drugs that enhance or reduce the functionality of TIAR or
interacting proteins, depending on the disease, by modifying their expression patterns or
biological activity. Further elucidation of the role of SGs in antiviral defense will depend on
technical advances in translatome analysis and super-resolution microscopy, which have
revolutionized our ability to study the composition and properties of SGs.
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